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ABSTRACT

We propose a definition of a Sharpness Index that is closely

related to the notion of Global Phase Coherence recently in-

troduced for automatic image restoration and image quality

assessment. Using Gaussian random fields instead of random

phase images, we can estimate the probability that a random

image has a given Total Variation, which leads us to an ex-

plicit formula and a fast algorithm. Theoretical arguments and

numerical experiments are given to assess the similarity be-

tween the Sharpness Index and the Global Phase Coherence,

and an application to non-parametric blind deconvolution is

presented, that illustrates the possibilities offered by this new

approach.

Index Terms— sharpness, global phase coherence, image

restoration, blind deconvolution, image quality

1. INTRODUCTION

Deriving no-reference image sharpness metrics has several

applications in Image Processing, in particular in image

restoration (blind and non-blind deconvolution, removal of

compression artifacts) and in image quality assessment (typ-

ically used to rate compression schemes). It was shown in

[1] that a sharpness metric, called Global Phase Coherence

(GPC), could be defined by reference to the regularity (Total

Variation) of random phase images. This metric was then

used in [2] as a part of a more sophisticated sharpness mea-

sure, and in [3] to improve the sensitivity of SSIM to blur and

aliasing.

In practice, the usefulness of the GPC is limited by the

fact that its computation requires several hundreds of Monte-

Carlo simulations — each one requiring one Discrete Fourier

Transform (DFT) — to estimate the first two moments of the

distribution of the Total Variation of random phase images. In

the present work, we propose a variant of the GPC obtained

by considering, instead of random phase images, the equiva-

lent Gaussian random fields, for which we can derive explicit

formulas (Section 2). In Section 3, we define the Sharpness

Index and compare it to GPC, before we present an applica-

tion to non-parametric blind deconvolution in Section 4.

This work has been supported by the French National Research Agency

under grant ANR-09-BLAN-0029-01.

2. TOTAL VARIATION OF GAUSSIAN FIELDS

Let u : Ω → R be a grey-level M ×N image defined on the

rectangular domain Ω = {0, . . . ,M − 1} × {0, . . . , N − 1}.
We call standard white noise a random image W : Ω → R

such that all W (x) are independent random variables dis-

tributed according to a the Gaussian distributionN (0, |Ω|−1
)

(that is, mean 0 and variance (MN)−1). Note that this nor-

malization ensures that E ‖W‖2 = 1, where E denotes the

expectation and ‖W‖2 =
∑

x∈Ω
W (x)2. Combining u and

W with a periodic convolution, we obtain a new random im-

age U = u ⋆W defined on Ω by

U(x) =
∑

y∈Ω

W (y)u̇(x− y), (1)

where u̇ means the Ω-periodization of u (that is, u̇ is N -

periodic along each coordinate). It is easy to prove that this

definition ensures that U is a stationnary Gaussian random

field with mean 0Ω and covariance matrix

EU(x)U(x′) =
1

|Ω|
∑

y∈Ω

u(y)u̇(y + x
′ − x).

We now consider the notion of (periodic) Total Variation,

that associates to an image v : Ω→ R the value

TV(v) := ‖∂xv‖1 + ‖∂yv‖1 =
∑

x∈Ω

|∂xv(x)|+ |∂yv(x)|,

where ∂xv(x, y) = v̇(x + 1, y) − v(x, y) and ∂yv(x, y) =
v̇(x, y + 1) − v(x, y). This is a regularity measure that has

been extensively used in image processing since the seminal

paper of Rudin, Osher and Fatemi [4]. In order to establish

the main theoretical result of this paper (Theorem 1 below),

we need to introduce the gradient cross-correlation function

defined by

∀z ∈ Ω, Γ(z) =
∑

y∈Ω

∇u̇(y) · ∇u̇(y + z)T ,

where ∇u̇ = (∂xu̇, ∂yu̇)
T is the (periodic) gradient of u.

Note that Γ(z) is a 2 × 2 matrix, that can be written under

the form

Γ(z) =

(
Γxx(z) Γxy(z)
Γyx(z) Γyy(z)

)
.

Now we can state



Theorem 1 The expectation and the variance of TV(U) are

ETV(U) = (αx + αy)

√
2|Ω|
π

, (2)

VarTV(U) =
2

π

∑

z∈Ω

[
α2
x · ω

(
Γxx(z)

α2
x

)
+

2αxαy · ω
(
Γxy(z)

αxαy

)
+ α2

y · ω
(
Γyy(z)

α2
y

) ]
, (3)

where αx = ‖∂xu‖2, αy = ‖∂yu‖2, Γ is the cross-correlation

matrix of ∇u and ω is the function defined by

∀t ∈ [−1, 1], ω(t) = t arcsin t+
√

1− t2 − 1. (4)

Proof: We have by linearity ∂xU = (∂xu)⋆W , so that the dis-

crete random field ∂xU is a stationnary Gaussian field whose

marginal distributions have zero mean and variance

E(∂xU(x))2 =
∑

y∈Ω

1

|Ω| (∂xu̇(x− y))2 =
α2
x

|Ω| ,

and then a standard computation leads to

∀x ∈ Ω, E |∂xU(x)| =
√

2α2
x

π|Ω| .

Using a similar reasonning on ∂yU , we obtain that the expec-

tation of TV(U) =
∑

x∈Ω
|∂xU(x)| + |∂yU(x)| is given by

(2) as announced.

We now consider the variance of TV(U). We have

ETV(U)2 =
∑

a,b∈{x,y}

∑

x,y∈Ω

E |∂aU(x)∂bU(y)|,

and the stationnarity of ∇U entails (with z = y − x)

ETV(U)2 = |Ω|
∑

a,b∈{x,y}

∑

z∈Ω

E |∂aU(0)∂bU(z)|. (5)

Each term of this double sum can be written under the form

E |XY |, where (X,Y ) is a zero-mean 2-dimensional Gaus-

sian vector with covariance matrix
(

EX2
EXY

EXY EY 2

)
.

For the term of (5) corresponding to a = x and b = y for

example, we have X = ∂xU(0) and Y = ∂yU(z), thus

EXY = E

∑

x,y∈Ω

∂xu̇(−x)∂yu̇(z− y)W (x)W (y)

=
1

|Ω|
∑

x∈Ω

∂xu̇(x)∂yu̇(z+ x)

=
1

|Ω|Γxy(z)

and the covariance matrix of (X,Y ) is

1

|Ω|

(
α2
x Γxy(z)

Γxy(z) α2
y

)
,

so that by Lemma 1 below we obtain that

E |XY | = 2αxαy

π|Ω| · ω̃
(
Γxy(z)

αxαy

)
,

with ω̃(t) = cos(arcsin t) + arcsin t · sin(arcsin t) =√
1− t2+ t arcsin t = ω(t)+1. Combining all terms arising

from (5), we finally obtain that

ETV(U)2 =
2

π

∑

a,b∈{x,y}

∑

z∈Ω

αaαb · ω̃
(
Γab(z)

αaαb

)
, (6)

where the contributions of (a, b) = (x, y) and (a, b) = (y, x)
are equal since Γyx(z) = Γyx(−z). In the end, the announced
result arises from VarTV(U) = ETV(U)2 − (ETV(U))2,
which simply amounts to change ω̃ into ω in (6). �

Lemma 1 let Z = (X,Y )T be a Gaussian random vector

with zero mean and covariance matrix

E
(
ZZT

)
=

(
p2 pq sin θ

pq sin θ q2

)
.

Then, one has E |XY | = 2|pq|
π

(cos θ + θ sin θ).

The proof results from standard integration calculus.

3. A NEW SHARPNESS INDEX

3.1. Definition and relation to GPC

Using Theorem 1, we are now in position of defining a new

Sharpness Index, inspired from the GPC developped in [1].

Definition 1 The Sharpness Index of an image u : Ω→ R is

SI(u) = − log10 Φ

(
µ− TV(u)

σ

)
, (7)

where µ = ETV(U) and σ2 = VarTV(U) are defined in

Theorem 1, and Φ(x) = (2π)−1/2
∫ +∞

x
e−t2/2 dt is the tail

of the Gauss distribution.

As in [1], we replace the uncomputable probability

P{TV (U) ≤ TV (u)} by its Gaussian approximation based

on the first two moments of TV (U) (which is reasonable be-

cause TV (U) is very near to be Gaussian in practice). Thus,

the fundamental difference between GPC(u) and SI(u) re-
lies in the random field U that is used: random phase images

for GPC(u), a Gaussian random field for SI(u). As we

shall see further, these two random fields lead to very similar

properties, but the great advantage of the Gaussian random

field is that it provides explicit formulas for SI(u), whereas
the estimation of GPC(u) requires heavy Monte-Carlo sim-

ulations. In that sense, one can see the Sharpness Index we

just defined as an explicit ersatz of the GPC.



3.2. Numerical computation

As for the GPC, we have to consider two potential issues in

the estimation of the Sharpness Index: the fact that we assume

periodic images (because we use a periodic TV and periodic

convolutions), and the fact that actual images are quantized

(on 256 grey levels, or more). To avoid undesirable effects,

we thus apply the pre-processing mentioned in [1] before we

compute the Sharpness Index. This leads us to the more ro-

bust Sharpness Index

SI ′(v) = SI(Q(per(v))),

where Q is a dequantization operator (a (1/2, 1/2) Fourier-
based translation), and per(v) the periodic component of v
(avoiding periodization artefacts) defined in [5]. Note that

the computation of the Fourier Transform of u = Q(per(v))
only requires two DFTs. As concerns the computation of

SI(u), it involves the computation of the gradient ∇u =
(∂xu, ∂yu)

T , the norms αx = ‖∂xu‖2 and αy = ‖∂yu‖2,
and the cross-correlation images Γxx, Γxy , Γyy , which can

be quickly computed in Fourier Domain thanks to the relation

Γ̂ab = ∂̂au
∗·∂̂bu. Overall, the computation of SI ′(v) requires

the computation of 6 DFTs (2 to compute û from v, 1 to get

u, and 3 to get the cross-correlation images). In practice, the

computation of SI ′ on a 512×512 image takes about 200ms

on a recent laptop with a C implementation (as a comparison,

computing the GPC with N = 1000 Monte-Carlo samples

takes about 1 minute).

3.3. Comparison between Sharpness Index and GPC

The aim of the present paper is to show that GPC can be

advantageously replaced by the Sharpness Index without

loosing its properties. From a theoretical viewpoint, it is

interesting to notice that random phase images (obtained by

phase randomization in Fourier Domain) and the equiva-

lent Gaussian images (obtained by convolution with a white

noise) produce very similar images visually. In fact, they only

differ in Fourier Domain by a mutilplicative Rayleigh noise

[6]. Hence, one can expect that the Sharpness Index and the

GPC will essentially measure the same thing. Indeed, SI(u)
and GPC(u) are the same combination of three numbers:

TV (u), µ = ETV (U), and σ2 = VarTV (U), U being a

different random field in each case. Experimentally, we ob-

served that the values of µ obtained for GPC(u) and SI(u)
(that is, the average total variation of a random phase image

and the equivalent Gaussian image) were very close, with

typical relative differences below 1%. As concerns σ, how-
ever, there is a real difference between the two random fields,

the value being systematically higher for Gaussian fields (the

ratio seems to be around 7-8 in general). Hence, we expect

SI(u) to be significantly lower thanGPC(u), but as we shall
see now it does not have important consequences in practice,

since both quantities behave the same with respect to image

changes.
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Fig. 1. 2D blur-noise diagrams of Lacornou image, corresponding

to the Sharpness Index (top) and the GPC (bottom).

To compare the behavior of SI(u) and GPC(u) as func-
tions of u, we compute as in [1] the 2D blur-noise diagram,

that is, the function

f(r, σ) = SI ′(gr ⋆ u+ σN),

where gr is the 2-D Gaussian convolution kernel with stan-

dard deviation r, and N a white noise image with unit vari-

ance in each pixel. This blur-noise diagram is compared to the

one obtained for GPC in [1] on the same image (Lacornou),

and the results are shown on Fig.1. As we can see, the abso-

lutes values of SI(u) and GPC(u) differ, but their relative
behavior with respect to noise and blur is quite similar.

4. APPLICATION TO BLIND DECONVOLUTION

In [1], an application of the GPC to parametric blind deconvo-

lution was presented. It was shown that an appropriate value

of the standard deviation r of a Gaussian kernel could be se-

lected in a Wiener blind deconvolution scheme by maximiz-

ing the GPC of the deconvolved image. We applied the same

protocol by replacing the GPC with the Sharpness Index, and

we found identical results, that is, the same value of r. Rather
than reproducing the identical curve we obtained (up to the

scale change we discussed above), we propose here to illus-



trate the interest of the Sharpness Index by considering a more

challenging problem: non-parametric blind deconvolution.

Instead of formulating blind deconvolution as an inverse

problem associated to an unknwown convolution kernel, we

propose to use a more direct approach: given an image u,
find the symmetric convolution kernel k such that SI(k ⋆ u)
is maximal. Solving this optimization problem is not easy,

because the function F : k 7→ SI(k⋆u) is neither concave nor
smooth (due to the presence of the TV operator). This is why

we adopt a very simple (though probably not optimal in terms

of computation time) strategy, called stochastic minimization:

start with k = δ0 (Dirac mass in (0,0))

repeat N times:

define k′ from a random perturbation of k
if SI(k′ ⋆ u) > SI(k ⋆ u), then k ← k′

return k ⋆ u

In order to limit the dimensionality of the problem, we

considered separable kernels k with a small (21×21) support.
Thus, considering the symmetry constraint on k, the explo-

ration space has dimension 10 (we chose to maintain k(0) =
1, which is equivalent to the normalization

∑
x
k(x) = 1

since SI(λu) = SI(u) for any λ 6= 0). The algorithm above

could be trapped in a local maximum of the map F , but we did

not observe this in practice. It might be that the map F associ-

ated to typical images only has one local maximum (which is

global), but at this time we have no evidence of this. In the ex-

periments we performed on several classical images, we used

N = 10, 000, which seemed sufficient since we observed lit-

tle improvement on the Sharpness Index after N = 1000.
Also, running the algorithm several times always led to the

same solution (up to a good level of precision).

The deconvolution algorithm we just presented was ap-

plied to several classical images, without applying any prior

blur or noise. The results were surprisingly good, considering

that no regularity constraint was imposed on the blur kernel

or on the deconvolved image, as is generally done in classi-

cal blind deconvolution algorithms. Notice, however, that for

some images the result was a bit too much deconvolved (in

the sense that a careful examination of the result revealed the

presence of ringing around edges). A representative example

is shown on Fig. 2.

5. CONCLUSION

While the Global Phase Coherence defined in [1] requires

heavy Monte-Carlo simulations to be estimated, the Sharp-

ness Index we proposed here is computed exactly with only 6

Discrete Fourier Transforms. Though, these two image qual-

ity indices exhibit very similar behaviors, in particular a sen-

sitivity to image sharpness in a strong sense, that is, by oppo-

sition to several causes of the loss of details in an image (not

only blur, but also noise, aliasing, ringing). Hence, consid-

ering the Sharpness Index instead of GPC opens interesting
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Fig. 2. Blind deconvolution of Lena image. Selecting the separa-

ble symmetric 21× 21 kernel k that maximizes the Sharpness Index

of k ⋆ u (u being the original Lena image, bottom left) results in a

sharper image (bottom right) that reveal some details of the original

image, while keeping noise and ringing at an acceptable level.

perspectives, both from a theoretical viewpoint (the explicit

formulas will probably ease further analyses) and as concerns

applications (in particular image restoration), for which com-

putation time and estimation errors are no more a limitation.
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