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Unsupervised sub-pixelic classification using coarse
resolution time series and structural information

Amandine Robin, Sylvie Le H́egarat-Mascle, and Lionel Moisan

Abstract—In this paper, a new method is presented for sub-
pixelic land cover classification, using both high resolution struc-
tural information and coarse resolution temporal information. To
that aim, the linear mixture model is used for pixel disaggrega-
tion. It enables to describe a coarse resolution time series in terms
of the mixture of classes that are represented within each pixel.
Then, the Bayes rule and the Maximum A Posteriori criterion
lead to the definition of an energy function whose minimum
corresponds to the researched optimal classification. A theoretical
analysis of the labeling errors that may be obtained using this
energy function is provided, raising the main parameters for
labeling performance. The optimal classification is computed by
combining linear regressions and simulated annealing, leading
to an unsupervised algorithm. The method is illustrated with
numerical results obtained on the agricultural scene of the ADAM
database (Rumania).

Index Terms—sub-pixelic classification, Maximum A Posteri-
ori, high resolution images, coarse resolution time series, land
cover.

I. I NTRODUCTION

In the last decades, the use of remote sensing data has
proved to be efficient for monitoring the Earth surface. In
particular, land cover maps provide essential informationnot
only for the analysis of global or local changes but also for
studies on geosphere-biosphere-atmosphere interactionsthat
depend on reliable estimation of the terrestrial vegetation. In-
deed, vegetation has a significant impact on surface processes
involved in water or energy exchanges. Land cover maps are
increasingly used to define environmental policies and they
contribute to reduce the risks from natural disasters (floods,
forest fires, etc.). Now, given the large size of satellite data,
automatic classification techniques are required to generate the
land cover maps.

As time evolution is one of the most discriminating criteria
for vegetation, the classification of a scene in terms of land
cover types requires high temporal frequency information.
Nowadays, we distinguish between sensors with a high spatial
resolution (e.g. SPOT/HRV, 1 pixel for20m × 20m) but a
two-monthly temporal acquisition frequency, and sensors with
a medium or coarse spatial resolution (e.g. MERIS, 1 pixel
for 300m × 300m, or SPOT-VGT, 1 pixel for1km2) but
daily or so temporal acquisition frequency. The interest of
medium or coarse resolution time series is clear taking into
account the cost of high resolution data and the fact that high
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resolution data may be corrupted by clouds at the acquisition
date. Moreover, medium or coarse resolution provide spectral
information dedicated to vegetation applications. One of the
key challenge for automatic land cover classification is hence
the combination of information from different spatial resolu-
tions to benefit from both a high discrimination between land
cover types and an accurate spatial information.

Using coarse resolution (CR) time series, the size of the field
of view of a pixel can be bigger than the size of the objects
of interest (e.g. agricultural fields). Such pixels are called
mixed pixels. Hence, the identification of land cover types
requires an access to sub-pixelic information. In the literature,
numerous methods have already been proposed to deal with
the sub-pixelic problem, such as data fusion, disaggregation
or classification approaches.

Multi-resolution data fusion methods aim at reconstructing
high resolution images from high resolution spatial
information and coarse resolution spectral information.
Various approaches have been suggested, in particular for
the fusion of panchromatic and multispectral data. Most
of them suggest to handle separately spectral and spatial
information, through a multi-scale decomposition based on
wavelet decomposition [Sveinsson et Benediktsson, 2000],
[Ranchin et Wald, 2000] or on pyramidal decomposi-
tion [Aiazzi et al., 1999], [Laporterie-D́ejean et al., 2003].
Performances of these methods are strongly limited when the
considered resolution ratio increases: except the morphological
approach of [Laporterie-D́ejean et al., 2003] that enables to
fuse data with a resolution ratio higher than10, these methods
are restricted to the use of resolution ratio coarser than4.
Moreover, the use of these kind of methods as a classification
preprocessing may be used in a monotemporal context but,
in a multitemporal context, it would lead to a high amount
of intermediate data and, hence, increase considerably the
computation time.

Disaggregation of mixed pixels has been widely used to
improve coarse resolution data interpretation, relatively to
the objects of interest. Most disaggregation technics usedfor
sub-pixelic analysis are fuzzy approaches related to fuzzy
c-means or possibilistic methods ([Settle et Drake, 1993],
[Foody, 1996], [Brown et al., 2000]) enabling an estimation
of the proportions of each land cover type represented within
a given pixel. Indeed, the measured signal results of a mix of
several spectral responses corresponding to the differenttypes
of cover represented within the considered CR pixel. Most of
the time, the linear mixture model ([Horwitz et al., 1971]) is
used for land cover analysis. It models the expected intensity
acquired in a mixed pixel as the mean intensity characterizing
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each type of land cover, weighted by its occupation rate
within the CR pixel. This model is used either to estimate
class features knowing class proportions within each pixel
([Faivre et Fischer, 1997]) or to estimate class proportions
knowing class characteristics ([Cardot et al., 2003]). Theclass
proportions describe the pixel composition but do not bring
any information on the spatial distribution of the land cover
types within a pixel. Hence, this kind of decomposition model
enables to handle with high resolution ratios but not to obtain
directly sub-pixelic classifications. Now, the main difficulty
with medium or coarse resolution images such as MERIS or
SPOT/VGT is the size of the pixel field of view relatively to
the size ofobjectsto classify (numerous parcels are entirely
contained in one CR pixel).

More recently, sub-pixelic classification approaches have
been developped in the aim both to discriminate the types
of land cover and to refine their spatial location in or-
der to lead to a fine resolution land cover map. Some
methods suggest to subdivide each CR pixel into sub-
pixels and to classify the sub-pixels maximizing their
spatial auto-correlation ([Atkinson, 1997], [Atkinson, 2001],
[Kasetkasem et al., 2005]). These methods require a prelim-
inary knowledge of class proportions and they are based
on a spatial dependency hypothesis between pixels and sub-
pixels. Hence, as soon as the object of interest is fully
included in a pixel, its spatial location is disabled. Otherworks
use complementary information (a high resolution image or
a structural model) in order to refine the classes location
([Tatem et al., 2002]), restricting the space of solutions.The
use of all these approaches is restricted to small resolution
ratios as the spatial dependency hypothesis does not bring
enough information when high resolution ratios are used.

The approach we propose is based on Bayesian theory, using
the Maximum A Posteriori (MAP) criterion, and assumes that
the spatial structure of the studied scene is invariant along
the considered time period. With this hypothesis, the spatial
information of the scene can be extracted at a given date by,
for instance, segmenting a HR image through homogeneous
segments (in this study, we use a multiscale pyramidal algo-
rithm for image segmentation [Koepfler et al., 1994], based
on Mumford and Shah functional [Mumford et Shah, 1989]).
Such an assumption seems realistic for a time period such as
one agricultural year, in particular if the HR image is over-
segmented, enabling to distinguish all parcels. However, this
stationnarity hypothesis can be restrictive when changes occur
along the considered time period. Parallel studies focus onthe
problem of land cover change detection [Robin et al., 2007]
and may be used jointly to classification for a complete
vegetation monitoring automatic process.

Assuming a segmentation image is available, the classifi-
cation task refers to a labeling problem using CR radiomet-
ric temporal information. Section II describes the problem
formulation and the image model leading to the definition
of an energy function. Then, a probabilistic error analysis
of mislabeling using this energy function is presented in
Section IV, before a description of the algorithm is given in
Section V. Finally, Section VII shows some numerical results
and Section VIII gathers our conclusions.

II. M ETHODOLOGY

A. Problem formulation

Assuming the spatial information is invariant along time, we
suggest to investigate the classification problem by exploiting
on the one hand the spatial information from HR images for
the location of objects of interest and on the other hand the
temporal information of CR time series to discriminate the
type of land cover represented within each segment. To that
aim, the classification problem is decomposed in two steps: the
HR segmentation of the scene and the labeling of each segment
according to its land cover. In this paper, we focus on the
labeling problem, assuming a HR segmentation is available.

Let us denoteDHR andDCR, respectively, the HR and CR
image domains. A HR segmentation of theDHR image domain
into |S| homogeneous segments is defined as an application
s : DHR → S = {1, 2, . . . , |S|} that maps a segment index
s(x) to each pixelx ∈ DHR (the setS = {1, 2, . . . , |S|}
denotes the obtained segment indexes). Now, if the scene of in-
terest contains|L| types of land cover whereL = {1, . . . , |L|}
denotes the set of possible labels, we define a labeling process
as an applicationλ : S → L, that maps a labelλk to
each segmentk of the HR segmentation. In practice, the
segmentation and labeling process also refer, respectively, to
the segmentation image and the label map resulting from these
applications.

Let T = {1, . . . , |T |} be the set of acquisition dates, the CR
time series is denoted as the image vectorv = (v1, . . . , v|T |)
where, for allt ∈ T , the imagevt is a real-valued function
defined on the CR image domainDCR. In Section II-B, the
relationship between the HR segmentation and the CR time
series is described.

B. Pixel disaggregation

In this section, we describe the measurement (radiometric
intensity, vegetation fraction cover, ...) wich is observed within
a CR pixel as a function of the class features that are
represented within the pixel field of view. To that aim, let us
assume that each HR pixel represents a unique class and that
for all datet, a CR imagevt corresponds to the block average
of the HR imageut of the same scene. IfDHR denotes the
high resolution image domain, the coarse resolution intensity
can be expressed as

vt(y) =
1

N

∑

{x∈y}
ut(x), (1)

where {x ∈ y} denotes the set of the HR pixelsx ∈ DHR

that are enclosed by the CR pixely andN = |DHR|/|DCR| is
the number of HR pixels that are included within a CR pixel
(N is assumed to be integer). When the label map is known,
notice that Equation (1) can be decomposed into

vt(y) =
1

N

∑

l∈L

∑

{x ∈ y}
λs(x) = l

ut(x), (2)

where λs(x) represents the label of the pixelx. The coarse
resolution measurement can then be decomposed with respect
to the labels. LetNl(y) be the number of HR pixels of label
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l within the CR pixely. The proportion of labell within the
pixel y is then

αl(y) =
Nl(y)

N
, (3)

with the condition that, for ally ∈ DCR,
∑

l∈L
αl(y) = 1. (4)

In general, CR image values result from a modulation transfer
function which does not corresponds to a rectangle function
as assumed by the bloc-average hypothesis. However, some
previous studies show that, in practice, the linear mixture
model is reasonnable for numbers of applications. In particular,
[Kerdiles et Grondona, 1995], [Small, 2001] showed that the
use of a linear combination of NDVI values, even though they
are not linear measurements, leads to minor errors.

Here, a probabilistic context is adopted in order to model
the variability of the data. The HR and CR observations
u = (u1, . . . , u|T |) and v = (v1, . . . , v|T |) are consid-
ered, respectively, as realizations of the label fieldsU =
(U1, . . . , U|T |) and V = (V1, . . . , V|T |) and, for all t ∈ T ,
Ut = (Ut(y))y∈DHR andVt = (Vt(y))y∈DCR. Moreover, a label
map λ = (λ1, . . . , λ|S|) is considered as a realization of a
random fieldΛ = (Λ1, . . . ,Λ|S|). Then, the random variables
(Vt(y)|Λ = λ) satisfy, for allt ∈ T andy ∈ DCR,

(Vt(y)|Λ = λ) =
∑

l∈L
αl(y)

∑

{x ∈ y}
λs(x) = l

(Ut(x)|Λ = λ)

Nl(y)
.(5)

This equation describes the observed measurement of a CR
pixel as a function of the proportion of each label within the
pixel of interest and the typical average intensity of each label.

In the literature, this model is usually applied to CR
images, either to estimate unknown class proportions when
an a priori knowledge of the class features is available
([Horwitz et al., 1971], [Settle et Drake, 1993]) or to esti-
mate unknown class features knowing the class proportions
([Cross et al., 1991]). Some recent works enable to estimate
both class proportions and features through an iterative algo-
rithm such as EM or ICE ([Le H́egarat-Mascle et al., 2005]).
In the following, the number of labels|L| is assumed to be
known.

C. Maximum a posteriori

In this section, we derive thea posteriori probability of
obtaining a label map knowing a CR time series observation
and a HR segmentation. The maximization of this probability
will lead to the reconstruction of a sub-pixelic label map.

Using the linear mixture model (Section II-B), the CR
observed measurement can be expressed in function of the
proportion of each label within the pixel of interest and of the
corresponding class features. In order to map a label to each
segment of the HR segmentation, let us consider the proportion
of segmentk within pixel y, denoted byβk(y). For all label
l ∈ L, the proportion of labell within pixel y is then equal

to the sum of proportions of all segments of labell that are
present within pixely, that is

αl(y) =
∑

k ∈ S
λk = l

βk(y) , (6)

whereS is the set of segments andλk is the label of segment
k.

The probability of observingv knowing the label mapλ
describes the process of data observation and acquisition.
Let us assume that, for allt, the measurement of labell
is characterized, at high resolution, by a Gaussian distri-
bution of meanmt(l) and vart(l) (i.e. for all x ∈ DHR,
Ut(x) ∼ N (mt(l), vart(l))). This hypothesis is commonly
used in the case of optical visible/infrared remote sensingdata.
We also assume that CR observations are spatially independent
conditionnally to the label map. This hypothesis boils down
to assuming that the CR variability is not spatially correlated.
After computation (for details, see Appendix A), the random
field Vt is then Gaussian conditionnally to the HR label
mapλ and thea priori probability density function ofVt(y)
conditionnally toΛ = λ is

fVt(y)|Λ(vt(y)|λ) =
1

σt(λ, y)
√

2π
e
− (vt(y)− µt(λ, y))2

2σ2
t (λ, y) ,

(7)
i.e. a Gaussian density of mean

µt(λ, y) =
∑

l∈L

∑

k ∈ S
lk = l

βk(y)mt(l) , (8)

and variance

σ2
t (λ, y) =

1

N

∑

l∈L

∑

k ∈ S
lk = l

βk(y)vart(l) . (9)

Let us underline that mean and variance depend on the
considered CR pixel, through its composition in terms of the
different types of land cover.

Moreover, let us assume temporal independency of obser-
vations conditionnally to the label map. This hypothesis is
motivated by the fact that the estimation of cross-correlations
between different dates is awkward (practically, it would
require either a learning step or the definition of ana priori
on the temporal evolution of each type of land cover). Note
that from a theoretical point of view, it is not difficult to
take into account temporal cross-correlations, through a non-
diagonal covariance matrix. In the following, these hypotheses
(normality, spatial and temporal independence) will be refered
as hypotheses(H).

Under hypotheses(H), the probability density function of
observingv is determined, conditionally to the label map, by

fV |Λ=λ(v|λ) =
∏

t∈T

∏

y∈DCR

fVt(y)|Λ=λ(vt(y)|λ) . (10)

The mean of the random fieldV conditionally to the label map
is hence, for all pixely, denotedµ(λ, y). It corresponds to the
mean vector(µt(λ, y))y,t. Thanks to the temporal indepen-
dency assumption, the covariance matrix is diagonal and can
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be expressed asσ2(λ, y)I|T |, whereσ2(λ, y) =
(

σ2
t (λ, y)

)

y,t

andI|T | stands for the identity matrix in dimension|T |.
Considering the MAP criterion, let us estimate a label map

as the optimal configuration of the label fieldΛ knowing the
CR time seriesv and denote byλ∗ = (λ∗

1, . . . , λ
∗
S) (where

the kth coordinate stands for the label of the segmentk)
the optimal label map. In absence of contextual information
related to the scene of interest, all label maps are assumed
(as usual in such situation) to have the same probability of
occurence. From the Bayes rule, thea posteriori probability
density function writes

fΛ|V =v(λ | v) =
fV |Λ(v |λ) fΛ(λ)

fV (v)
, (11)

which has to be maximized with respect toλ. The densityfV

does not depend onλ. Hence, withouta priori information
on label maps, all label configurations are considered as
equiprobable. Then, the MAP boils down to the maximum
likelihood, that is

max
λ∈LS

fΛ|V =v(λ| v) = max
λ∈LS

fV |Λ=λ(v|λ) . (12)

Under hypotheses(H), the optimal label mapλ∗ for MAP
criterion is determined as the maximal argument over all label
map configurationsλ ∈ L|S| of fV |Λ=λ(v|λ), which is also

argmin
λ∈LS

∑

t∈T

∑

y∈DCR

(

(vt(y)− µt(λ, y))2

σ2
t (λ, y)

+ ln(σ2
t (λ, y))

)

.

(13)
Notice that the optimal label map is conditionned by the

knowledge of mean and variance characterizing each type
of land cover. In practice, when class means and variances
are a priori known, a solution of Equation (13) can be
obtained using a optimization process, leading to a supervised
classification approach.

D. A cost function for unsupervised classification

In general, class features are unknown : they depend on
various parameters such as acquisition dates, atmosphericcon-
ditions or the local evolution of vegetation (the phenological
cycle of a given type of crop also varies with its geographic
location). Therefore an unsupervised classification approach
seems more appropriate. Now, class features can be estimated
using the linear mixture model, assuming the knowledge of
classes proportions that are represented within each pixel.
Practically, mean estimation can be processed in a reasonnable
time during the iterative classification process (e.g. through a
linear regression algorithm run for the label map configuration
obtained at each step of the iterative algorithm). However,
variance estimation, for which there is no so simple robust
estimator, would induce a high computation time cost.

Consequently, for an unsupervised approach, we overcome
the class variance estimation issue by assuming that class vari-
ances (vart(l)) are equal to a fixed valueσ2. This hypothesis
(denoted(Hσ) in the following) implies that the variance of
each CR pixel is constant, that isσt(λ, y) = σ2/N and, hence,
that the energy considered in Problem (13) boils down to

∑

t∈T

∑

y∈DCR

((vt(y)− µt(λ, y))
2

. (14)

Moreover, as class features are unknown in the supervised
case, we consider the problem

min
λ∈LS

min
m∈(RL)T

∑

t∈T

∑

y∈DCR

(vt(y)− µt(λ, y))2 . (15)

The maximuma posteriori label map is hence determined by

λ∗ = argmin
λ∈LS

min
m∈(RL)T

∑

t∈T

∑

y∈DCR

(vt(y)− µt(λ, y))2 , (16)

and, for a given label mapλ, solving the problem (16) enables
to estimate the class means as a simple least squares problem.
According to some preliminary statistical analysis performed
on actual data (SPOT/HRV), this hypothesis seems appropriate
as all class variances are rather close, except the ’water’
class whose variance is particularly weak. Moreover, an over-
estimation of ‘water’ class variance is not really impacting as
it boils down to attribute a weaker weight to errors on this
class, which usually concern very few HR pixels.

III. I NFLUENCE OF THE RESOLUTION RATIO

In this section, we focus on the loss of information due
to the use of CR data instead of HR data, considering the
problem (15). To that aim, we consider the monotemporal case
and, for the sake of simplicity, we adopt the following matrix
notations :U andV denote, respectively, the vector of HR and
CR data ((u(x))x and (v(x))x), B denote the matrix of size
|DCR| × |DHR| representing the block average operator which
enables to obtain CR images from HR ones,R is a matrix of
size |DHR| × |S| representing the segmentation (whose(i, j)
term is1 if the pixel i belongs to segmentj, 0 otherwise),C
is a matrix of size|S| × |L| representing the label application
(whose (i, j) term is 1 if the label of the segmenti is j,
0 otherwise) andM ∈ R

|L| denotes the class means vector.
Using these notations, the problem (15) can be written as

min
C,M
||B(RCM − U)||2 . (17)

Restricting to the use of HR data, the analogous problem
without pixel disaggregation can be defined as

min
C,M
||RCM − U ||2 . (18)

First, let us remark that, for a given segmentation and label
map (R and C), the solutions of the least squares prob-
lems (17) and (18) are unique if, respectively, the rank of
BRC and the rank ofRC are equal to|L|. As the matrix
RC represents the application that enables to reconstruct a HR
image where each pixel value is the mean value corresponding
to its label, the applicationRC is generally injective.

For a given label map, ifM andM ′ ∈ R
|L| are, respectively,

the solutions of the least squares problems (17) and (18), they
satisfy the following inequalities (for details, see AnnexB):

||M ′ −M ||2 ≤ |||(I − tBB)U |||2
L
∑

i=1

1

d2
i

(19)

and

||M ′ −M ||2 ≤
(

1− 1

N

)2

||U ||2
L
∑

i=1

1

d2
i

(20)
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where ||.|| is the Euclidean vector norm and|||.||| its subor-
dinated matrix norm, and(di)i=1...L denotes the set of the
singular values ofRC.

The inequality (19) shows, in particular, that if all CR pixels
correspond topure pixels (i.e. they represent a unique class),
the mean solutions obtained using HR or CR data are equal
(M = M ′). Indeed, the imagetBBU represents the HR image
U reduced to coarse resolution (by block-average with blocks
of sizeN ×N ) and zoomed again (with factorN ×N ).

Moreover, these upper bounds can be computed of a given
data set (a HR imageU , a resolution ratioN and a label map
RC), permitting an estimation of the information gain using
coarse resolution data. These upper bounds become coarse
when the singular values ofRC are too small, that is, when a
label proportion can be predicted from the linear combination
of the other labels.

IV. ERROR ANALYSIS AND MULTITEMPORAL ASPECTS

Before using the labeling cost function (16) in an exper-
imental context, we focus on an analysis of labeling errors
occuring while solving Problem (16). To that aim, we consider
the probability of mislabeling a given segment under the
hypotheses(H,Hσ). First, let us recall thatv(y) = (vt(y))t∈T
denotes the CR observation vector in a pixely, modeled
as a realization of the random processV (y) = (Vt(y))t∈T ,
and m(λk) = (mt(λk))t∈T is the temporal mean vector
corresponding to the label associated to segmentk. In this
framework, the energy function considered in Problem (16)
associated to the random variableV is denoted

EV (λ) =
∑

y∈DCR

‖V (y)−
∑

k∈S
βk(y)m(λk)‖

2
, (21)

where‖.‖ is the Euclidian norm (over time).
Assume the groundtruth label map isλ = (λ1, . . . , λ|S|).

In the following, a label mapλ′ = (λ′
1, . . . , λ

′
|S|) will be said

1−optimal if it verifies

. ∀k 6= k0, λ′
k = λk ,

. λ′
k0
6= λk0

,

where the segmentk0 is fully included in the CR pixely0.
Denote βk0

(y0) the occupation rate of segmentk0 in the
pixel y0. As V is a Gaussian random field characterized by
Equation (7), the probability for a1-optimal label mapλ′ to
be prefered to the optimal label map is

p = P (EV (λ)− EV (λ′) ≥ 0) = Φ

(

−
√

N‖δ(y0)‖
2σ

)

,

(22)
where

‖δ(y0)‖ = βk0
(y0) ‖m(λk0

)−m(λ′
k0

)‖, (23)

and

∀x ∈ R, Φ(x) =
1√
2π

∫ x

−∞
e−

t2

2 dt (24)

is the cumulative distribution function of normal lawN (0, 1)
(for computation details, see Appendix C).

This probability depends on the considered HR/CR resolu-
tion ratioN , on the proportion of the erroneous segment within

the CR pixel, on the resulting error on mean estimation and
on the inter-classes standard deviationσ (assumed equal for
each class).

More generally, if every segment of the segmentation image
represents a proportion upper thann/N of a CR pixel, the
previous result implies the following inequalities:

p ≤ Φ



−
√

N

2

n

N

min
λ6=λ′
‖m(λ)−m(λ′)‖

σ



 , (25)

and

p ≥ Φ



−
√

N

2

max
λ6=λ′
‖m(λ)−m(λ′)‖

σ



 . (26)

This result gives a reliability interval. In particular, the in-
equality (25) raises a ratio which can be seen as a contrast
measurement, denoted

c =
minλ6=λ′ ‖m(λ)−m(λ′)‖

σ
. (27)

Figure 1 represents this upper bound values when the image
contrast c varies, for segments of size at leastn

N
(with

different values of n
N

, ranging from about0.4% to 75%
of a CR pixel). For the regular case of a constrast level
upper than1, a 1-optimal label map has a probability less
than 0.05 to be prefered to the correct label map when any
segment represents more than25% of a CR pixel. Moreover,
the higher the contrast is, the weaker is the probability of
mislabeling a segment contained in a CR pixel. Notice that
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Fig. 1. Upper bound of the probability to prefer a1-optimal label map to the
correct label map when the mislabeled segment occupies more thann/N%
of a CR pixel. The upper bound value is plotted in function of the image
contrast. Each curve corresponds to a given proportionn/N of a CR pixel,
ranging from0.4% to 74.6%.

even though the mislabeling probability has been computed in
the restricted case of a unique mislabeled segment, it raises
the key parameters for labeling performance. In particular,
the upper bound puts forward the two key characteristics that
involve both the remote sensing sensor and the physical scene
features, namely the ratio between segment and CR pixel sizes
and the minimum distance between class means. An empirical
analysis of sensitivity of the method to the resolution ratio is
developped in Section VI-B, showing that the resolution ratio
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impacts the performance only through the aforementionned
parameter (ratio between segment and CR pixels).

As far as the minimum distance between classes is con-
cerned, it can be used as a guide for the choice of a subset of
dates in the time series. Assuming that we would handle only
θ dates in the set of acquisition datesT (e.g.for computational
time reasons or for supervised class features robustness ina
supervised approach), rather than choosing these dates from
phenological cycle knowledge considerations, we suggest to
chooseθ dates inT solving the following problem:

max
t1<...<tθ

min
λ6=λ′

θ
∑

i=1

|mti
(λ)−mti

(λ′)|2. (28)

This criterion can be interpreted as a contrast measurement
of the time series, joining up the idea of choosing the dates
leading to the highest level of contrast (or class separability).
Moreover, solving the problem (28) can be justified by the fact
it enables to minimize labeling errors.

Note that the use of this criterion would be mainly attractive
in a supervised case, where the class means area priori known.
Indeed, a solution of Problem (28) can be obtained exploring
all sub-sets ofθ dates contained inT but this implies an
exploration of

(|T |
|θ|
)

possibilities which rapidly requires a very
costly computation time. In the unsupervised case, since the
class means area priori unknown, dates could be chosen
a posteriori using (28) in order to refine the label map but
that takes off most interest of the procedure. In this study,
the choice of the dates was done according to ana priori
phenological knowledge and on image availability and quality
(mainly absence of clouds, high contrast).

V. A LGORITHM

Because of the size of the solution space, a systematic
search of the minimum is not possible. As no heuristic seems
justified for the considered problem, we decide to adopt
a simulated annealing algorithm. The minimization problem
with consider is composed of two correlated problems: a least
squares problem which can be easily solved through a singular
value decomposition and a combinatory optimization problem.
For this latter, an exhaustive research is not possible hence we
use a simulated annealing algorithm, which is classical for
combinatory optimization problems. It has been introduced
in image processing by [Geman et Geman, 1984] and used
by [Le Hégarat-Mascle et al., 1996] for various applications.

This algorithm is based on an analogy between thermody-
namics behaviour of solids and large combinatorial optimisa-
tion problems. Applied to minimization, simulated annealing
can be seen as a general optimization process enabling to
jump over energy barriers separating local minima. It allows
to reach, (theoretically) the global optimum in a solution
space having local optima. In our case, the presence of local
minima has been confirmed in experiments, for instance,
observing that for a given label configuration, changing only
one segment increases the global energy whereas changing
simultaneously several segments allows energy reduction.As
far as the unsupervised approach is concerned, the algorithm
takes as inputs the HR segmentation, the CR time series and

the number of labels. It returns the label field solution of (16)
and the class features (means). In the following, we denoteEl

the global energy to minimize in (16). It stands for the energy
corresponding to a label fieldλ. Each step of the algorithm
changes randomly one segment label in the label field and
tests whether it makes the energy decreasing or not. Denote
Ev(λprev) the energy correponding to the previous label field,
for a given time seriesv. The algorithm is the following.

- Compute proportions(βk(y))y,k for all pixel y.
- Initialize randomly the label field.
- Initialize the temperatureT to the graph diameter.
- While stop criterion is not verified, do

for i = 0 to |S|
draw randomly a segmentk,
draw randomly a labelc for segmentk,
estimate the label means,
compute∆Ev = Ev(λ)− Ev(λprev)
if ∆Ev ≤ 0, accept the label change,
else reject it with probabilityexp (−∆Ev/T )

decrease the temperature :T ← T (n)
n← n + 1

The functionT (n) is called the cooling schedule, its role is to
ensure the convergence of the algorithm to the global optimum
of the energyEv. Theroretically, the cooling schedule should
have a logarithmic decreasing law such asT (n) = h/log(n),
whereh is a predifined constant. However, with such a law,
the convergence is very slow and practically, a geometrical
decreasing likeT (n) = Tqn is often used. In our case,
setting q = 0.999 provided good results in the experiments.
Concerning the stop criterion, we stop the algorithm when no
change is accepted duringnr× |S| successive iterations (with
nr = 400). Once more, this value results from an empirical
analysis of the stability of the obtained solution.

This algorithm can also be used in order to find the label
field solution of Problem (13), taking a HR segmentation, a
CR time series and the class features (means and variances)
as inputs by simply removing the label means estimation step.
Note that such a supervised version is much faster than the
unsupervised one as each iteration does not require a time-
consuming linear regression anymore.

VI. VALIDATION

In this section, the performance of the method is analysed
both in a supervised and in an unsupervised context. The
labeling method is, at first, assessed using simulated CR
images in order to evaluate the method independently of
the validity of data assumptions (e.g. Gaussian hypothesis)
and on the preprocessing quality (e.g. image registration).
However, these images have been realized using actual data
features. Practically, HR images have been simulated using
actual SPOT/HRV resolution characteristics and radiometric
means and variances. From an actual HR time series of
Danubian plain,165 images of size300×300 pixels have been
extracted, segmented in100 segments and finally randomly
labeled using5 classes. HR images have been simulated by
randow drawing of lawN (mt(l), vart(l)) where l is given
by the corresponding ‘groundtruth’ label and parametersmt
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andvart have been learnt from an actual data set. Secondly,
CR images have been created averaging HR simulated images.
The reference classification is the label map from which the
HR images have been simulated. In this section, as we focus
on the method and the algorithm behavior, experiments have
been run using single CR images rather than CR time series.
Global results are given in Table I for both supervised and
unsupervised approaches. As far as the supervised version is
concerned, results are very satisfactory since the averageper-
centage of mislabeled pixels is less than1%. The percentage
of mislabeled segments may seem high but it is due to the
presence of very small regions in the segmentation (as the
percentage of pixels concerned remains very small). In fact,
we made the choice not to constrain the segmentation so far. A
minimum segment size may be imposed in the segmentation
processing step, permitting to avoid that kind of artefacts. In
the unsupervised case, the results are rather convincing since
the average percentage of misclassified pixels is less than5%,
and the median percentage is0.2%. This significant difference
observed between median and average can be explained by the
fact that the information contained in some simulated images
is too poor for the unsupervised classification method to work
(and CR images are very small, with20 × 20 pixels), in
addition to the fact that these tests were restricted to the use
of monotemporal images.

TABLE I
AVERAGE RESULTS OBTAINED FOR A SET OF165 SIMULATED IMAGES

WITH A RESOLUTION RATIO |DHR|/|DCR| = 15 × 15.

Mislabeled pixels Mislabeled segments
(average%) (average%)

Supervised version 0.87 23.6

Unsupervised version 4.35 31.5

We analyze more precisely the detail of these global errors
in the next section.

A. Experimental error analysis

In this section, we aim at analyse the obtained errors in order
to specify experimentally the cause of their occurence : non-
convergence of the algorithm (due to a too fast schedule), lack
of information in the data, overlapping of the class features,
etc. To that aim, the energy valueE0 corresponding to the
reference label map is compared to the energy valueEk

associated to a label configuration that is equal to the reference
one except on the segment numberedk. This comparison is
made successively for all erroneous segmentk obtained by the
algorithm. Such an experiment has been performed in order
not to bias the analysis by the presence of errors concerning
other segments.

The histogram of the gains due to local perturbations in
the neighborhood of the reference label map is represented
Figure 2. More precisely, it represents the energy differences
histogram computed for all label configurations containing
exactly one mislabeled segment among all erroneous ones we
obtained. This histogram shows, in particular, that more than

one half of the erroneous label provide an improvement from
the reference for the criterionE.

It seems that most errors are due to the stochastic nature of
the problem,i.e. the accurate optimum leads to a label map that
is often quite different from the reference classification.The
positive difference errors (Figure 2) result mainly from two
types of phenomenon. On the one hand, we observed that little
segments may be misclassified if their occupation rate within
a CR pixel is too low to have an effective contribution on the
energy. In some cases, a little segment may be misclassified in
order to compensate for the signed error due to the contribution
of the other (well classified) segments of the CR pixel. On
the other hand, as Gaussian distributions we consider partially
overlap, an observation occuring in the distribution queueof its
class may have a higher probability to belong to the adjacent
class and, hence, to be misclassified. The use of multitemporal
data, as performed in the actual case, may reduce this type of
errors as classes become more severable with time series.

-0.004 -0.003 -0.002 -0.001 0.000 0.001 0.002 0.003 0.004
0

417

833

1250

1667

2083

2500

energy diff.

100 times % occurence

.

Fig. 2. Histogram of normalized energy variation(E0−Ek)/|E0| computed
for all errors obtained using the supervised algorithm.

B. Sensitivity to resolution ratio

Since we aim at using high resolution ratios going up to
152 (e.g. for SPOT/HRV versus MERIS) or502 (e.g. for
SPOT/HRV versus SPOT/VGT), we now study the perfor-
mance of the method when the resolution ratio varies. As
Table I has shown that tiny segments (containing one or few
HR pixels) tended to be misclassified, this study may also give
some hints for the minimal acceptable segment size.

From a set of165 simulated HR images, CR images have
been created for different resolution ratios (152, 302 and502).
For each mislabeled segment obtained using the supervised
approach, the occupation rate within a CR pixel is computed.
Table II presents some occupation rate statistics computed
on the set of error segments. As we can see, the size of
erroneous segments relatively to CR pixel size is almost
independent from the resolution ratio. Moreover, about70%
of the error segments occupies less than5% of a CR pixel,
hence restricting to larger segments could increase strikingly
the performance of the method. We also observe that50% of
label errors concern segments occupying less than2% of the
CR pixel. This observation could be used to constrain the seg-
mentation process with a minimum segment size of2% of the
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CR pixel, which would reduce by about one half the labeling
errors. In the literature, many methods using CR data for class
proportion estimation deal with segments representing at least
5% of the CR pixel [Le H́egarat-Mascle et al., 2005].

TABLE II
STATISTICS ON THE OCCUPATION RATE(PERCENTILS) OF A MISLABELED

SEGMENT WITHIN A CR PIXEL IN FUNCTION OF THE CONSIDERED

RESOLUTION RATIO (N ).

N 10th ptl 50th ptl 70th ptl 90th ptl 100th ptl

152 0.44% 2% 5% 25.7% 100%

302 0.11% 1.77% 7.7% 41.4% 100%

502 0.08% 2% 8.13% 39.8% 100%

As far as the performance of the method versus the res-
olution ratio is concerned, Figure 3 shows that the error
percentage values can reach rather high values. This can be
attributed to the fact these experiments use monotemporal
images while some class features may be very close depend-
ing on the considered date, leading to the observed quality
variability of the results. Moreover, the median curve shows
very good average performance for resolution ratios up to
302, then performance decreases with resolution ratio502 with
about20% of erroneous pixels. The dependency of the error
percentage on the sensor resolution is manifest and non-linear.
Notice that contrary to the previous case where the segment
size was considered relatively to the CR pixel size, the error
is here measured in terms of number of mislabeled HR pixels
(without taking the size of objects relatively to the pixel size
into account). Consequently, the decreasing performance of
the results whenN increases is essentially due to the fact that
the minimal relative size of segments decreases (most errors
are caused by the smallest segments).

The coarser is the sensor resolution, the more multitemporal
information is necessary to attain a good performance. Note
also that the results we obtain using the supervised algorithm
are very close in performance to those obtained using the
unsupervised version.

Last, let us analyse the method performance in function of
the resolution ratio in a simple case with pseudo-actual data
and a monotemporal supervised context. To that aim, the165
subparts of actual SPOT/HRV images of the ADAM database
have been averaged by blocks of size5×5 to 50×50 in order to
build pseudo-actual CR images. Figure 4 represents, as in the
case of simulated data (Figure 3), the percentage of mislabeled
pixels as a function of the considered resolution ratio. As we
can see, errors are significantly higher for pseudo-actual data :
for instance, the median error for a15 × 15 resolution ratio
goes from0.3% to 4.5%. This important difference may be
attributed to the fact that, in the case of monotemporal actual
images, the Gaussian hypothesis is not well justified and,
moreover, the spectral response of some types of vegetation
may not be spatially homogeneous (for instance, the wheat
represented within a segmentx or within a segmenty may
differently respond because of the irrigation, of the nature of
the soil, ...)

Besides, these experiments runned on165 pseudo-actual
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(a) Supervised version

 0

 10

 20

 30

 40

 50

 60

 70

 0  10  20  30  40  50  60

m
i
s
l
a
b
e
l
e
d
 
p
i
x
e
l
s
 
(
%
)

square root resolution ratio

all errors
median

(b) Unsupervised version

Fig. 3. Each cross represents the percentage of misclassifiedpixels obtained
for several simulated images and a given resolution ratio, using the supervised
version (a) and the unsupervised version (b). The superimposed line represents
the median of these percentage values.
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Fig. 4. Percentage of mislabeled pixels obtained by applyingthe supervised
algorithm to monotemporal actual images as a function of the resolution ratio,
and its median value.
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images using the supervised labeling method show that, for a
given HR segmentation, the label map quality is limited when
the considered resolution ratio exceed30×30. In particular, for
a ratioN = 50×50, at least30% of HR pixels are mislabeled
for one half of the experiments. In the following, we will hence
focus on lower resolution ratios, typically15 × 15 as in the
case of a joint use of SPOT/HRV and MERIS data.

VII. R ESULTS

A. The ADAM database

The proposed approach has been applied to a subpart of
an actual SPOT/HRV time series acquired over an agricultural
site of the Danubian plain (Rumania) provided by the French
spatial agency (CNES) in the framework of the ADAM
European project. In this context, SPOT/HRV multispectral
images have been specifically acquired about once every 2
weeks using satellites SPOT 1, 2 and 4. This constitutes an
exceptional database even if the presence of clouds and some
image quality issues disabled the use of some image parts.

A time series of 8 multispectral SPOT/HRV
images has been selected from the whole data set
(acquisition dates: 11/14/2000, 03/14/2001, 04/12/2001,
05/24/2001, 05/31/2001, 06/13/2001, 07/24/2001 and
07/31/2001), and pre-processed into vegetation fraction
cover series using the SAIL+PROSPECT biophysical
model [Jacquemoud et al., 1995], as this parameter is scale
linear and known to be efficient for land cover discrimination.
In section VI, the analysis concerning the sensitivity of the
method to the resolution ratio showed good performance for
resolution ratios less than20 × 20. Hence, as MERIS series
were not available at the time, MERIS data (Figure 5 (e))
have been simulated from the actual SPOT/HRV time series
(Figure 5 (b)), by averaging each image with a factor16
in each direction. This approach enables to reproduce the
intensity variability and distribution from actual data while
discarding the registration issues which are beyond the scope
of this study.

The HR segmentation that we used results from the
multiscale algorithm [Koepfler et al., 1994]1 processed on a
SPOT/HRV image for a given number of segments (e.g. in
Figure 5 (a),|S| = 100). In the following, the results obtained
using the unsupervised algorithm are presented for a given
number of classes and for a fixed resolution ratio of16× 16.

B. Accuracy of the classification

In this section, we suggest to measure the accuracy of a
label map by comparing the result obtained using CR time
series to the result obtained using the corresponding HR time
series and the same energy function (be aware that pixels are
then pure pixels,i.e. only 1 class per pixel). This performance
measurement is based on the idea that an ideal sub-pixelic
classification should be able to discriminate classes from CR
dataas well asfrom HR data.

In Figure 5, classifications (c) and (f) have been obtained
from the HR segmentation (a) and, respectively, the HR and

1function segctof MegaWave2 image processing software

CR time series (b) and (e) (only the first image of the
time series is shown) using the unsupervised classification
algorithm for5 classes. Label errors between HR and CR clas-
sifications (c) and (f) are represented in (d), in white, showing
about3% of mislabeled HR pixels. Let us remark that some
segments of size larger than the CR pixel size are mislabeled.
This can be explained by the fact that the average intensity
of this area takes a value intermediate between the two class
means and, hence, is ambiguous. Another output of the method

(a) Segmentation (b) a HR image (c) Label map

(d) Error map (e) a CR image (f) Label map

Fig. 5. The label map (c) has been obtained using the segmentation (a) and an
actual time series of8 vegetation fraction cover HR images (b), for5 labels.
The label map (f) represents the result obtained using the segmentation (a) and
CR time series (e) (simulated from HR ones, with a resolution ratio 16×16).
Image (d) shows the label differences between (c) and (f): only about3% of
the pixels are mislabeled (in white).

is the estimation of the class means. Figure 6 presents the
vegetation fraction cover mean estimation corresponding to
each label obtained from the same HR and CR time series.
We can see that these estimated profiles are very close, which
shows the accuracy of the unsupervised means estimation from
CR data. A similar experiment, performed on another dataset,
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Fig. 6. For each class, corresponding vegetation fraction cover means
are plotted in function of the acquisition date (estimation given by the
unsupervised algorithm for5 labels, using the data set Figure 5). For each
class, two curves are plotted : one for the mean estimation using HR images
and the other using CR images.

leads to the same conclusions (see Figure 7).
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(a) Segmentation (b) a HR image (c) Label map

(d) Error map (e) a CR image (f) Label map

Fig. 7. Same experiment as Figure 5, performed on another dataset. Only
about2% of the pixels are mislabeled (in white on the error map (d)).

C. Robustness of the method

In order to estimate the robustness of the method with
respect to the kind of data considered, the same experiment
as in Figure 5 has been performed using NDVI images
corresponding to the same dates. Let us remind that NDVI
images are obtained directly from the red (R) and near infrared
(NIR) bands of SPOT sensor through the relationship

NDV I =
NIR−R

NIR + R
, (29)

whereas the vegetation fraction cover images are obtained
from the inversion of a biophysical model. Using HR seg-
mentation (Figure 5 (a)) and the NDVI CR time series
(Figure 8 (a)), the unsupervised approach leads for5 labels
to the label map (Figure 5 (b)) which is very close to the
label map previously obtained using vegetation fraction cover
images. The error map (Figure 5 (c)) shows the mislabeled
pixels, using the label map Figure 5 (c) (obtained using a
HR time series of vegetation fraction cover) as a reference.
The result is very close to the one obtained using CR time
series of vegetation fraction cover. This remark confirms the

(a) Errors (b) a NDVI CR image (c) Label map

Fig. 8. Label map obtained using NDVI images: the label map (c) has
been obtained using the segmentation 5 (a) and CR NDVI time series (b).
Comparing the error map (a) to the one obtained from vegetationfraction
cover (Figure 5 (d)) shows that the obtained results are verysimilar.

robustness of the method according to the type of data used
for classification.

As we noticed earlier, the quality of the HR segmentation
has a direct impact on the label map quality, as non-segmented

connected parcels are necessarily identically labelled even if
their land cover is different. Some labeling errors can thus
be explained by the fact that the segmentation was not fine
enough, but they can also result from the lack of separability of
the radiometric intensity measures for two types of land cover.
Hence, an over-segmentation is generally preferable to an
under-segmentation, in order to separate all parcels. In fact, a
compromise has to be found since over-segmentations increase
the dimension of the search space, yielding larger computation
times and more possibilities of erroneous classifications.

If the obtained results seem satisfactory and reliable, they
raise the difficulty of setting ana priori number of classes for
the classification (|L|). Indeed, in an unsupervised context,
|L| is usually not known and, even if it were, there is no
reason for it to correspond to the number of classes that can
be distinguished from the CR time series. In the previous
experiments,|L| was set arbitrarily but additional experiments
showed some consistency between classifications of a same
scene using different values of|L| : increasing|L| rather led
to splitting classes, raising some hierarchy property of the
labeling process.

VIII. C ONCLUSION

In this paper, a new approach enabling HR classification us-
ing a CR time series and additionnal structural informationhas
been presented. It is based on a Bayesian model of the problem
and on the linear mixture model for CR pixel disaggregation
in terms of the characteristics of the different segments that
are represented within a CR pixel. The Maximum A Posteriori
criterion enables the definition of an energy function whose
minimization leads to the desired classification.

A probabilistic analysis of the classification accuracy
showed the crucial role of the temporal evolution of class
features, and raised a criterion for optimizing the choice of
a subset of acquisition dates. This criterion suggests that
even if multitemporal data permit to improve the label map
accuracy, the acquisition dates should be well chosen in order
to find a compromise between the actual information gained
and the increasing dimensionality of the search space. This
idea, combined with experimental validations, could lead to
interesting developments of the proposed approach.

A simulated annealing algorithm has been adopted to
minimize the energy and provide a label map from a HR
segmentation and a CR time series in an unsupervised context.
An empirical analysis of the obtained labeling errors using
simulated data showed that the algorithm convergence (deli-
cate issue for this type of method) does not seem problematic,
even though a geometrical temperature schedule has been
considered.

The same experiments showed that the unsupervised ap-
proach remains reliable for resolution ratios less than30×30.
Hence, the joint use of data such as SPOT/HRV and VGT
(resolution ratio of50× 50) for labeling may not be expected
as satisfying for the type of landscape we considered (typ-
ical European landscape). The joint use of SPOT/HRV and
MERIS images, however, seems well suited to the HR/CR
classification we presented, since their relative resolution ra-
tio is (only) 15 × 15. Experiments using actual SPOT/HRV
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images and MERIS pseudo-actual images in the context of
an agricultural application in the Danubian Plain (ADAM
database) yielded satisfactory results according to HR data and
available groundtruth elements. Moreover, some preliminary
experiments showed the stability of the results through cross-
validation with different kinds of data: in particular, very close
label maps have been obtained using vegetation fraction cover
CR images and NDVI CR images.

Finally, let us remark that the applicability of this method
to actual CR time series will highly depend on the accuracy
of the registration away CR images, and between CR images
and the HR segmentation. The bounds on the resolution ratio
we pointed out while assuming perfect registrations hence
should be considered as upper limits, that would require
some adjustments to take into account the limited registration
accuracy.

APPENDIX A
A PRIORI PROBABILITY

Using Equation (5) and assuming that, for allt, the random
field Ut defined on the HR domainDHR is Gaussian condi-
tionnally to the HR label map, with meanmt(l) and variance
vart(l), the variable(Vt(y)|Λ = λ) is then Gaussian as a
mixture of Gaussian variables. Its mean is, for any CR pixel
y and any datet,

E [Vt(y)|Λ = λ]

= E









∑

l∈L
αl(y)

∑

{x ∈ y}
λs(x) = l

(Ut(x)|Λ = λ)

Nl(y)









=
∑

l∈L
αl(y)

∑

{x ∈ y}
λs(x) = l

mt(l)

Nl(y)

=
∑

l∈L
αl(y)mt(l) , (30)

asNl(y) = |{x ∈ y, λs(x) = l}|. Finally, using equation (6),

E [Vt(y)|Λ = λ] =
∑

l∈L

∑

k ∈ S
lk = l

βk(y)mt(l) . (31)

The variance is also computed from equation (5) and, thanks
to the variables(Ut(x))x∈DHR independence hypothesis, we
have, for any datet and pixely,

σ2
t (λ, y) =

∑

l∈L
α2

l (y)Nl(y)

(

1

Nl(y)

)2

vart(l)

=
1

N

∑

l∈L
αl(y)vart(l)

=
1

N

∑

l∈L

∑

k ∈ S

lk = l

βk(y)vart(l). (32)

APPENDIX B
INFLUENCE OF THE RESOLUTION RATIO

The matrixRC can be decomposed in singular values as

R C = O D tW . (33)

whereO is an orthogonal matrix of size|DHR|× |L|, W is an
orthogonal matrix of size|L|×|L| andD = (di)i is a diagonal
matrix of size|L| × |L| containing the singular values ofRC
on the diagonal. As the rank ofRC is |L|, all singular values
of RC are non-null. Let us denoteO = (O1, . . . , O|L|) and
W = (W1, . . . ,W|L|) where for i = 1 . . . |L|, the termsOi

and Wi are, respectively, the column vectors of the matrices
O andW . Hence, for allX ∈ R

|L|,

R C X =

|L|
∑

i=1

di < X,Wi > Oi. (34)

Consequently, for a given matrixC, the solution of the
problem (17) is defined as

M =

L
∑

i=1

1

di

< tBBU,Oi > Wi. (35)

and the solution of the problem (18) is

M ′ =

L
∑

i=1

1

di

< U,Oi > Wi. (36)

Hence,

||M ′ −M ||2 = ||
L
∑

i=1

1

di

< U − tBBU,Oi > Wi||2

≤
L
∑

i=1

1

d2
i

||(I − tBB)U ||2

≤
L
∑

i=1

1

d2
i

|||I − tBB|||2 ||U ||2. (37)

(38)

Moreover, the matrixtBB, with size |DHR| × |DHR|, can be

written as 1
N2 JN whereJN =







1 · · · 1
...

...
1 · · · 1






andN is the

resolution ratio (|DHR|/|DCR|). Hence,

|||I − tBB||| = 1− 1

N2
+

N − 1

N2
= 1− 1

N

and

||M ′ −M ||2 ≤
(

1− 1

N

)2

||U ||2
L
∑

i=1

1

d2
i

. (39)

APPENDIX C
ERROR ANALYSIS

The energy difference between the correct label mapλ and
a1-optimal label mapλ′ is null everywhere but on the segment
k0, which is fully represented within the pixely0. Hence

E(λ)− E(λ′) = ‖V (y0)−
∑

k∈S
βk(y0)m(λk)‖

2

−‖V (y0)−
∑

k∈S
βk(y0)m(λk) + δ(y0)‖

2
,

whereδ(y0) = (δt(y0))t∈T and, for allt ∈ T ,

δt(y0) = βk0
(y0)(mt(λk0

)− mt(λ
′
k0

)). (40)
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For all datet ∈ T and for all pixely ∈ DCR, let us define the
random variable

V t(y) = Vt(y)−
∑

k∈S
βk(y)mt(λk) . (41)

It is Gaussian as a linear combination of the Gaussian random
variablesVt(y), with mean

E
[

Vt(y)
]

= E

[

Vt(y)−
∑

k∈S
βk(y)mt(λk)

]

= E [Vt(y)]−
∑

k∈S
βk(y)mt(λk)

= 0 using Equation (8), (42)

and variance

V
[

V t(y)
]

= V

[

Vt(y)−
∑

k∈S
βk(y)mt(λk)

]

= V [ Vt(y)]

=
σ2

N
. (43)

Consequently, the random vectorV (y) =
(

V t(y)
)

t∈T is a

Gaussian central vector with covariance matrixσ2

N
IT , where

IT represents the identity matrix in dimensionT (under
hypotheses of dates independence and class variance equality).
With these notations, the energy difference between the label
mapsλ andλ′ is

E(λ)− E(λ′) = ‖V (y0)||2 − ||V (y0) + δ(y0)‖
2
. (44)

As δ(y0) is constant, the random vectorV (y0) + δ(y0) is
Gaussian, with meanδ(y0) and covariance matrixσ

2

N
IT . The

probability for a given1-optimal label map to be prefered to
the correct label map is hence

P (E(λ)− E(λ′) ≥ 0)

= P

(

‖V (y0)‖
2 − ‖V (y0) + δ(y0)‖

2 ≥ 0
)

= P

(

2 < V (y0), δ(y0) >

‖δ(y0)‖2
≤ −1

)

. (45)

Now,

E
[

< V (y0), δ(y0) >
]

=
∑

t∈T
δt(y0)E

[

V
t
(y0)

]

= 0 (46)

and

V
[

< V (y0), δ(y0) >
]

= tδ(y0)V
[

V (y0)
]

δ(y0)

= tδ(y0)
σ2

N
IT δ(y0)

=
σ2

N
‖δ(y0)‖2. (47)

Then,

< V (y0), δ(y0) >∼ N (0,
σ2

N
‖δ(y0)‖2) (48)

and the random variable

X =
2 < V (y0), δ(y0) >

‖δ(y0)‖2
, (49)

follows a Gaussian central law with variance 4σ2

N‖δ(y0)‖2 , so
that

Z =

√
N‖δ(y0)‖

2σ
X ∼ N (0, 1). (50)

Hence, the probability for a given1-optimal label map to be
prefered to the correct label map is

P (E(λ)− E(λ′) ≥ 0) = P

(

Z ≤ −
√

N‖δ(y0)‖
2σ

)

= Φ

(

−
√

N‖δ(y0)‖
2σ

)

, (51)

where ‖δ(y0)‖ = βk0
(y0)‖m(λk0

) − m(λ′
k0

)‖ and Φ(x) =
1√
2π

∫ x

−∞ e−
t2

2 dt.
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