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Abstract—In this paper, a new method is presented for sub- resolution data may be corrupted by clouds at the acquisitio
pixelic land cover classification, using both high resolution struc- date. Moreover, medium or coarse resolution provide sakectr
tural information and coarse resolution temporal information. To information dedicated to vegetation applications. Onehe t
that aim, the linear mixture model is used for pixel disaggrega- . e
tion. It enables to describe a coarse resolution time series in terms key challgngg for al.Jtomatlc.Iand COVGI.’ cIaSS|f|cat|9n iscken
of the mixture of classes that are represented within each pixel. the combination of information from different spatial reso
Then, the Bayes rule and the Maximum A Posteriori criterion tions to benefit from both a high discrimination between land
lead to the definition of an energy function whose minimum cover types and an accurate Spatia| information.
corresponds to the researched optimal classification. A theorieal Using coarse resolution (CR) time series, the size of the fiel

analysis of the labeling errors that may be obtained using this . . . . .
energy function is provided, raising the main parameters for of view of a pixel can be bigger than the size of the objects

labeling performance. The optimal classification is computed by Of interest €.g. agricultural fields). Such pixels are called
combining linear regressions and simulated annealing, leading mixed pixels. Hence, the identification of land cover types

to an unsupervised algorithm. The method is illustrated with requires an access to sub-pixelic information. In theditere,

numerical results obtained on the agricultural scene of the ADAM numerous methods have already been proposed to deal with

database (Rumania). Lo . . .
the sub-pixelic problem, such as data fusion, disaggregati

Index Terms—sub-pixelic classification, Maximum A Posteri- or classification approaches_

ori, high resolution images, coarse resolution time series, land Multi-resolution data fusion methods aim at reconstrugtin

cover. : . : . . .
high resolution images from high resolution spatial
information and coarse resolution spectral information.

. INTRODUCTION Various approaches have been suggested, in particular for

In the last decades, the use of remote sensing data thg fusion of panchromatic and multispectral data. Mos_t
proved to be efficient for monitoring the Earth surface. IRf them suggest to handle separately spectral and spatial
particular, land cover maps provide essential information nformation, through a multi-scale decomposition based on
only for the analysis of global or local changes but also fd¥avelet decomposition [Sveinsson et Benediktsson, 2000],
studies on geosphere-biosphere-atmosphere interadfians [Ranchin et Wald, 2000] - or on pyramidal = decomposi-
depend on reliable estimation of the terrestrial vegetatio- 110N [Aiazzi et al.,, 1999],  [Laporterie-8jean et al., 2003].
deed, vegetation has a significant impact on surface pmeggerfqrmances of these mthods are strongly limited when the
involved in water or energy exchanges. Land cover maps &@sidered resolution ratio increases: except the moogi|
increasingly used to define environmental policies and th@pProach of [Laporterie-gean et al., 2003] that enables to
contribute to reduce the risks from natural disasters (8podUSe data with a resolution ratio higher th&y these methods

forest fires, etc.). Now, given the large size of satellittada &€ restricted to the use of resolution ratio coarser than
automatic classification techniques are required to géméne Moreover, the use of these kind of methods as a classification

land cover maps. preprocessing may be used in a monotemporal context but,

As time evolution is one of the most discriminating criterid? & multitemporal context, it would lead to a high amount
for vegetation, the classification of a scene in terms of la/fi intermediate data and, hence, increase considerably the

cover types requires high temporal frequency informatioROMPutation time. _ _ _

Nowadays, we distinguish between sensors with a high $patiaD'Saggregation of mixed pixels has been widely used to
resolution (e.g. SPOT/HRV, 1 pixel fa20m x 20m) but a 'MProve coarse resolution dgta interpretation, r(_aleylvm
two-monthly temporal acquisition frequency, and sensatis w e ODJects of interest. Most disaggregation technics dsed

a medium or coarse spatial resolution (e.g. MERIS, 1 pixgHP-pixelic analysis are fuzzy approaches related to fuzzy
for 300m x 300m, or SPOT-VGT, 1 pixel forlkm?) but Cmeans or possibilistic methods ([Settle et Drake, 1993],

daily or so temporal acquisition frequency. The interest 4Fo0dy, 1996], [Brown et al., 2000]) enabling an estimation
medium or coarse resolution time series is clear taking int the proportions of each land cover type represented mithi
account the cost of high resolution data and the fact that hig 9\ven pixel. Indeed, the measured signal results of a mix of
Several spectral responses corresponding to the differpas
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each type of land cover, weighted by its occupation rate II. METHODOLOGY
within the CR pixel. This model is used either to estimatg problem formulation
class features knowing class proportions within each pixel

([Faivre et Fischer, 1997]) or to estimate class propostion Assummg the spaual mformatl_o_n IS invariant along “'.””“‘“ﬂ.W
suggest to investigate the classification problem by elptpi

irQn the one hand the spatial information from HR images for
e location of objects of interest and on the other hand the

ny information on th tial distribution of the lan Y . . . . L
any information o e spatial distribution of the land ao etemporal information of CR time series to discriminate the

types within a pixel. Hence, this kind of decomposition mod o
enables to handle with high resolution ratios but not to iubta%{pe of land cover represented within each segment. To that

directly sub-pixelic classifications. Now, the main diffiigu aim, the classnjcatmn problem is decomposgd in two stéyes: t
) ) S HR segmentation of the scene and the labeling of each segment
with medium or coarse resolution images such as MERIS or

SPOT/VGT is the size of the pixel field of view relatively toacco_rdlng to its land cover. In this paper, we fpcus on the
labeling problem, assuming a HR segmentation is available.

the size ofobjectsto classify (humerous parcels are entirely Let us denoteDur and Deg, respeciively, the HR and CR
HR CR» ’

contained in one CR pixel). image domains. A HR segmentation of tBgg image domain

More recently, sub-pixelic classification approaches have 9 ) 9 : _HR 9 L
been developped in the aim both to discriminate the typénsto || homogeneous segments is defined as an ap_phcaﬂon
of land cover and to refine their spatial location in or® Drr — 8 ={1,2,...,|5]} that maps a segment index

der to lead to a fine resolution land cover map. Son z) to each plx_elx € Dhr (t.he sets = {1.’2"""8‘} :
enotes the obtained segment indexes). Now, if the sceme of i
e

methods suggest to subdivide each CR pixel into sup- . -

pixels and to classify the sub-pixels maximizing their rest containgL| types gf land coverwher{é_{l,....,|£\}
spatial auto-correlation ([Atkinson, 1997], [AtkinsorQ], denotes the_set_ of possible labels, we define a labeling gsoce
[Kasetkasem et al., 2005]). These methods require a preli?ns- an application\ : 5 — L, that maps a label to

; . egch segmenk of the HR segmentation. In practice, the
inary knowledge of class proportions and they are basé . . k
s%gmentanon and labeling process also refer, respegtiel

on a spatial dependency hypothesis between pixels and ShE segmentation image and the label map resulting fronethes

pixels. Hence, as soon as the object of interest is fu'b’pplications
included in a pixel, |ts_spat|al I_ocatlon is d|sabled.. Oth_ﬂrks LetT — {1,...,|T|} be the set of acquisition dates, the CR
use complementary information (a high resolution image or b :

Ime series is denoted as the image veetet (vy,...,v7))

a structural model) in order to refine the classes Iocatior‘l1 . > :
([Tatem et al., 2002]), restricting the space of solutiohise where, for allz & T,.the Imagev, 1S a real-va!ued function
N ’ defined on the CR image domaiPcr. In Section II-B, the

use of all these approaches Is restricted tq small reSmuupelationship between the HR segmentation and the CR time
ratios as the spatial dependency hypothesis does not bnsrégies is described
enough information when high resolution ratios are used. '

The approach we propose is based on Bayesian theory, using ] )
the Maximum A Posteriori (MAP) criterion, and assumes th&: Pixel disaggregation
the spatial structure of the studied scene is invariantgalon In this section, we describe the measurement (radiometric
the considered time period. With this hypothesis, the apatintensity, vegetation fraction cover, ...) wich is observéthin
information of the scene can be extracted at a given date hy,CR pixel as a function of the class features that are
for instance, segmenting a HR image through homogeneaepresented within the pixel field of view. To that aim, let us
segments (in this study, we use a multiscale pyramidal algassume that each HR pixel represents a unique class and that
rithm for image segmentation [Koepfler et al., 1994], basddr all datet, a CR imagev; corresponds to the block average
on Mumford and Shah functional [Mumford et Shah, 1989]pf the HR imageu; of the same scene. [Py denotes the
Such an assumption seems realistic for a time period suchhégh resolution image domain, the coarse resolution iritens
one agricultural year, in particular if the HR image is overean be expressed as

segmented, enabling to distinguish all parcels. Howeves, t 1
stationnarity hypothesis can be restrictive when changesro ve(y) = N Z ut(x), 1)
along the considered time period. Parallel studies focughen {zey}

problem of land cover change detection [Robin et al.,, 200¢)nere {z € 4} denotes the set of the HR pixels € Dygr
and may be used jointly to classification for a compleigyat are enclosed by the CR pixgland N = [Dur|/|Der| is
vegetation monitoring automatic process. the number of HR pixels that are included within a CR pixel

ric temporal information. Section Il describes the problem

formulation and the image model leading to the definition ve(y) = %Z Z uy (), 2)
of an energy function. Then, a probabilistic error analysis leL {zew)
of mislabeling using this energy function is presented in Ra(@) =

Section IV, before a description of the algorithm is given imhere A, represents the label of the pixel The coarse
Section V. Finally, Section VII shows some numerical resultesolution measurement can then be decomposed with respect
and Section VIII gathers our conclusions. to the labels. LetV;(y) be the number of HR pixels of label



[ within the CR pixely. The proportion of label within the to the sum of proportions of all segments of lab&hat are

pixel y is then present within pixely, that is
N,
ou(y) = ), 3) ww) = S By, (6)
kes

Ap =1

with the condition that, for ally € Dcr,
whereS is the set of segments ang is the label of segment

> aly) =1 4) k.
leL The probability of observing knowing the label map\

. . escribes the process of data observation and acquisition.
In general, CR image values result from a modulation transfe
. : .Let us assume that, for ali, the measurement of labél
function which does not corresponds to a rectangle function : . . : _
iS_characterized, at high resolution, by a Gaussian distri-

as gssumed t.)y the bloc—avergge hypothesis. I.—|owever', SPfion of meanm,(l) and vary(l) (i.e. for all x € Dur
previous studies show that, in pract|ce_, the linear ml_xtua(x) ~ N(me(1),var(1))). This hypothesis is commo}lly
mode_l Is reasonnable for numbers of applications. In paetic used in the case of optical visible/infrared remote sendatg.

[Kerdiles et Grondona, 1995], [Small, 2001] showed that ttve/

. L e also assume that CR observations are spatially independe
use of a linear combination of NDVI values, even though the o . . .

. . onditionnally to the label map. This hypothesis boils down
are not linear measurements, leads to minor errors.

e . . to assuming that the CR variability is not spatially correth
Here, a probabilistic context is adopted in order to modgff g y b y

o ) ter computation (for details, see Appendix A), the random
the variability of the data. The HR and CR observgtlonﬁeld V; is then Gaussian conditionnally to the HR label
u = (ur,...,ur)) andv = (v1,...,v7)) are consid-

; L . h iori ili ity functi
ered, respectively, as realizations of the label fields= g)i%ﬁig::aflyez)xrfn)\ Fi)erbabl ity density function o¥i(y)
(Ui,...,Ug) and V. = (V4,..., V7)) and, for allt € 7,

U = (Us(y))yepy andVi = (Vi(y))yepen- Moreover, a label X (uly) — (N y)?
map A = (A1,...,\s)) is considered as a realization of a \) = 202(\,y)
random fieldA = (A4, ..., Ajs)). Then, the random variables i (e(®)1A) ar(A, y)vV2r ‘
(Vi(y)|A = X) satisfy, for allt € T andy € Dcr, _ ) _ @)
i.e. a Gaussian density of mean
Ug(x)|A = A
V=3 = Sa@ Y LR =Ng W)=Y Y am@0,  ®
leL (= €y} 1) ! :
A3 € kes

This equation describes the observed measurement of a @Rl variance

pixel as a function of the proportion of each label within the 9 1
pixel of interest and the typical average intensity of eadfel. oi(\y) = NZ Z Br(y)var(l) - ©)
In the literature, this model is usually applied to CR &L peq

images, either to estimate unknown class proportions Wheg; ;s ynderline that mean and variance depend on the
an a priori knowledge of the class features is availablgynsigered CR pixel, through its composition in terms of the
([Horwitz et al., 1971], [Settle et Drake, 1993]) or to estiyifferent types of land cover.

mate unknown class features knowing the class proportionsMoreover, let us assume temporal independency of obser-

([Cross et al., 1991]). Some recent works enable to estimal&ins conditionnally to the label map. This hypothesis is
both class proportions and features through an iteratige-al i, i ated by the fact that the estimation of cross-corieat

rithm such as EM or ICE ([Le Bgarat-Mascle et al.,, 2005]). poryeen different dates is awkward (practically, it would
In the following, the number of labelEC| is assumed to be oqyire either a learning step or the definition of apriori

known. on the temporal evolution of each type of land cover). Note
that from a theoretical point of view, it is not difficult to
take into account temporal cross-correlations, througlora n
diagonal covariance matrix. In the following, these hyests
In this section, we derive tha posteriori probability of (normality, spatial and temporal independence) will bered
obtaining a label map knowing a CR time series observatias hypothese&H).
and a HR segmentation. The maximization of this probability Under hypothese§H ), the probability density function of
will lead to the reconstruction of a sub-pixelic label map. observingv is determined, conditionally to the label map, by
Using the linear mixture model (Section II-B), the CR
observed measurement can be expressed in function of the Fria=a(vlA) = H H Fviwin=avey)l ). (10)
proportion of each label within the pixel of interest and loé t teT y€Der
corresponding class features. In order to map a label to eddie mean of the random field conditionally to the label map
segment of the HR segmentation, let us consider the proportis hence, for all pixel, denotedu(, y). It corresponds to the
of segmentk within pixel y, denoted by, (y). For all label mean vector(,ut()\,y))y,t. Thanks to the temporal indepen-
[ € L, the proportion of label within pixel y is then equal dency assumption, the covariance matrix is diagonal and can

C. Maximum a posteriori



be expressed as*(\, y)I;7|, whereo?(\,y) = (af()\,y))yt Moreover, as class features are unknown in the supervised

and ;7| stands for the identity matrix in dimensiof |. case, we consider the problem

Considering the MAP criterion, let us estimate a label map . . 9
as the optimal configuration of the label fieknowing the NELS me(RE)T > 2 () — O w)? (15)
CR time seriesy and denote by\* = (\},...,\%) (where t€T y€Der

the kth coordinate stands for the label of the segmépt The maximuma posteriorilabel map is hence determined by
the optimal label map. In absence of contextual information , ) . 9

related to the scene of interest, all label maps are assumed — aﬁ%f;nmg?ﬂé%)fz > (wly) = m(ny)?, (16)
(as usual in such situation) to have the same probability of PET yEPer

occurence. From the Bayes rule, tagoosteriori probability and, for a given label map, solving the problem (16) enables

density function writes to estimate the class means as a simple least squares problem
Fria|X) fa) According to some preliminary statistical analysis parfed
fajv=o(M V) = ———F——, (11) on actual data (SPOT/HRV), this hypothesis seems apptepria
fv(v) as all class variances are rather close, except the 'water’

which has to be maximized with 'respect)thhe' densityf v class whose variance is particularly weak. Moreover, am-ove
does not depend oA. Hence, withouta priori information  estimation of ‘water’ class variance is not really impagtis

on label maps, all label configurations are considered gyoils down to attribute a weaker weight to errors on this
equiprobable. Then, the MAP boils down to the maximumgiass, which usually concern very few HR pixels.

likelihood, that is
max fajv—, (A v) = max fyja—x(v|A). (12) [Il. I NFLUENCE OF THE RESOLUTION RATIO
reLs AeLS

. . In this section, we focus on the loss of information due
Under hypothese¢), the optimal label map\" for MAP to the use of CR data instead of HR data, considering the

criterion IS dete_rmmed afglthe maximal argume_nt over aEl!"abproblem (15). To that aim, we consider the monotemporal case
map configurations\ € L°! of fi,5—x(v| A), which is also

and, for the sake of simplicity, we adopt the following natri
. (ve(y) — e\, 9))? 9 notations :U andV denote, respectively, the vector of HR and
argmmz Z ( a2(\,y) +In(or (X)) ) - CR data (u(x)), and(v(z)),), B denote the matrix of size
(13) |Dcr| x |Dur| representing the block average operator which
Notice that the optimal label map is conditionned by thgnables to obtain CR images from HR onéisis a matrix of
knowledge of mean and variance characterizing each typg€ [Prr| x [S| representing the segmentation (whdsgj)
of land cover. In practice, when class means and variand8§™M is1 if the pixel 7 belongs to segment 0 otherwise),C'
are a priori known, a solution of Equation (13) can bedS @ matrix of sizgS| x |£| representing the label application

obtained using a optimization process, leading to a supedvi (Whose (i, j) term is 1 if the label of the segment is j,
classification approach. 0 otherwise) and)/ € RI4l denotes the class means vector.

Using these notations, the problem (15) can be written as

: o 2
win || BRCM — U)][*. 17)

s
AeL te€T yEDcr

D. A cost function for unsupervised classification

In general, class features are unknown : they depend on
various parameters such as acquisition dates, atmosplogric Restricting to the use of HR data, the analogous problem
ditions or the local evolution of vegetation (the phenotadi without pixel disaggregation can be defined as
cycle of a given type of crop also varies with its geographic ) )
location). Therefore an unsupervised classification aggro g}}\I}HRCM_ Ull*. (18)
seems more appropriate. Now, class features can be eslim
using the linear mixture model, assuming the knowledge
classes proportions that are represented within each. pi
Practically, mean estimation can be processed in a realstenn RC and the rank ofC are equal to/C]. As the matrix

time during the iterative classification processg(through a S
linear regression algorithm run for the label map configamt .RC represents the appllcanon -that enables to reconstruct a '._'R
mage where each pixel value is the mean value corresponding

obtained at each step of the iterative algorithm). Howevicé its label, the applicatiolC" is generally injective.

variance estimation, for which there is no so simple robu ) X .
P For a given label map, i#/ and)M’ € RIZ| are, respectively,

estimator, would induce a high computation time cost. ‘
Consequently, for an unsupervised approach, we overcomg_SOIUtlons of the least squares problems (17) and (18, th

the class variance estimation issue by assuming that caiss ysatisty the following inequalities (for details, see Anrigx
ances ¢ar; (1)) are equal to a fixed value?. This hypothesis L 4
(denoted(H,,) in the following) implies that the variance of |M' — M|]> < [[|(I = "BB)UII]” Y 7 (19)
each CR pixel is constant, thatdg(),y) = 02/N and, hence, i=1

that the energy considered in Problem (13) boils down to and

2 L
S ((wly) — meAy))* (14) 1M — M|? < (1—;) U2 ;;2 (20)

t€T y€Dcr

%tfst, let us remark that, for a given segmentation and label
p R and C), the solutions of the least squares prob-
ems (17) and (18) are unique if, respectively, the rank of



where ||.|| is the Euclidean vector norm arnjfl.||| its subor- the CR pixel, on the resulting error on mean estimation and
dinated matrix norm, andd;);—;..; denotes the set of theon the inter-classes standard deviatior{assumed equal for
singular values ofRC. each class).

The inequality (19) shows, in particular, that if all CR dixe  More generally, if every segment of the segmentation image
correspond tgure pixels (.e. they represent a unique class)represents a proportion upper thapN of a CR pixel, the
the mean solutions obtained using HR or CR data are eqpatvious result implies the following inequalities:

(M = M’). Indeed, the imag&3 BU represents the HR image
U reduced to coarse resolution (by block-average with blocks VN n i&lﬁ”m( ) =mMl
of size N x N) and zoomed again (with factag¥ x N). p=® T 9 N o ’ (25)

Moreover, these upper bounds can be computed of a given

data set (a HR imag¥, a resolution ratiaV and a label map and ,

RC), permitting an estimation of the information gain using VN IAI;?%A%||m()\) —m(\)|

coarse resolution data. These upper bounds become coarse p=>@ T p . (26)
when the singular values d@tC are too small, that is, when a

label proportion can be predicted from the linear comboTati This result gives a reliability interval. In particular, ethin-

of the other labels. equality (25) raises a ratio which can be seen as a contrast
measurement, denoted

IV. ERROR ANALYSIS AND MULTITEMPORAL ASPECTS

Before using the labeling cost function (16) in an exper-
imental context, we focus on an analysis of labeling erro
occuring while solving Problem (16). To that aim, we consid
the probability of mislabeling a given segment under th
hypothese$H, H,). First, let us recall that(y) = (v:(y))ter
denotes the CR observation vector in a pixel modeled
as a realization of the random procegsy) = (Vi(y))ier,
and m(Ar) = (m:(A\x))ier is the temporal mean vector
corresponding to the label associated to segmeni this
framework, the energy function considered in Problem (1
associated to the random variableis denoted

_ mimy [m() = m)| @)

g
igure 1 represents this upper bound values when the image
ontrast ¢ varies, for segments of size at leagt (with
ifferent values of &, ranging from about0.4% to 75%
of a CR pixel). For the regular case of a constrast level
upper thanl, a 1-optimal label map has a probability less
than 0.05 to be prefered to the correct label map when any
segment represents more thzi?% of a CR pixel. Moreover,
e higher the contrast is, the weaker is the probability of
islabeling a segment contained in a CR pixel. Notice that

= Z 1V (y Z Bre(y)m(Ax) ” (21) o8 - —— 7 N-ocham —
vepe ves i o —
n/N=0.4978

where||.|| is the Euclidian norm (over time). o4 AT —

Assume the groundtruth label map ds= (A1,..., \js))- o3s ||
In the.folloyvipg, allgbel map’ = (A, ..., X[g) will be said . o
1—optimal if it verifies § om

Vk#ko, )\;§Z>\kn & 02

!
’ )\ko ;é )\ko ! 0.15

where the segment, is fully included in the CR pixely,.
Denote G, (yo) the occupation rate of segmeht in the
pixel 9. As V is a Gaussian random field characterized by
Equation (7), the probability for a-optimal label map\’ to o5 s 2 25 s
be prefered to the optimal label map is constrast

\/* (5 Fig. 1. Upper bound of the probability to prefei eoptimal label map to the
p="P (Ev ()\) _ EV()\/) >0) = @ H Yo H correct label map when the mislabeled segment occupies morenthsifio
- 20 of a CR pixel. The upper bound value is plotted in function lné image

(22) contrast Each curve corresponds to a given proportighV of a CR pixel,
ranging from0.4% to 74.6%.

where

16y0)ll = Bro (Wo) Im(Aeg) — m(Ni )|, (23) even though the mislabeling probability has been computed i

the restricted case of a unique mislabeled segment, itsraise

and the key parameters for labeling performance. In partigular
Vo € R, &(x / (24) the upper bound puts forward the two key characteristics tha
\/ﬂ involve both the remote sensing sensor and the physicaéscen
is the cumulative distribution function of normal laW(0,1) features, namely the ratio between segment and CR pixed size
(for computation details, see Appendix C). and the minimum distance between class means. An empirical

This probability depends on the considered HR/CR resolanalysis of sensitivity of the method to the resolutionaas
tion ratio V, on the proportion of the erroneous segment withidevelopped in Section VI-B, showing that the resolutionorat



impacts the performance only through the aforementionnéte number of labels. It returns the label field solution d)(1
parameter (ratio between segment and CR pixels). and the class features (means). In the following, we dehpte

As far as the minimum distance between classes is cdhe global energy to minimize in (16). It stands for the egerg
cerned, it can be used as a guide for the choice of a subsetafresponding to a label field. Each step of the algorithm
dates in the time series. Assuming that we would handle ordlianges randomly one segment label in the label field and
0 dates in the set of acquisition datéqe.g.for computational tests whether it makes the energy decreasing or not. Denote
time reasons or for supervised class features robustness iB,(\,-,) the energy correponding to the previous label field,
supervised approach), rather than choosing these dates ffor a given time series. The algorithm is the following.

phenological cycle kn0\_/vledge considerations, we suggest t | _ Compute proportionéBy ().« for all pixel y.
choosef dates in7 solving the following problem:  Initialize randomly the label field.
9 - Initialize the temperaturd to the graph diameter.
max min » [y, (A) = my, (A, (28) - While stop criterion is not verified, do
t1<...<tg A£N 4 .
i=1 for i =0 to |S|
This criterion can be interpreted as a contrast measurement draw randomly a segmeitt
of the time series, joining up the idea of choosing the dates draw randomly a labet for segmentt,
leading to the highest level of contrast (or class sepatgbil estimate the label means,
Moreover, solving the problem (28) can be justified by the fac computeAE, = E,(A) — Ey(Aprev)
it enables to minimize labeling errors. if AE, <0, accept the label change,
Note that the use of this criterion would be mainly attraetiv else reject it with probabilitexp (—AE, /T)

in a supervised case, where the class means prieri known. decrease the temperaturd’:— 7'(n)
Indeed, a solution of Problem (28) can be obtained exploring n«—n+l

all sub-sets off dates contained V" but this implies an The functionT'(n) is called the cooling schedule, its role is to
exploration Of(lg\‘) possibilities which rapidly requires a veryensuyre the convergence of the algorithm to the global optimu
costly computation time. In the unsupervised case, sinee ¥ the energyF,. Theroretically, the cooling schedule should
class means ara priori unknown, dates could be chosemgye a logarithmic decreasing law suchZa@:) = h/log(n),

a posteriori using (28) in order to refine the label map bufyhere, is a predifined constant. However, with such a law,

the choice of the dates was done according toaapriori  decreasing likeT'(n) = Tq¢" is often used. In our case,
phenological knowledge and on image availability and dyalisetting g = 0.999 provided good results in the experiments.
(mainly absence of clouds, high contrast). Concerning the stop criterion, we stop the algorithm when no
change is accepted during x |S| successive iterations (with
V. ALGORITHM n, = 400). Once more, this value results from an empirical

Because of the size of the solution space, a systemafealysis of the stability of the obtained solution.
search of the minimum is not possible. As no heuristic seemsThis algorithm can also be used in order to find the label
justified for the considered problem, we decide to adofig!d solution of Problem (13), taking a HR segmentation, a
a simulated annealing algorithm. The minimization problefaR time series and the class features (means and variances)
with consider is composed of two correlated problems: a led@ inputs by simply removing the label means estimation step
squares problem which can be easily solved through a singuNpte that such a supervised version is much faster than the
value decomposition and a combinatory optimization proble Unsupervised one as each iteration does not require a time-
For this latter, an exhaustive research is not possibleeheiec COnsuming linear regression anymore.
use a simulated annealing algorithm, which is classical for
combinatory optimization problems. It has been introduced VI. VALIDATION
in image processing by [Geman et Geman, 1984] and usedn this section, the performance of the method is analysed
by [Le Hégarat-Mascle et al., 1996] for various applicationsboth in a supervised and in an unsupervised context. The

This algorithm is based on an analogy between thermodgbeling method is, at first, assessed using simulated CR
namics behaviour of solids and large combinatorial optimisimages in order to evaluate the method independently of
tion problems. Applied to minimization, simulated annegli the validity of data assumption®.. Gaussian hypothesis)
can be seen as a general optimization process enablingatal on the preprocessing qualite.q. image registration).
jump over energy barriers separating local minima. It alowHowever, these images have been realized using actual data
to reach, (theoretically) the global optimum in a solutiofieatures. Practically, HR images have been simulated using
space having local optima. In our case, the presence of loaatual SPOT/HRV resolution characteristics and radioimetr
minima has been confirmed in experiments, for instanameans and variances. From an actual HR time series of
observing that for a given label configuration, changingyonDanubian plain]165 images of siz800 x 300 pixels have been
one segment increases the global energy whereas changixigacted, segmented 00 segments and finally randomly
simultaneously several segments allows energy reductisn. labeled usings classes. HR images have been simulated by
far as the unsupervised approach is concerned, the algorittandow drawing of lawN (m (1), vary(l)) wherel is given
takes as inputs the HR segmentation, the CR time series dydthe corresponding ‘groundtruth’ label and parametegs



andvar; have been learnt from an actual data set. Secondbne half of the erroneous label provide an improvement from
CR images have been created averaging HR simulated imagks.reference for the criteriof.

The reference classification is the label map from which the It seems that most errors are due to the stochastic nature of
HR images have been simulated. In this section, as we fodhe problemj.e.the accurate optimum leads to a label map that
on the method and the algorithm behavior, experiments hasgeoften quite different from the reference classificatidhe
been run using single CR images rather than CR time seripssitive difference errors (Figure 2) result mainly fromotw
Global results are given in Table | for both supervised angpes of phenomenon. On the one hand, we observed that little
unsupervised approaches. As far as the supervised vessioseigments may be misclassified if their occupation rate withi
concerned, results are very satisfactory since the avgrage a CR pixel is too low to have an effective contribution on the
centage of mislabeled pixels is less thdi§. The percentage energy. In some cases, a little segment may be misclassified i
of mislabeled segments may seem high but it is due to theder to compensate for the signed error due to the conibut
presence of very small regions in the segmentation (as thiethe other (well classified) segments of the CR pixel. On
percentage of pixels concerned remains very small). In fattte other hand, as Gaussian distributions we consideapgrti

we made the choice not to constrain the segmentation so faroyerlap, an observation occuring in the distribution queflies
minimum segment size may be imposed in the segmentatidass may have a higher probability to belong to the adjacent
processing step, permitting to avoid that kind of artefakits class and, hence, to be misclassified. The use of multiteahpor
the unsupervised case, the results are rather convinaing sidata, as performed in the actual case, may reduce this type of
the average percentage of misclassified pixels is lessi¥ian errors as classes become more severable with time series.
and the median percentageli2%. This significant difference

observed between median and average can be explained by the 100 tmes % occurence

fact that the information contained in some simulated irsage 007
is too poor for the unsupervised classification method tdkwor 2083
(and CR images are very small, witt) x 20 pixels), in
addition to the fact that these tests were restricted to Hee u
of monotemporal images. 12501

1667

TABLE | 8331

AVERAGE RESULTS OBTAINED FOR A SET OA65 SIMULATED IMAGES
WITH A RESOLUTION RATIO |DhR|/|Dcr| = 15 x 15. 47
yenergy diff.

[ T T i T T T
-0.004 -0.003 -0.002 -0.001 0.000 0.001 0.002 0.003 0.004

Mislabeled pixels| Mislabeled segments
(averag€e%) (averag€e%)
Supervised version 0.87 23.6 Fig. 2. Histogram of normalized energy variatitBy — E, ) /| Eo| computed
Unsupervised versior) 4.35 315 for all errors obtained using the supervised algorithm.

We analyze more precisely the detail of these global errqts

in the next section. Sensmvr[y to resolution ratio

Since we aim at using high resolution ratios going up to
_ , 152 (e.g. for SPOT/HRV versus MERIS) 050? (e.g. for
A. Experimental error analysis SPOT/HRV versus SPOT/VGT), we now study the perfor-
In this section, we aim at analyse the obtained errors inrordaance of the method when the resolution ratio varies. As
to specify experimentally the cause of their occurence -nofable | has shown that tiny segments (containing one or few
convergence of the algorithm (due to a too fast scheduleR, I1aHR pixels) tended to be misclassified, this study may alse giv
of information in the data, overlapping of the class featuresome hints for the minimal acceptable segment size.
etc. To that aim, the energy valug, corresponding to the From a set ofi65 simulated HR images, CR images have
reference label map is compared to the energy vdiije been created for different resolution ratids{, 302 and502).
associated to a label configuration that is equal to theeater For each mislabeled segment obtained using the supervised
one except on the segment humbefedlhis comparison is approach, the occupation rate within a CR pixel is computed.
made successively for all erroneous segmeobtained by the Table Il presents some occupation rate statistics computed
algorithm. Such an experiment has been performed in order the set of error segments. As we can see, the size of
not to bias the analysis by the presence of errors concerngrgoneous segments relatively to CR pixel size is almost
other segments. independent from the resolution ratio. Moreover, abof
The histogram of the gains due to local perturbations of the error segments occupies less ti3&h of a CR pixel,
the neighborhood of the reference label map is representezhce restricting to larger segments could increase syliki
Figure 2. More precisely, it represents the energy diffeesn the performance of the method. We also observe 30&t of
histogram computed for all label configurations containinigbel errors concern segments occupying less #jarof the
exactly one mislabeled segment among all erroneous ones @ pixel. This observation could be used to constrain the seg
obtained. This histogram shows, in particular, that moenth mentation process with a minimum segment siz€%fof the



CR pixel, which would reduce by about one half the labeling
errors. In the literature, many methods using CR data fascla
proportion estimation deal with segments representingagt|

5% of the CR pixel [Le Hegarat-Mascle et al., 2005]. 701 etrors o
—_ median
& 60
TABLE Il <
STATISTICS ON THE OCCUPATION RATE(PERCENTIL$ OF A MISLABELED 2 50
SEGMENT WITHIN A CR PIXEL IN FUNCTION OF THE CONSIDERED % }
RESOLUTION RATIO(N). 540
e L
% 30 n
N | 10" ptl | 50th ptl | 70th ptl | 90" ptl | 100" ptl S g0l . %
o
152 | 0.44% 2% 5% 25.7% 100% E 0l
302 | 011% | 1.77% | 7% | 41.4% | 100% t i % N
0 + % & ‘
502 0.08% 2% 8.13% 39.8% 100% 0 10 20 30 40 50 60

square root resolution ratio

S ised versi
As far as the performance of the method versus the res- (a) Supervised version

olution ratio is concerned, Figure 3 shows that the error o

percentage values can reach rather high values. This can be all iigi;i K

attributed to the fact these experiments use monotemporal x 607

images while some class features may be very close depend- @ so|

ing on the considered date, leading to the observed quality E 20k s
variability of the results. Moreover, the median curve show ;L

very good average performance for resolution ratios up to . 0T + 7

302, then performance decreases with resolution rEifowith § 20 *
about20% of erroneous pixels. The dependency of the error 4 10} j{
percentage on the sensor resolution is manifest and neatlin e 5 ‘ *
Notice that contrary to the previous case where the segment T e oo 10 40 50 60
size was considered relatively to the CR pixel size, thererro square root resolution ratio
is here measured in terms of number of mislabeled HR pixels (b) Unsupervised version

(without taking the size of objects relatively to the pixéeles
into account). Consequently, the decreasing performaMfcerg. 3. Each cross represents the percentage of misclassifiels obtained
the results wherV increases is essentially due to the fact thdgr several simulated images and a given resolution ratiogutsie supervised
the minimal relative size of segments decreases (mostserr Sr'T?g d(g)nagft:]heesg”;:rgzmjgg zglrjg’sn (b). The superiepiase represents
are caused by the smallest segments).

The coarser is the sensor resolution, the more multiterhpora
information is necessary to attain a good performance. Note
also that the results we obtain using the supervised algorit
are very close in performance to those obtained using the
unsupervised version.

Last, let us analyse the method performance in function of
the resolution ratio in a simple case with pseudo-actua dat [ s e—
and a monotemporal supervised context. To that aim 1é3e 6o | median +
subparts of actual SPOT/HRV images of the ADAM database
have been averaged by blocks of size5 to 50x 50 in order to
build pseudo-actual CR images. Figure 4 represents, a®in th
case of simulated data (Figure 3), the percentage of misidbe
pixels as a function of the considered resolution ratio. As w
can see, errors are significantly higher for pseudo-actata :d
for instance, the median error for1d x 15 resolution ratio
goes from0.3% to 4.5%. This important difference may be 0
attributed to the fact that, in the case of monotemporalactu
images, the Gaussian hypothesis is not well justified and,

moreover, the spectral response of some types of vegetatlon
4. Percentage of mislabeled pixels obtained by applihegsupervised

may not be spatially homogeneous (for instance, the wh a%ﬁonthm to monotemporal actual images as a function of thelugen ratio,
represented within a segmentor within a segmenty may and its median value.

differently respond because of the irrigation, of the natof
the solil, ...)
Besides, these experiments runned % pseudo-actual
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images using the supervised labeling method show that, foC& time series (b) and (e) (only the first image of the
given HR segmentation, the label map quality is limited whetime series is shown) using the unsupervised classification
the considered resolution ratio exce¥k 30. In particular, for algorithm for5 classes. Label errors between HR and CR clas-
aratioN = 50 x 50, at least30% of HR pixels are mislabeled sifications (c) and (f) are represented in (d), in white, shgw

for one half of the experiments. In the following, we will lken about3% of mislabeled HR pixels. Let us remark that some
focus on lower resolution ratios, typicallys x 15 as in the segments of size larger than the CR pixel size are mislabeled

case of a joint use of SPOT/HRV and MERIS data. This can be explained by the fact that the average intensity
of this area takes a value intermediate between the two class
VIl. RESULTS means and, hence, is ambiguous. Another output of the method

A. The ADAM database

The proposed approach has been applied to a subpart of
an actual SPOT/HRYV time series acquired over an agriclltura
site of the Danubian plain (Rumania) provided by the French

Ny
Tl

%
S

spatial agency (CNES) in the framework of the ADAM
European project. In this context, SPOT/HRV multispectral
images have been specifically acquired about once every 2 - '
weeks using satellites SPOT 1, 2 and 4. This constitutes an (?) Segmentation  (b) a HR image (c) Label map
exceptional database even if the presence of clouds and somq
image quality issues disabled the use of some image parts. ‘
A time series of 8 multispectral SPOT/HRV

images has been selected from the whole data set
(acquisition dates: 11/14/2000, 03/14/2001, 04/12/2001, )|
05/24/2001, 05/31/2001, 06/13/2001, 07/24/2001 and
07/31/2001), and pre-processed into vegetation fraction
cover series using the SAIL+PROSPECT biophysical (%) Error map () a CR image (f) Label map
model [Jacquemoud et al., 1995], as this parameter is scale
linear and known to be efficient for land cover discriminatio F19- 5. The label map (c) has been obtained using the segnim(ajiand an

. . . L actual time series df vegetation fraction cover HR images (b), folabels.
In section VI, the analysis concerning the sensitivity o# thrhe jabel map (f) represents the result obtained using theesesgtion (a) and
method to the resolution ratio showed good performance foR time series (e) (simulated from HR ones, with a resolutidio f x 16).
resolution ratios less tha20 x 20. Hence, as MERIS series!Mage (d) shows the label differences between (c) and (fy ahbut3% of
were not available at the time, MERIS data (Figure 5 (eSSe pixels are misiabeled (in white)
have been simulated from the actual SPOT/HRV time series o )
(Figure 5 (b)), by averaging each image with a factér IS the estimation of the class means. I_:|gure 6 presents the
in each direction. This approach enables to reproduce ¥Rgetation fract[on cover mean estimation correspondmg't
intensity variability and distribution from actual data ign €2ch label obtained from the same HR and CR time series.
discarding the registration issues which are beyond thpescd/Ve ¢an see that these estimated profiles are very close, which
of this study. shows the acpu_racy of th(_e unsupervised means estimation fro
The HR segmentation that we used results from ifeR data. A similar experiment, performed on another dataset
multiscale algorithm [Koepfler et al., 1994processed on a

SPOT/HRV image for a given number of segmerggy(in 2 e e
Figure 5 (a),S| = 100). In the following, the results obtained . N
using the unsupervised algorithm are presented for a given st et TR ]
number of classes and for a fixed resolution ratid ®fx 16. g N

label 4 - CR
- H

B. Accuracy of the classification

In this section, we suggest to measure the accuracy of a
label map by comparing the result obtained using CR time
series to the result obtained using the corresponding HR tim
series and the same energy function (be aware that pixels are
then pure pixelsi.e. only 1 class per pixel). This performance
measurement is based on the idea that an ideal sub-pixelic . . .

e . L Ig. 6. For each class, corresponding vegetation fractioverc means
classification should be able to discriminate classes frd®n Gyre piotted in function of the acquisition date (estimatidaeg by the
dataas well asfrom HR data. unsupervised algorithm fob labels, using the data set Figure 5). For each

In Figure 5, classifications (c) and (f) have been obtain&tgss. two curves are plotted : one for the mean estimatiorg usi images

. . he other using CR i .
from the HR segmentation (a) and, respectively, the HR aﬁ?ldt @ other using CR images

land cover fraction

dates

(a) Estimated means

Lfunction segctof MegaWave2 image processing software leads to the same conclusions (see Figure 7).
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connected parcels are necessarily identically labellezh éf/
their land cover is different. Some labeling errors can thus
be explained by the fact that the segmentation was not fine
enough, but they can also result from the lack of separqlofit

the radiometric intensity measures for two types of lancecov
Hence, an over-segmentation is generally preferable to an
(c) Label map under-segmentation, in order to separate all parcels.cn &
compromise has to be found since over-segmentations serea

the dimension of the search space, yielding larger computat
times and more possibilities of erroneous classifications.

If the obtained results seem satisfactory and reliabley the
raise the difficulty of setting aa priori number of classes for
the classification ||). Indeed, in an unsupervised context,

e

|£] is usually not known and, even if it were, there is no
(d) Error map (e) a CR image (f) Label map reason for it to correspond to the number of classes that can
be distinguished from the CR time series. In the previous
Fig. 7. Same experiment as Figure 5, performed on another datisly ~ experiments|L| was set arbitrarily but additional experiments
about2% of the pixels are mislabeled (in white on the error map (d)). showed some consistency between classifications of a same
scene using different values of| : increasing|£| rather led
to splitting classes, raising some hierarchy property & th

labeling process.
In order to estimate the robustness of the method with

respect to the kind of data considered, the same experiment VIII. CONCLUSION

as in Figure 5 has been performed using NDVI images |n this paper, a new approach enabling HR classification us-
corresponding to the same dates. Let us remind that NDy a CR time series and additionnal structural informaties
images are obtained directly from the red (R) and near ieftarpeen presented. It is based on a Bayesian model of the problem

C. Robustness of the method

(NIR) bands of SPOT sensor through the relationship and on the linear mixture model for CR pixel disaggregation
NIR—-R in terms of the characteristics of the different segmenét th
NDVI = NIR+ R’ (29)  are represented within a CR pixel. The Maximum A Posteriori

whereas the vegetation fraction cover images are obtai cr%Lerion enables the definition of an energy function whose
9 g imization leads to the desired classification.

from the inversion of a biophysical model. Using HR seg- A probabilistic analysis of the classification accuracy

rrl;_entat|o8n (F'g?r:e 5 () a_nd dthe NDVL |CR d;'srpd;bsf”eghowed the crucial role of the temporal evolution of class
(Figure 8 (a)), the unsupervised approach lea €S features, and raised a criterion for optimizing the choite o

to the label map (F|gure.5 (b)) .Wh'Ch IS very CIOS? to “‘S subset of acquisition dates. This criterion suggests that
!abel map previously Obta”?ed using vegetation fractlgveco even if multitemporal data permit to improve the label map
'”."a?es- The (;:r:rorl rSaIp (Flgulga 5 (0)5) showsbtthe ?'Sla.belggcuracy, the acquisition dates should be well chosen ierord
ﬂéef’ using the fa € E[n?p f'gurt? (c) (obtaine ;Jsmg t8 find a compromise between the actual information gained
ime series of vegetation fraction coyer) as a Teferencayy the increasing dimensionality of the search space. This
The result is very close to the one obtained using CR tln?g

. f tation fracti Thi K f ol ea, combined with experimental validations, could lead t
series of vegetation fraction cover. This remark confirmes interesting developments of the proposed approach.

A simulated annealing algorithm has been adopted to
minimize the energy and provide a label map from a HR
segmentation and a CR time series in an unsupervised context
An empirical analysis of the obtained labeling errors using
simulated data showed that the algorithm convergence- (deli
cate issue for this type of method) does not seem problematic
even though a geometrical temperature schedule has been

(a) Errors (b) a NDVI CR image  (c) Label map considered.
The same experiments showed that the unsupervised ap-

Fig. 8. Label map obtained using NDVI images: the label map (& hyroach remains reliable for resolution ratios less th@a 30.
been obtained using the segmentation 5 (a) and CR NDVI timess¢b). .
Comparing the error map (a) to the one obtained from vegetdtamtion Hence, the joint use of data such as SPOT/HRV and VGT
cover (Figure 5 (d)) shows that the obtained results are sienjlar. (resolution ratio of0 x 50) for labeling may not be expected

as satisfying for the type of landscape we considered (typ-
robustness of the method according to the type of data usedl European landscape). The joint use of SPOT/HRV and
for classification. MERIS images, however, seems well suited to the HR/CR

As we noticed earlier, the quality of the HR segmentatiotiassification we presented, since their relative resmuta-
has a direct impact on the label map quality, as non-segment® is (only) 15 x 15. Experiments using actual SPOT/HRV
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images and MERIS pseudo-actual images in the contextwlfiereO is an orthogonal matrix of sizDygr| x | L], W is an

an agricultural application in the Danubian Plain (ADAMorthogonal matrix of sizé£|x |£| andD = (d,); is a diagonal
database) yielded satisfactory results according to HRa@adl matrix of size|L| x |£| containing the singular values &C
available groundtruth elements. Moreover, some prelinginaon the diagonal. As the rank dtC is |£|, all singular values
experiments showed the stability of the results througlssro of RC are non-null. Let us denot® = (Oy,...,0 ) and
validation with different kinds of data: in particular, yeclose W = (Wy,...,W|z|) where fori = 1...|L], the termsO;
label maps have been obtained using vegetation fractioarcoand W; are, respectively, the column vectors of the matrices

CR images and NDVI CR images. O andW. Hence, for allX € RIl,
Finally, let us remark that the applicability of this method Izl
to actual CR time series will highly depend on the accuracy RCOX — Zdi < X,W;> 0. (34)

of the registration away CR images, and between CR images
and the HR segmentation. The bounds on the resolution raéio . . .

: . . ) . onsequently, for a given matriX’, the solution of the
we pointed out while assuming perfect registrations hence

should be considered as upper limits, that would requiPerObIem (17) is defined as

i=1

some adjustments to take into account the limited registrat L .
accuracy,. M=>" - <'BBU,O; > W, (35)
i=1 "
APPENDIXA and the solution of the problem (18) is
A PRIORI PROBABILITY L
Using Equation (5) and assuming that, forlthe random M = Z A <U0; >W,. (36)
field U; defined on the HR domai®yr is Gaussian condi- im1
tionnally to the HR label map, with mean, (/) and variance Hence,
var(l), the variable(V;(y)|A = \) is then Gaussian as a I
mixture of Gaussian variables. Its mean is, for any CR pixel 1M — M|2 = | Z 1 < U ~'BBU,0; > W;|]?
y and any date,  d; T ’
E[Vi(y)|A =] Lo
< Y glla-B3Ul
(Un(@)|A = X) o
= E Zal(y) Z — Lo
i dew N < Y l=BBIPUIF. @D
s(z) = i=1 ¢
my(l 38
leL R iy Moreover, the matriXBB, with size |Dur| x |Dur|, can be
s(@) = 1 - 1
= Zal(y)mt(z)’ (30)  \written aswzJy WhereJy = [ . | andN is the
lel
. . . 1 --. 1
asNi(y) = {z € y, As(x) = 1}|. Finally, using equation (6), resolution ratio [Dyr|/|Der|). Hence,
EViIA=N=>" > Blym@d. @ g L N-1 1

U =1

nd
The variance is also computed from equation (5) and, thanis 12 L4
to the variables(U;(z)).ep,, independence hypothesis, we ||[M'— M|? < (1 — > I|U||? Zﬁ (39)
=1 7

have, for any date and pixely, N
1\? APPENDIXC
2 _ 2
) = el (3) vor) CAPPENDIXC
1 The energy difference between the correct label rhamd
- N Z a(y)vary(l) al-optimal label map\’ is null everywhere but on the segment
) leL ko, which is fully represented within the pixgl,. Hence
= = Bre(y)vars (). (32) / 2
N ; ;;s EN) —EWX) = V(o) — Zﬂk(%)m(}\k)n
e =1 keS
2
APPENDIX B ~IV (o) = Br(yo) m(Ae) + S(wo)ll”
INFLUENCE OF THE RESOLUTION RATIO keS

The matrix RC can be decomposed in singular values aswhered(yo) = (8:(yo))ter and, for allt € 7,
RC=0D'W. (33) 3¢(y0) = Bra (o) (me(Ary) — me(Ng,))- (40)
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For all datet € 7 and for all pixely € Dcg, let us define the follows a Gaussian central law with varian 6(y 7 SO
random variable that
V'N|[8(yo)|
20

Vi(y) Zﬁk m(Ag) - (41) Z =
kes

It is Gaussian as a linear combination of the Gaussian random
variablesV;(y), with mean

X ~ N(0,1). (50)

Hence, the probability for a giveh-optimal label map to be
prefered to the correct label map is

—VN|[8(yo)ll
— — "> = <
B[] = )= By Ak)] P(E(\) —E(N)>0) = P (z <=
kes JN
: =3 Bely) melne) - @(—N”;(y“)”>, (51)
kes g
= 0 using Equation (8), 42
9 Equation (8) “2) where 13(s0)]| = o (wo)llm(,) — m(N,)| and @(x) =
; L e f2
and variance o f_oo T dt.
V[Vily)] = V =D Beymi () ACKNOWLEDGMENT
kes
= V[Vi(y)] The authors would like to thank the Centre Na-
o2 tional d’Etudes Spatiales for providing ADAM images and
= N (43) EADS/ASTRIUM for enabling the conversion of images into

— _ . vegetation fraction cover images.
Consequently, the random vectdi(y) = (V(y)),., is @
Gaussian central vector with covariance mal%;dT, where
It represents the identity matrix in dimensiagh (under
hypotheses of dates independence and class variancetgqualPohl et Van Genderen, 1998] Pohl, C. et Van Genderen, J.tisénkor

image fusion in remote sensing: concepts, methods and apmhicét.
With these notations, the energy difference between thel lab "== "“0 = Sensing 19(5), pp. 823-854. 1998,
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