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ABSTRACT

In this paper, we are interested in the mathematical analysis
of the micro-textures that have the property to be perceptu-
ally invariant under the randomization of the phases of their
Fourier Transform. We propose a compact representation of
these textures by considering a special instance of them: the
one that has identically null phases, and we call it “texton”.
We show that this texton has many interesting properties, and
in particular it is concentrated around the spatial origin. It ap-
pears to be a simple and useful tool for texture analysis and
texture synthesis, and its definition can be extended to the case
of color micro-textures.

Index Terms— random phase texture, Gaussian random
field, texture synthesis, texture analysis

1. INTRODUCTION

Texture images may have very different perceptual or statisti-
cal properties, and we will choose here to follow the discus-
sion on textures as it was proposed in the paper of Galerne,
Gousseau and Morel [1]. From their viewpoint, the set of all
textures can roughly be divided into two classes: the macro-
textures and the micro-textures. The macro-textures can be
described as images containing visual objects spatially orga-
nized in a regular way (like a brick wall for instance). On the
contrary, micro-textures do not contain well-identified visual
objects, and they are characterized by the property of being
perceptually invariant under the randomization of the phases
of their Fourier Transform. This is not the case of macro-
textures because changing the phases completely destroys the
“objects” present in the image. Among all possible values for
the phase field, we will study here a particular one: the iden-
tically null phase field. We will show that this simple choice
has many interesting properties both for the analysis and for
the synthesis of textures. The image obtained by setting to
zero all the phases of an input micro-texture will be called the
texton of the micro-texture. We will see that this image is a
compact representation of the texture and that it moreover has
the two fundamental characteristics of textures described by
Julesz ([2], [3]): it is related to the second-order statistics of
the texture, and it has an elementary shape that characterizes
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the texture. This is the reason why we use the word texton
introduced by Julesz.

2. DEFINITION AND PROPERTIES

The images we will consider are defined on a discrete
rectangular domain Ω of size M × N , that is given by
Ω = IM × IN where for n integer, In is the discrete interval
[−n−1

2 , . . . , n−1
2 ]∩Z when n is odd, and [−n2 , . . . ,

n
2 −1]∩Z

when n is even. For a discrete grey-level image u : Ω → R,
we will denote by û its discrete Fourier Transform. The
image u can also be extended by periodicity to a function
defined on Z2 by setting for all y ∈ Z2, u(y) = u(y1, y2) =
u(y1(modM), y2(modN)). In particular, this allows us
to define the (periodic) translation of an image u by a vec-
tor y, denoted by τy(u)(.) = u(y + .). In the sequel, we
will also use the following notations: if x = (x1, x2) and
ξ = (ξ1, ξ2) are two points in Ω, we will define and denote
their discrete inner product by 〈x, ξ〉 = 1

M x1ξ1 + 1
N x2ξ2, so

that the discrete Fourier Transform of u is simply given by
û(ξ) =

∑
x∈Ω u(x)e−2iπ〈x,ξ〉.

We now introduce the texton of an image u by the follow-
ing

Definition 1 (Texton of an image). The texton of an image
u : Ω → R is the unique image T (u) : Ω → R that has the
same Fourier amplitude as u, the same mean value as u and
that has identically null phases (except maybe in 0). In other
words, the texton T (u) is defined in the Fourier domain by

∀ξ ∈ Ω, ξ 6= 0, T̂ (u)(ξ) = |û(ξ)| and T̂ (u)(0) = û(0)
(1)

and, in an equivalent way, in the spatial domain by

∀x ∈ Ω, T (u)(x) =
1

MN
û(0)+

1

MN

∑
ξ∈Ω,ξ 6=0

|û(ξ)|e2iπ〈x,ξ〉.

(2)

2.1. Elementary properties

The texton T (u) of an image u satisfies many properties. In
particular:

1. For any image u, T (u) is a real and symmetric image,
that is T (u)(−x) = T (u)(x) ∈ R for all x ∈ Ω.



2. T (T (u)) = T (u), meaning that T (u) is its own texton.

3. The operator T is 1-Lipschitz for the L2 norm: if u and
v are two images defined on Ω, then

‖ T (u)− T (v) ‖2≤‖ u− v ‖2 .

4. The texton is translation invariant: T (τy(u)) = T (u)
for all y ∈ Ω.

5. For any image u on Ω, and for any real numbers α and
β, we have

T (αu+ β) = |α|T (u) + (α− |α|)u+ β,

where u is the mean value of u on Ω.

6. For any images u and k defined on Ω, T (k ∗ u) =
T (k) ∗ T (u), where ∗ is the periodic convolution oper-
ator on Ω. In particular, if k is a symmetric convolution
kernel having a positive discrete Fourier Transform (a
Gaussian kernel for instance), then T (k∗u) = k∗T (u).

2.2. Properties of concentration

The texton T (u) also satisfies some properties of spatial con-
centration around 0. This can be clearly observed on texture
images, and it can be mathematically explained by the fol-
lowing results. The first result is that if u is an image defined
on Ω that has a positive mean value, then T (u) is the unique
solution of the following problem of optimization: find

v : Ω→ R that maximizes v(0) under the constraint |v̂| = |û|.

Moreover, by the triangular inequality, the texton T (u)
reaches its maximum value in x = 0. It can also be shown
that the texton T (u) is, among all the images having the same
Fourier amplitude as u, the one that optimizes any even-order
derivative at 0. Such a derivative is given by

∂2m+2nT (u)

∂2mx1∂2nx2
(0) =

(−4π2)m+n

M2m+1N2n+1

∑
ξ∈Ω

ξ2m
1 ξ2n

2 |û(ξ)|.

Notice that all odd-order derivatives are equal to zero at 0
because of the symmetry of the texton.

The second mathematical result is about the regularity of
the Fourier transform of the texton. Indeed, it can be shown
that if u is an image with positive mean value (if this assump-
tion is not satisfied, just change u into −u), the texton T (u)
minimizes, among all images v having the same Fourier am-
plitude as u, any Lp-norm (p > 0) of the discrete (periodic)
gradient of the Fourier Transform, that is given by

‖ ∇v̂ ‖pp =
∑

ξ=(ξ1,ξ2)∈Ω

(
|v̂(ξ1 + 1, ξ2)− v̂(ξ1, ξ2)|p

+|v̂(ξ1, ξ2 + 1)− v̂(ξ1, ξ2)|p
)
.

In particular, when p = 2, one can go back to the spa-
tial domain by Parseval Theorem, and this then implies that
the texton minimizes, under the constraint |v̂| = |û|, the fol-
lowing functional (which can be seen as a measure of spatial
concentration around 0):

E(v) =
∑

(x1,x2)∈Ω

(
sin2 π

M
x1 + sin2 π

N
x2

)
v(x1, x2)2.

2.3. Gaussian textures

The set of Gaussian textures is a large class of the set of all
micro-textures. Among them, the periodic stationary Gaus-
sian textures are particularly well described in the Fourier do-
main. Indeed, they are characterized by the following law: the
coefficients of the Fourier Transform on a half-domain Ω+

are independent complex Gaussian random variables. This
is equivalent to say that, on Ω+, the phases are i.i.d. uni-
form on [0, 2π) and the amplitudes are independent following
Rayleigh distributions. These Gaussian textures can be seen
as the asymptotic limit of the so-called spot noise models of
textures (introduced by van Wijk [4]). In the sequel, they will
be denoted by ADSN (Asymptotic Discrete Spot Noise, fol-
lowing the term used in [1]). An ADSN texture can be written
as U = h ∗W , where h is an image with mean value zero,
and W is a white noise. The texton of U is then given by
T (U) = T (h) ∗ T (W ). The analysis of the texton of such
a texture is thus equivalent to the computation of the texton
of a white noise image. Such a computation can be explicitly
performed, and one can show that T (W ) is asymptotically
“close” to a Dirac mass located in 0. More precisely, we have

Proposition 1. Let W be a white noise image, that is, the
W (x) are i.i.d. following a reduced centered Gaussian distri-
bution). Then, T (W ) is a random image that has the follow-
ing first and second moments:

• E(T (W )(0)) ∼
MN→+∞

√
π

2

√
MN

and E(T (W )(x)) = −
√
π

2
1√
MN

for x ∈ Ω, x 6= 0.

• Var(T (W )(0)) ∼
MN→+∞

4−π
2

and Var(T (W )(x)) ∼
MN→+∞

4−π
4 for x ∈ Ω, x 6= 0.

• Cov(T (W )(x), T (W )(y)) = π−2
MN for x 6= y

This shows in which sense we can say that T (W ) is asymptot-
ically close to a Dirac mass located in 0 when NM → +∞.

3. APPLICATIONS

3.1. Texture Analysis

A first application of the texton is for the purpose of tex-
ture analysis. Indeed, the texton is a “compact summary” of
the properties of the texture: characteristic size, anisotropy,



etc. This comes from the fact that, thanks to the prod-
uct/convolution property of the Fourier Transform, we have
that Cu = 1

MN T (u)∗T (u) where Cu is the empirical covari-
ance of the image (assumed here to have a zero mean-value).
As a consequence of this, the texton is much less blurry
than the covariance (because this latter is obtained by an
auto-convolution of the texton), and it permits to describe
the second-order statistics of the texture in the same space
as the texture itself (that is, without using square intensities).
These properties make the texton particularly interesting for
the statistical analysis of textures. This is illustrated on Fig.
1, where we compare the texton and the covariance of a med-
ical image (calcaneum bone, from the database used in [5] in
relation to osteoporosis).

Fig. 1. Top: left, the original image (calcaneum bone) and
on the right, its periodic component obtained by the peri-
odic+smooth decomposition [6]. Middle: left, the empirical
periodic covariance of this image, and on the right, the texton.
This latter is clearly less blurry and more concentrated than
the covariance. Bottom: intensities along the middle horizon-
tal line (y = 0) of the covariance image (on the left) and of
the texton image (on the right).

3.2. Texture synthesis

A second application of the texton is for the purpose of tex-
ture synthesis. We assume here again that the image has
mean value zero (this can always be achieved by subtract-
ing the mean intensity value). We have seen that the texton
is very concentrated around 0 and it has very few high inten-
sity values far from the origin. Consequently, we can perform
a hard-thresholding of the texton and thus obtain a very near
image (in the L2 sense) that has a compact support. To syn-
thesize a texture of any size, we then simply extend by the
value 0 this compactly-supported texton approximation, and
then randomize the phases of the Fourier Transform. This is
illustrated on Fig. 2.

Fig. 2. Top left: the original texture image u (some wall ren-
dering). Top right: a sample of the phase randomization per-
formed on u. Middle left: the texton T (u) of the image u. It is
clearly concentrated around 0. Middle right: the texton T (u)
after a hard-thresholding. We obtain a compactly supported
image that can be extended by 0 outside the image domain.
It then allows us to synthesize, by phase randomization, tex-
ture images of any size. Bottom: a sample whose size is the
double of the original texture image.



3.3. The case of color textures

Let us also mention that the concept of texton can be extended
to color textures. In that case, to define the texton properly
(that is without creating any color artifact), we must not put
an identically null phase for the three channels, but we must
instead subtract the same phase (the one of the luminance for
instance) to all of them. This has to be done in order to pre-
serve the phase difference between the three channels. It can
indeed be shown that this definition is the only possible one
if we want to preserve the spectrum of all colors. More pre-
cisely, we have the following

Proposition 2. Let u = (ur, ug, ub) be a color image defined
on Ω and with values in R3. For any λ = (λr, λg, λb) ∈ R3,
we denote by λ · u the real-valued image defined on Ω by
λ · u(x) = λrur(x) + λgug(x) + λbub(x).

1. If T(u) is a color texton associated to u, then the con-
dition of the conservation of all Fourier amplitudes,
that can be written

∀λ ∈ R3,∀ξ ∈ Ω,
∣∣∣ ̂λ ·T(u)(ξ)

∣∣∣ =
∣∣∣λ̂ · u(ξ)

∣∣∣ , (3)

is satisfied if and only if there exists a phase field φ
defined on Ω, satisfying φ(−ξ) = −φ(ξ) for all ξ ∈ Ω,
and such that

∀k ∈ {r, g, b}, T̂(u)k(ξ) = ûk(ξ)e−iφ(ξ). (4)

2. Let α = (αr, αg, αb) ∈ R3, and let φα be the phase
field of the Fourier Transform of α · u. Then, if we
denote by Tα(u) the color texton of u obtained by sub-
tracting the phase φα to the three channels (that means
by taking φ = φα in Equation (4)), we get

T (α · u) = α · Tα(u),

where T (α · u) is the texton of the real-valued image
α · u, as defined by Definition 1.

An example of the color texton obtained from a color im-
age, using its standard luminance (that is, α = (1/3, 1/2, 1/6))
is shown on Fig. 3.
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