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Abstract. Image restoration plays an important role in image processing, and

numerous approaches have been proposed to tackle this problem. This paper
presents a modified model for image restoration, that is based on a combina-
tion of Total Variation and Dictionary approaches. Since the well-known TV
regularization is non-differentiable, the proposed method utilizes its dual for-

mulation instead of its approximation in order to exactly preserve its properties.
The data-fidelity term combines the one commonly used in image restoration
and a wavelet thresholding based term. Then, the resulting optimization prob-
lem is solved via a first-order primal-dual algorithm. Numerical experiments

demonstrate the good performance of the proposed model. In a last variant,
we replace the classical TV by the nonlocal TV regularization, which results
in a much higher quality of restoration.

1. Introduction

A classical inverse problem in modern imaging sciences is image restoration, the
aim of which is to recover an ideal image u ∈ L2(Ω) from a degraded observation
g ∈ L2(Ω), knowing that

(1) g = Au+ b,

where Ω is a connected bounded open subset of R2 with compact Lipschitz boundary,
and b ∈ L2(Ω) is a realization of a white Gaussian noise with standard deviation σ.
Here A is a known linear operator from L2(Ω) to L2(Ω), that depends on the con-
sidered inverse problem: A = I (identity) for denoising, A is convolution operator
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for deblurring, and A is the canonical projection on known pixels in the case of
inpainting.

Image restoration is an ill-posed problem. Directly solving (1) may not yield
meaningful solutions. To overcome this difficulty, many regularization methods
have been proposed in the literature, e.g. Tikhonov’s regularization [45], the Total
Variation (TV) criterion [41], non-local graph regularization [40], and wavelet-based
sparsity assumptions [23]. In this paper, we mainly focus on the TV approach, first
proposed by Rudin, Osher and Fatemi [41]:

(2) min
u

TV (u) +
λ

2
‖Au− g‖22.

Here the Total Variation of an image u ∈ L2(Ω) is defined by

TV (u) =

∫

Ω

|Du|,

the gradient Du being understood in the distribution sense.
TV regularization has been extensively used in image processing applications,

for it is a simple term that manages to preserve sharp features in images. However,
due to the non-differentiability of the TV operator, the functional (2) is difficult to
minimize. In the past decades, many methods have been developed to address this
problem. To name a few, let us mention variable splitting methods [1, 28, 42, 46],
the alternating direction method of multipliers (ADMM) [26, 39], dual methods
[13] and primal-dual methods [15, 16, 52]. Some of these methods have strong
connections, which are studied in [42, 44].

Besides TV regularization, another famous approach for image restoration is the
wavelet-based method. Since wavelet bases can provide a multiscale and sparse rep-
resentation for images (see [21]), they have been widely adopted in image restoration
[22, 24, 31, 32, 33] after their introduction by Donoho and Johnstone [23]. Later,
Chambolle et al. [14] and Steidl et al. [43] established the relationship between
wavelet-based and TV-based methods. Eventually, by combining TV and wavelet
methods, Candes and Guo [12] and Malgouyres [32] proposed a hybrid approach for
image restoration. The optimization model in [32] is

(3)

{

min
u

TV (u)

s.t. ‖Au− g‖D,∞ ≤ τ ,

where D ⊂ L2(Ω) is a finite dictionary, the parameter τ > 0 depends on the
noise level, and ‖u‖D,∞ = sup

Ψ∈D
|〈u,Ψ〉|. As pointed out by Malgouyres in [32],

taking the (infinite) dictionary D =
{

w ∈ L2(Ω), ‖w‖2 = 1
}

would reduce (3) to
the ROF model. In the same paper, he showed that when the dictionary contains
wavelet/wavelet packet bases and their opposites, the new model preserves textures
better than the ROF model.

The choice of the dictionary is very important, since a carefully selected dic-
tionary can improve the quality of restoration. In order to obtain optimal results
through (3), Zeng and Malgouyres [49] investigated twelve Gabor dictionaries for
(3), and the experimental results clearly demonstrated that the choice of the dic-
tionary deeply affects the performance of this model. Later, Zeng and Ng [48, 50]
provided a theoretical study on the model (3) and the choice of the dictionary. They
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proved the existence of solutions of (3), and showed that the dictionary should repre-
sent sparsely the curvatures of the ideal image in order to achieve a better denoising
performance.

The minimization problem (3) is evidently a rather difficult task, and it has
been rarely addressed in the literature. In order to approximate the solution of (3),
Lintner and Malgouyres [29] proposed the following LM model:

(4)











min
u

TVβ(u)
2 :=

(
∫

Ω

ϕβ (|∇u|) + β〈u,~1〉2
)2

s.t. ∀Ψ ∈ D, 〈Au− g,Ψ〉 ≤ τ

where ~1 denotes a constant vector with all coordinates equal to 1, β is a small

positive number, and ϕβ (t) =
√

t2 + β2. As the objective function in (4) is differ-
entiable, convex and coercive, a dual Uzawa method was used in [29] to solve this
optimization task. Note that in (4), as well as in all this paper, the dictionary D is
assumed to be symmetric, which means that

(5) ∀ψ ∈ D, −ψ ∈ D.
Hence, the constraints in (4) could as well be written | 〈Au− g,Ψ〉 | ≤ τ .

Although improving the quality of the recovered image compared to ROF Model,
the approach proposed in (4) still has some drawbacks. First, the use of TVβ(u)

2

to replace TV (u) causes a well-known unpleasant smear effect; second, the term

β〈u,~1〉 introduced in (4) does make the objective function coercive (this is critical
to make the Uzawa method work), but it also imposes an extra assumption on the
mean value of the ideal image u which might affect the quality of the restored image;
third, the numerical scheme adopted in [29] may be unstable in some situations,
and imposes a careful (small enough) choice of the gradient-ascent time step used
in Uzawa method.

The goal of this paper is to fix these issues. We propose a modified model which
integrates the ROF and the dictionary model (3) seamlessly. Moreover, inspired
by the recent works of Chambolle and Pock [15], we give two stable and effective
algorithms to solve the associated optimization problem, one for the general case
and one in the special case of image denoising (A = I).

The outline of the paper is as follows. In Section 2, we introduce the proposed
modified model and study some basic properties. In Section 3, some notations and
preliminaries (especially in the discrete settings) are presented, which will be used
in the rest of the paper. In Section 4, we briefly review Chambolle-Pock Algo-
rithm, then we describe how it can be applied to the proposed model (Section 5).
We propose two algorithms that solve the corresponding unconstrained and con-
strained models respectively. In Section 6, we report various numerical results to
demonstrate the good performance of the proposed approach. Finally, we briefly
investigate in Section 7 an interesting variant of the proposed model, where the
TV regularization term is replaced by the nonlocal TV [27], before we conclude in
Section 8.

2. Proposed model

This section presents the primal formulation of the proposed model and a study
of its basic properties. In Section 5, we will solve the proposed model in its primal-
dual formulation to exactly preserve its properties.



4 Liyan Ma, Lionel Moisan, Jian Yu and Tieyong Zeng

2.1. Model. Using TV regularization rather than the TVβ(u)
2 term, the mini-

mization problem (4) becomes

(6)

{

min
u

TV (u)

s.t. ∀Ψ ∈ D, 〈Au− g,Ψ〉 − τ ≤ 0.

From a statistical point of view, since we are dealing with additive white Gaussian
noise, the probabilistic formulation of (1) is

p (g|u) =
∏

x∈Ω

1√
2πσ

exp

(

− (Au(x)− g(x))2

2σ2

)

.

The corresponding energy function, − log p(g|u), is, up to a constant additive and
multiplicative term, the data-fidelity term ‖Au−g‖2 of the ROF model. We propose
to add this natural term to the energy used in (6) in order to control the coercivity
and to enforce the data-fidelity constraint on the restored image. Thus, we obtain
a modified model defined by the primal formulation

(7)







min
u

TV (u) +
λ

2
‖Au− g‖22

s.t. ∀Ψ ∈ D, 〈Au− g,Ψ〉 − τ ≤ 0.

Both parameters λ and τ control the regularization induced by the model, but in
different ways. For fixed τ , a small value of λ makes the restored image less noisy,
but may provide a solution that is too smooth; on the contrary, a large value of λ
tends to produce sharper but also more noisy results. We could probably use an
estimation of the noise level to automatically set the value of λ (as it is done in
some other works), but this is beyond the scope of this paper. In this work, we
decide to tune it empirically.

Model (7) seamlessly integrates the ROF model and the original TV dictionary
model. Indeed, if λ = 0, it is exactly (3); if the dictionary is empty, then it reduces
to the classical ROF model. We also avoid the extra assumption needed in (4).
Experiments will later demonstrate that the least-squares term is very important
to stabilize the algorithm and to provide a high-quality restored image.

2.2. Existence of a solution. We here prove the existence of a solution for the
proposed model (7) in the continuous settings. First, we recall the definition of the
space of functions with bounded variation (BV), which plays an important role in
image modeling. Note that a rather complete discussion on this topic can be found
in [2] and [3].

Definition 2.1. The space of functions of bounded variation is

BV (Ω) =

{

u ∈ L1 (Ω) ;

∫

Ω

|Du| <∞
}

,

where

∫

Ω

|Du| = sup

{
∫

Ω

u divϕdx; ϕ = (ϕ1, ϕ2) ∈ C∞
0 (Ω)

2
, ‖ϕ‖L∞(Ω) ≤ 1

}

.

Endowed with the norm ‖u‖BV =
∫

Ω
|u|+

∫

Ω
|Du|, BV (Ω) is a Banach space, and

TV (·) is a proper convex lower semi-continuous functional from L2 (Ω) to (−∞,+∞]
(see Lemma 8 in [50]).
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Proposition 1. Assume that Ω is a connected bounded open subset of R
2 with

compact Lipschitz boundary. Assume that the set

(8) Sτ := {u ∈ L2(Ω); ‖Au− g‖2 < τ}.
is nonempty and A~1 = ~1. If D is a finite symmetric subset of the closed unit ball
of L2(Ω), then for any λ ≥ 0, Problem (7) admits at least one solution.

Proof. • We first consider the (simpler) case λ > 0. The ROF functional

(9) u 7→ TV (u) +
λ

2
‖Au− g‖22

is convex, closed (proper and lower semicontinuous), and coercive (because A~1 = ~1,
see [18]) on L2(Ω), so it admits a minimizer (see [25] p.35). Now let us consider the
feasible set

(10) Cτ =
{

u ∈ L2(Ω); ∀Ψ ∈ D, 〈Au− g,Ψ〉 ≤ τ
}

.

Obviously, Cτ is a nonempty closed convex set, and we can rewrite (7) as

min
u

TV (u) +
λ

2
‖Au− g‖22 + δCτ

(u),

where δCτ
(u) is the indicator function of Cτ (which takes the value 0 if u ∈ Cτ ,

and the value +∞ otherwise). The functional above is, like the ROF functional (9),
convex, closed, and coercive on L2(Ω). Therefore, (7) admits at least one solution.

• Now let us consider the case λ = 0. In [50], Zeng and Ng proved that there
exists a solution of (7) when A = I. Here, we prove that this remains true when A
is a linear operator such that Sτ is nonempty. Denote as in (10) by Cτ the feasible
set of (7), and take v∗ ∈ Sτ . As C∞

0 is dense in L2(Ω) and A is bounded, we can
choose a v0 ∈ C∞

0 such that ‖A(v0 − v∗)‖2 < τ − ‖Av∗ − g‖2 . Then we have

‖Av0 − g‖2 ≤ ‖A(v0 − v∗)‖2 + ‖Av∗ − g‖2 < τ

and by Cauchy-Schwarz inequality, 〈Av0 − g,Ψ〉 < τ for any Ψ ∈ D (because
‖Ψ‖2 ≤ 1). Hence v0 ∈ int(Cτ ) and since Ω is bounded, we also have TV (v0) < +∞.
Hence, Slater condition [47] holds and there exists a minimizing sequence (uj) in
Cτ such that limj→∞ TV (uj) = M , where M is the minimum value in (7) (re-
call that λ = 0 here). Note that we can assume without loss of generality that
TV (uj) ≤M + 1 for all j.

Denote by mΩ (f) the mean of f on Ω. Since Ω is a connected bounded open
subset of R2 with compact Lipschitz boundary, it is an extension domain (using
Prop. 3.21 of [2]) and by Poincaré inequality (see [2], Remark 3.50]), there exists a
constant c0 > 0 such that

(11) ∀j, ‖uj −mΩ (uj)‖L2(Ω) ≤ c0 · TV (uj) ≤ c0(M + 1).

From (11), it is easy to deduce that ‖uj −mΩ (uj)‖BV is bounded. As every

bounded sequence in BV(Ω) is relatively compact in L1(Ω) (see [3]), there exists

a subsequence
(

u
(1)
j −mΩ

(

u
(1)
j

))

which converges to some w∗ ∈ BV(Ω) both in

L1(Ω), and weakly in L2(Ω) (thanks to (11)). By lower semicontinuity of TV with
respect to the L1(Ω) topology (see [3]), one obtains

TV (w∗) ≤ lim inf
j→∞

TV
(

u
(1)
j −mΩ

(

u
(1)
j

))

= lim inf
j→∞

TV
(

u
(1)
j

)

=M.



6 Liyan Ma, Lionel Moisan, Jian Yu and Tieyong Zeng

Now let us prove that for some constant c, the image w∗ + c is in the feasible set

Cτ . As u
(1)
j ∈ Cτ , we know that for any Ψ ∈ D, we have

(12)
〈

u
(1)
j −mΩ

(

u
(1)
j

)

, A∗Ψ
〉

+mΩ

(

u
(1)
j

)

∫

Ω

A∗Ψ ≤ τ + 〈g,Ψ〉 .

If
∫

Ω
A∗Ψ = 0 for any Ψ ∈ D, then taking the limit in (12) yields

〈w∗, A∗Ψ〉 ≤ τ + 〈g,Ψ〉 ,
so that w∗ is in the feasible set and it is a solution of (7).

Otherwise, we have α :=
∫

Ω
A∗Ψ0 6= 0 for some Ψ0 ∈ D, and using (12) with

Ψ = εΨ0 yields, thanks to (11),

∀j, ∀ε ∈ {−1, 1}, εα ·mΩ

(

u
(1)
j

)

≤ τ + 〈g, εΨ0〉+ c0(M + 1)‖A∗‖2,

which proves that mΩ

(

u
(1)
j

)

is bounded. Hence, we can choose a subsequence

u
(2)
j such that mΩ

(

u
(2)
j

)

converges to some constant c. Taking the limit for this

subsequence in (12), we obtain

∀Ψ ∈ D, 〈w∗, A∗Ψ〉+ c

∫

Ω

A∗Ψ ≤ τ + 〈g,Ψ〉 ,

so that w∗+c belongs to Cτ (〈A(w∗ + c)− g,Ψ〉 ≤ τ) and it is a solution of (7).

3. Notations and Preliminaries

Now let us go to the discrete settings. Before giving details of the algorithms,
we need to introduce some notations and preliminaries which will be used in the
following sections. In order to simplify the notations, we here focus on gray-level
images. Corresponding notions for color images, that will be considered in the
experiments, can be found in [9].

3.1. Notations. Discrete images will be represented by elements of the Euclidean
space E = R

m×n. Let 〈·, ·〉 denote the standard inner product, and ‖·‖p be the

standard lp-norm. The transpose (dual operator) A∗ of a linear transform A is
defined as usual by 〈Au, g〉 = 〈u,A∗g〉. I denotes the identity matrix.

3.1.1. The discrete gradient and divergence operators. Denote U = E × E. The

gradient operator is a map ∇ : E → U defined by ∇u = (∂xu, ∂yu)
T
as indicated

below. The adjoint of the gradient (∇∗) is the opposite of the divergence operator
(−div), so that for any z = (p q)T ∈ U , div(z) = −(∂∗xp + ∂∗yq). The maximum

norm of z is defined by ‖z‖∞ = max
i,j

√

p2i,j + q2i,j .

We shall consider two different boundary conditions for the discretization of ∇
and div = −∇∗, namely:

1) Symmetric Boundary Conditions. The discrete gradient operators ∂x
and ∂y are defined as

(∂xu)i,j =

{

ui+1,j − ui,j if 1 ≤ i < m,
0 otherwise,

and

(∂yu)i,j =

{

ui,j+1 − ui,j if 1 ≤ j < n,
0 otherwise.
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The discrete operators ∂∗x and ∂∗y are defined accordingly as

(∂∗xp)i,j =







pi,j if i = 1,
pi,j − pi−1,j if 1 < i < m,
−pi−1,j if i = m,

and

(∂∗yq)i,j =







qi,j if j = 1,
qi,j − qi,j−1 if 1 < j < n,
−qi,j−1 if j = n.

2) Periodic Boundary Conditions. In that case, all operators are defined us-
ing a circular convention for the coordinates, that is, m+1 := 1 for the i coordinate,
and n+ 1 := 1 for the j coordinate:

(∂xu)i,j =

{

ui+1,j − ui,j if 1 ≤ i < m,
u1,j − ui,j if i = m,

(∂yu)i,j =

{

ui,j+1 − ui,j if 1 ≤ j < n,
ui,1 − ui,j if j = n.

(∂∗xp)i,j =

{

pi,j − pm,j if i = 1,
pi,j − pi−1,j if 1 < i ≤ m,

(∂∗yq)i,j =

{

qi,j − qi,n if j = 1,
qi,j − qi,j−1 if 1 < j ≤ m.

3.2. Proximal operators. The proximal operator, introduced by Moreau [36,
37], is an important concept in convex optimization and has been widely used
recently [15, 20, 35].

Definition 3.1 (Proximal Operator). Let ϕ be a convex, proper and closed (hence
lower semi-continuous) function on R

d. The proximal operator of ϕ is defined by

∀x ∈ R
d, proxϕ(x) = argmin

y
ϕ(y) +

1

2
‖x− y‖22 .

We recall the following useful result for the calculation of proxf+δC , that plays
a key role in solving the constrained formulation of the model we propose.

Proposition 2. (see [19], Proposition 2.1) Let f : R → R ∪ {+∞} be a convex,
proper and closed function, and let C be a closed convex subset of R such that
C ∩ domf 6= ∅. Then proxf+δC = PC ◦ proxf , where PC is the projection on C.

3.3. The primal-dual problem. Most recent papers in the literature [13, 16, 52]
use the dual or the primal-dual formulation for TV-related convex optimization
problems, because they can reach better performances than the primal formulation
for this kind of non-differentiable convex functionals. This section shortly reviews
the primal-dual framework.

Let us consider the primal minimization problem

(13) min
u
F (Ku) +G(u),

where K is a continuous linear map from E = R
m×n to U = E × E with norm

‖K‖2 = max {‖Ku‖2 ; u ∈ E, ‖u‖2 ≤ 1} ,
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and F : U → [0,+∞) and G : E → [0,+∞) are proper, convex, lower semi-
continuous functions. The convex conjugate F ∗ of F [6] is defined by

∀p ∈ U, F ∗(p) = sup
w∈U

〈p, w〉 − F (w).

Since F ∗∗ = F , we have

∀u ∈ E, F (Ku) = sup
p∈U

〈p,Ku〉 − F ∗(p).

Thus the saddle-point optimization problem or the primal-dual formulation of (13)
can be written

(14) min
u∈E

max
p∈U

〈Ku, p〉+G(u)− F ∗(p).

4. Review of Chambolle-Pock algorithm

In this section, we briefly review the first-order primal-dual algorithm proposed
by Chambolle and Pock [15]. This algorithm is designed to solve the convex opti-
mization problem (14). Let (û, p̂) ∈ E × U be a solution of the problem (14), then
we have the optimality conditions:

{

Kû ∈ ∂F ∗(p̂),
−K∗p̂ ∈ ∂G(û).

Assuming that proxF∗ and proxG are easily computed, Chambolle and Pock solve
the optimization problem (14) with respect to u and p respectively. To accelerate
the algorithm, they use a multi-step scheme adopted in many algorithms [4, 38] to
replace the classical one-step scheme. Algorithm 1 below summarizes the general
scheme proposed by Chambolle and Pock [15], when the parameter θ they introduce
is set to 1.

Algorithm 1 General scheme of Chambolle-Pock Algorithm

Initialization: ū0 = u0, p = 0, tp > 0, tu > 0, and tptu ‖K‖22 < 1.
Output: uN .
Iterate for n = 0, 1, . . . N − 1:
Step 1. pn+1 = proxtp·F∗ (pn + tp ·Kūn)
Step 2. un+1 = proxtu·G

(

un − tu ·K∗pn+1
)

Step 3. ūn+1 = 2un+1 − un

Step 3 in Algorithm 1 can be seen as an approximate intergradient step. The
authors proved that Algorithm 1 converges at the rate O(1/n) on the primal iterates.

Remark 1. We only presented here the basic algorithmic framework proposed by
Chambolle and Pock in [15]. Their paper also describes some variants which can
achieve O(1/n2) convergence under certain conditions.

5. Application of the Chambolle-Pock algorithm for our model

In this section, after providing the discrete form of the proposed model, we
propose two algorithms for solving it. One solves the corresponding unconstrained
formulation of the model, while the other solves the constrained formulation.



A Stable Method Solving the Total Variation Dictionary Model with L∞ Constraints 9

5.1. Discrete form. The discrete TV is defined as TV (u) = ‖∇u‖1, that is,
TV (u) = F (Ku) with K = ∇ and F (·) = ‖·‖1 using the previous notations.
Following the general scheme of Section 4, we obtain

TV (u) = sup
p∈U

〈∇u, p〉 − F ∗(p) = sup
p∈U

−〈u, div p〉 − F ∗(p),

where F ∗ = δP is the indicator function of P = {p ∈ U ; ‖p‖∞ ≤ 1}. Rewriting the
TV term of (7) in its dual formulation, the primal-dual formulation of the proposed
model becomes

(15)







min
u

max
p

−〈u, div p〉+ λ
2 ‖Au− g‖22 − δP (p)

s.t. ∀Ψ ∈ D, 〈Au− g,Ψ〉 − τ ≤ 0

We now present two algorithms to solve this optimization problem.

5.2. Algorithm for solving the unconstrained formulation. We first de-
rive an unconstrained formulation of (15), then give an algorithm to solve it. Using
the method of Lagrange multipliers, we can rewrite (15) as

(16)

min
u

max
p,λD

L (u, p, λD) = −〈u, div p〉+ λ

2
‖Au− g‖22 − δP (p)

+
∑

ψ∈D

(

λΨ (〈Au− g,Ψ〉 − τ)− δQ(λΨ)
)

,

where λD = (λΨ)Ψ∈D ∈ R
D is the (finite dimensional) vector of Lagrange multipliers

associated to the constraints 〈Au− g,Ψ〉 − τ ≤ 0, and Q = {q ∈ R; q ≥ 0}.
Obviously, the objective function in (16) is convex, and this is a primal-dual

problem (the primal variable is u, the dual variable is (p, λD)). The form (14) can
be obtained with Ku = (∇u, (〈Au,Ψ〉)ψ∈D), G(u) =

λ
2 ‖Au− g‖2 and F ∗(p, λD) =

δP (p) +
∑

Ψ∈D δQ(λΨ) + λΨ(〈g,Ψ〉+ τ). Thus, applying Algorithm 1 to (16) yields
the following steps:

(17)































pn+1 = argmin
p

−L (ūn, p, λnD) +
1

2tp
‖p− pn‖22 ,

λD
n+1 = argmin

λD

−L (ūn, pn, λD) +
1

2tλ
‖λD − λnD‖

2
2 ,

un+1 = argmin
u
L
(

u, pn+1, λn+1
D

)

+ 1
2tu

‖u− un‖22 .

ūn+1 = 2un+1 − un.

Each sub-problem is solved as follows:

A. Update p: This sub-optimization problem is equivalent to

min
p

−〈∇ūn, p〉+ δP (p) +
1

2tp
‖p− pn‖22 .

Let h = δP , then the update rule for p is

pn+1 = prox tp·h(p
n + tp · ∇ūn) =

pn + tp · ∇un
max(1, |pn + tp · ∇ūn|)

.

B. Update λD: Because of the separable structure of the second optimization
problem in (17), we can update individually each component λΨ of λD by solving
the corresponding minimization problem

λn+1
Ψ = argmin

λΨ

−λΨ (〈Aūn − g,Ψ〉 − τ) + δQ(λΨ) +
1

2tλ
(λΨ − λnΨ)

2
.
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Here h = δQ so the update rule for λΨ is

λΨ
n+1 = prox tλ·h

(

λnΨ + tλ · (〈Aūn − g,Ψ〉 − τ)
)

= max
(

λnΨ + tλ · (〈Aūn − g,Ψ〉 − τ) , 0
)

.

C. Update u: For this sub-problem, h = λ
2 ‖Au− g‖22, so the update rule for u is

(18) un+1 = prox tu·h (ũ) = (I + tuλA
∗A)−1(ũ+ tuλA

∗g),

where ũ = un− tu ·
(

−div pn+1 +A∗
∑

Ψ∈D

λΨΨ

)

. We use a multi-step procedure to

accelerate the convergence, which results in Algorithm 2 below.

The following theorem gives the convergence rate of Algorithm 2.

Theorem 5.1. Choose tu > 0, tλ > 0 and tp > 0 such that tλ = tp. Consider

the sequences {un}, {pn} and {λnD} generated by Algorithm 2. Let uN = 1
N

N
∑

n=1
un,

pN = 1
N

N
∑

n=1
pn, λD,N = 1

N

N
∑

n=1
λnD and the restricted primal-dual gap

(19) G (u, p, λD) = max
p′,λ′

D

L (u, p′, λ′D)−min
u′

L (u′, p, λD) .

If tptu is small enough, then there exists a constant C > 0 such that for all N ,

G (uN , pN , λD,N ) ≤ C

N
.

One can easily prove this result by following the proof of Theorem 1 in [15]. In
the present case, the operator K that permits to write (16) under the general form
(14) satisfies

‖Ku‖2 = ‖∇u‖2 +
∑

Ψ∈D

〈Au,Ψ〉2 ,

so that ‖K‖2 ≤ ‖∇‖2 + ‖A‖2‖D‖2 with ‖D‖2 = sup
‖u‖≤1

∑

Ψ∈D

〈u,Ψ〉2 and ‖∇‖2 ≤ 8

(see [13]). Thus, the announced property holds as soon as tptu(8+ ‖A‖2‖D‖2) < 1.

Algorithm 2 The proposed algorithm for the unconstrained model

Initialization: ū0 = u0, p = 0, λD = 0, tp, tλ, tu.
Output: uN .
Iterate for n = 0, 1, . . . N − 1:

Step 1. pn+1 =
pn + tp · ∇ūn

max(1, |pn + tp · ∇ūn|)

Step 2. ∀Ψ ∈ D, λn+1
Ψ = max

(

λnΨ + tλ · (〈Aūn − g,Ψ〉 − τ) , 0
)

Step 3. ũ = un − tu ·
(

−div pn+1 +A∗
∑

Ψ∈D λ
n+1
Ψ Ψ

)

Step 4. un+1 = (I + tuλA
∗A)−1(ũ+ tuλA

∗g)

Step 5. ūn+1 = 2un+1 − un
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5.3. Algorithm for solving the constrained formulation. In this subsec-
tion, we propose an algorithm to solve directly the constrained optimization problem
(15) instead of introducing the Lagrange multipliers (λΨ)Ψ∈D. Model (15) can be
written as

(20) min
u∈Eτ

max
p

−〈u, div p〉+ λ

2
‖Au− g‖22 − δP (p),

where Eτ = {u ∈ E; ∀Ψ ∈ D, 〈Au − g,Ψ〉 − τ ≤ 0}. Minimizing the right-hand
term of (20) with respect to u, we get the following sub-problem:

(21) min
u∈Eτ

−〈u, div p〉+ λ

2
‖Au− g‖22 .

It is equivalent to

(22) min
u∈E

−〈u, div p〉+ λ

2
‖Au− g‖22 + δEτ

(u).

With h(u) = λ
2 ‖Au− f‖22, the update rule for u writes

un+1 = proxh+δEτ

(

un − tu ·
(

−div pn+1
))

,

and using Proposition 2, we obtain

un+1 = PEτ

(

proxh
(

un − tu ·
(

−div pn+1
)))

.

Unfortunately, the projection PEτ
is not easy to compute when A is not the

identity matrix. This is why we propose to use this operator only for the denoising
case (A = I), which yields Algorithm 3 below. Note that in the case when D is
made of orthogonal vectors (e.g. an orthogonal wavelet basis) plus their opposites,
PEτ

can be computed by

PEτ
(u) = g +

∑

Ψ∈D

P[0,τ ] (〈u− g,Ψ〉)Ψ,

where P[0,τ ](t) = min(τ,max(0, t)).

Remark 2. There are many works about the projection onto a convex set. For ex-
ample, we could compute PEτ

by the method proposed in [7], but the computational
cost would be much higher than with Algorithm 2. This is why we systematically
use Algorithm 2 when A 6= I. When A = I, it is better to use Algorithm 3 since it
exactly enforces the constraints of the model at each iteration, while showing the
same convergence rate as Algorithm 2 (as will be shown on Fig. 3).

Algorithm 3 The proposed algorithm for the constrained model when A = I

Initialization: ū0 = u0, p = 0, tp, tu.
Output: uN .
Iterate for n = 0, 1, . . . N − 1:

Step 1. pn+1 =
pn + tp · ∇ūn

max (1, |pn + tp · ∇ūn|)
Step 2. ũ = un − tu ·

(

−div pn+1
)

Step 3. un+1 = PEτ

(

ũ+ tuλg

1 + tuλ

)

Step 4. ūn+1 = 2un+1 − un
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6. Applications and Experiments

In this section, we use the proposed algorithms in three image applications,
namely denoising, deblurring and simultaneous deblurring and inpainting. These
problems can be addressed with TV regularization (see, e.g., [1, 52] for deblurring,
[3] for inpainting, [17] for simultaneous deblurring and inpainting), hence we will
be able in each case to compare the performance of the ROF model (solved by
Algorithm 1), the LM model, and our model. For the LM model and our model, we
use a dictionary made of wavelet packets (see details below). Note that the ROF
model has a much lower computational cost since it does not involve wavelet packet
decomposition/reconstruction as in the two other models. Most of the experiments
we discuss are realized with the two gray-level images (with size 256× 256) shown
in Fig. 1.

Figure 1. Original images used for image restoration. The left
image is used for denoising, and the right one is used for deblurring
and inpainting. In both cases (as well as for the other images
considered later in Fig. 5), the pixel values are in the range [0, 255].

Designing a dictionary for a given class of images is still an open problem. There-
fore, in each case we used the dictionary obtained by the full wavelet packet decom-
position up to level four using the freeware Wavelab8501 running under MATLAB.
This choice seems to provide an acceptable representation for most images. The
choice of the wavelet filter also affects the performances of the model. A large
compact support can achieve better performance, because a large compact support
in ”time” allows more narrowness in “frequency”, which is usually more efficient
for denoising. However, a very large compact support would introduce a heavy
computational cost, so we chose the “sym8” filter to achieve a reasonable trade-off.

The peak signal-to-noise ratio (PSNR) was used to measure the quality of the
recovered images. It is defined (in dB) by

PSNR(û, u) = 10 log10
2552

1
256×256

∑

ij |ûij − uij |2
,

where û denotes the restored image and u is the ground-truth image. As a stop-
ping criterion we used the relative difference between two successive iterates of the

1This software is available on http://www-stat.stanford.edu/∼wavelab
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restoration scheme (RDS) which is defined by

RDS
(

un+1, un
)

=

∥

∥un+1 − un
∥

∥

2

‖un+1‖2
.

We stop the algorithm when RDS
(

un+1, un
)

< ε. We used ε = 10−6 for denoising,

and ε = 10−5 in all other experiments (which do not converge as fast as the denoising
case). When specified, the “number of iterations” or “CPU time” of an algorithm
means the number of iterations or the CPU time that was needed to drop the RDS
below the error tolerance ε.

It is not easy to tune the parameters for the LM-Uzawa algorithm. A steepest
gradient descent was used to compute the minimization for u in [29], with the bi-
section method to search a suitable time step at each iteration (it usually requires
about 30 sub-iterations to find the time step). We used the same algorithm, but
significantly accelerated the code to avoid unnecessarily repeated computations. We
observed that with this acceleration, the CPU time for one iteration was approxi-
mately the same for the LM-Uzawa and the proposed algorithms, but as we shall
see later the convergence of the LM-Uzawa algorithm remains significantly slower.

The choice of ρ0 (the initial time step for updating λD, see [29] for details) also
has a strong impact on the performance of the LM-Uzawa algorithm. Large ρ0
results in a good control of the constraints, but may also cause bad convergence
behavior. The authors pointed out that one can adjust ρ0 by ensuring that the
dual function does not decrease significantly. Unfortunately, this is also not easy to
control.

The parameter in TVβ(u) for the LM model was set to be β = 10−5. In all
the following experiments, we used the same constant time step settings: tu = 1,
tp = 0.1, tλ = 0.1 for the proposed model, and the experiments demonstrate that
this simple choice yields good performances.

6.1. Image denoising. The proposed method can be easily applied to image de-
noising. In this case we have A = I, A∗ = I and A∗A = I. We give two examples:
gray-level image denoising and color image denoising. Symmetric boundary condi-
tions are used in this section.

The first example is gray-level image denoising. The original image is corrupted
by an additive white Gaussian noise with zero mean and standard deviation σ = 20.
We set the threshold τ = 75 for the LM model and the proposed model, ρ0 = 20
for the LM model, λ = 0.04 for the ROF model, and λ = 0.03 for the proposed
model. Fig. 2 displays the noisy image and the restored images. We can observe
that the LM model and the proposed model preserve textures much better than
the ROF model. As expected, this indicates that the wavelet packet approach is
very helpful to recover textures. Furthermore, the proposed model converges much
faster (for the required precision) than the LM model. Note that the CPU time for
one iteration of LM-Uzawa algorithm is 0.98s, and that of the proposed algorithm
is 0.86s, so the large speed difference is essentially due to the faster convergence
rate of the proposed method (281 iterations to meet the RDS criterion, versus 1456
for the LM-Uzawa model).

We first discuss the convergence behavior of the LM model and the proposed
model. We get a solution u∗ for the LM model by running the LM-Uzawa algo-
rithm for 20,000 iterations, and get a solution u∗ for the proposed model by running
Algorithm 3 for 20,000 iterations (since Algorithm 3 can exactly achieve the con-
straints of the proposed model at each iteration, its solution can be seen as the
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Figure 2. Denoising of a gray-level image. Top, left: noisy image;
Top, right: ROF Model (787 iterations, CPU time = 3.9s, PSNR =
24.75dB); Bottom, left: LM Model (1456 iterations, CPU time =
1434s, PSNR = 26.09dB); Bottom, right: our model (281 iterations,
CPU time = 241s, PSNR = 26.19dB).

true solution of the proposed model). Fig. 3 gives some comparisons with respect
to the CPU time. The RDS of the LM-Uzawa algorithm is not very stable, so we
stopped the algorithm when the RDS was less than ε for the first time. Table 1
gives the statistics of the restored images obtained from running the algorithms for
5000 iterations. In particular, we compute the Maximum of the violated constraints

(23) Max = max
Ψ∈D

[〈u− g,Ψ〉 − τ ]
+
,

(with as usual [t]+ = max(0, t)), the Proportion of violated constraints

(24) Pro. =
|V |
|D| , where V =

{

Ψ ∈ D, 〈u− g,Ψ〉 − τ > 10−5
}

,

and, when V 6= ∅, the Mean of the violated constraints

(25) Mean =
1

|V |
∑

Ψ∈V

〈u− g,Ψ〉 − τ.

One can clearly see from Fig. 3 and Table 1 that the proposed model is more
stable than the LM model, and that the proposed algorithms (2 and 3) manage to
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Figure 3. Evolution in function of the CPU time (in seconds)
of several quantities during gray-level denoising with ROF, LM-
Uzawa, and the proposed Algorithms 2 and 3 (these two curves
often overlap). From left to right, then top to bottom: PSNR;
distance to solution ‖un − u∗‖2 (log scale); TV; RDS (log scale);
Maximum value of the constraints (Equation 23); Mean value of the
violated constraints only (Equation 25). Notice that after 2500s,
the set of violated constraints for Algorithm 2 is empty most of the
time, which explains the dotted line.

solve it precisely and much faster than the LM-Uzawa algorithm does for the LM
model. Algorithm 2, which corresponds to the unconstrained formulation, exhibits
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TV Max Mean Pro.
LM-Uzawa 7.2722 1.9385 0.1658 0.40%
Algorithm 2 7.6661 0.0000 - 0%
Algorithm 3 7.6661 0.0000 - 0%

Table 1. Experimental statistics of the result images obtained
after running the algorithms for 5000 iterations (denoising case).
Max: Maximum of the constraints (Equation 23). Mean: Mean of
the violated constraints only (Equation 25). Pro.: proportion of
violated constraints (Equation 24).

very good performances in terms of constraint enforcement: the maximum of the
constraints for Algorithm 2 decreases quickly toward 0, and after 2500s, no more
constraint is violated most of the time. In comparison, the LM-Uzawa algorithm
clearly does not enforce the constraints as well as the proposed algorithm.

Next, we discuss the choice of the parameter λ weighting the data-fidelity term
in the ROF and in the proposed model. It is well-known that the performance of
the ROF model is highly dependent on this parameter. Table 2 lists the PSNR
values of the restored images obtained for different values of λ in the denoising
case (Fig. 2) and in the Gaussian deblurring case (Fig. 8). We also present some
of the corresponding resulting images in Fig. 4 for the denoising problem. From
these Table and Figures, one can clearly observe that, unlike the ROF model, the
performance of the proposed model is not very sensitive to the parameter λ. This
indicates that the wavelet-based term can restore much information, by contributing
to a trade-off with the TV regularization.

denoising deblurring
λ 0.02 0.03 0.04 0.05 2 3 4 5

ROF model 23.59 24.15 24.75 25.38 24.68 24.92 25.22 25.52
Proposed model 25.69 26.19 26.57 26.85 27.10 27.27 27.37 27.43

Table 2. PSNR values (dB) of the restored images obtained with
the ROF model and the proposed model for different values of λ
(the reference images are shown in Fig. 1).

To illustrate further the general behavior of the proposed model, we perform
experiments on four other test images, shown in Fig. 5: Boat (size 512 × 512),
Cameraman (256×256), Goldhill (512×512), and Lena (512×512). The degradation
process is the same as before. Table 3 presents the resulting PSNR values. We can
observe that the LM model and our model do not reach much better results than
the ROF model for these relatively poorly textured images. In fact, the LM model
(and consequently ours), with the standard dictionary used, are in favor of textured
images. Note incidentally that the proposed model achieves slightly higher PSNR
values than the LM model. To further improve the performance of the LM model
and our model on images with less texture, one may consider choosing a better
dictionary, as indicated in [50], or using more powerful dictionary learning method
[30].

For texture images, the proposed model is better than ROF model. We per-
form experiments on two Brodatz texture images shown in Fig.6. The degradation
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Figure 4. Image denoising with different values of λ (top line:
λ = 0.02, bottom line: λ = 0.05). Left column: ROF Model; Right
column: our model.

Figure 5. Test images. From left to right: Boat, Cameraman,
Goldhill, Lena.

process is the same as before. The resulting PSNR values of ROF model and the
proposed model (with τ = 70) are 20.96dB, 21.56dB for the first degraded image,
and 21.34dB, 21.79dB for the second degraded image respectively. We can observe
that the proposed model achieves much better results than the ROF model on
texture images.

The proposed model can also be easily generalized to color image denoising. We
adopt the scheme proposed by Bresson and Chan [9] to compute the dual formula-
tion of the vectorial TV regularization. The top-left image in Fig. 7 is the original
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τ = 75 τ = 70 τ = 65

Images ROF LM Ours LM Ours LM Ours
Boat 28.61 28.51 28.72 28.58 28.76 28.66 28.81
Cameraman 28.21 27.99 28.36 28.05 28.41 28.12 28.46
Goldhill 29.06 29.03 29.16 29.08 29.19 29.15 29.23
Lena 31.04 31.03 31.05 31.06 31.06 31.11 31.06
Average 29.23 29.14 29.32 29.19 29.36 29.26 29.39

Table 3. The resulting PSNR(dB) on the test images of Fig. 5.

Figure 6. Original Brodatz texture images.

color image with resolution 256× 256× 3 (3 is the number of color channels). The
noisy image is obtained by adding independent noise (with the same Gaussian dis-
tribution as before) on each color channel. On Fig. 7, we compare the proposed
model with the vectorial ROF model, solved by Bresson and Chan [9]2 via a dual
minimization algorithm. We can observe that the proposed method clearly achieves
a better denoising, which is confirmed by the higher PSNR value.

6.2. Image deblurring. In this section, we apply the proposed model to a more
difficult task: image deblurring. We will consider three blur kernels: a Gaussian
blur kernel, a uniform blur kernel and a motion blur kernel. In these experiments,
periodic boundary conditions are adopted and the FFT is used to compute the
convolution operator. The initial images of the algorithms are the blurred and
noisy images. We set τ = 5 for the first two experiments, τ = 2 for the last
experiment since the degraded image has less noise, and ρ0 = 5 for the LM model
in all the experiments.

In the first experiment, the corrupted image is obtained by convolving the original
image with a Gaussian blur of size 5× 5 with mean zero and standard deviation 2
(produced by the MATLAB function ”fspecial”) and then adding a Gaussian white
noise with mean zero and standard deviation 2. We set λ = 5 for the ROF model
and the proposed model. Fig. 8 displays the restored images.

2The MATLAB code is available on http://www.cs.cityu.edu.hk/∼xbresson/ucla/code.html
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Figure 7. Color image denoising. Top, left: original color im-
age; Top, right: noisy image; Bottom, left: vectorial ROF model
(480 iterations, CPU time=10.7s, PSNR=26.54dB); Bottom, right:
Proposed model (238 iterations, CPU time=626.2s,
PSNR=26.92dB).

Then, we choose a uniform 7 × 7 blur to corrupt the original image, and add
as before a Gaussian white noise with mean zero and standard deviation 2 to it.
Again, the parameter λ is set to 5. The restored images are shown in Fig. 9.

Finally, we apply the proposed algorithm to a motion-blurred image. The kernel
is generated by the MATLAB function ”fspecial” with approximately 30 pixels
and an angle of 45◦. Then the blurred image is corrupted with an additive white
Gaussian noise with mean zero and standard deviation 1. With the parameter
λ = 20, the restored images are shown in Fig. 10.

Fig. 11 shows the resulting RDS of the three experiments mentioned above.
One can observe that the proposed algorithm achieves better performance than the
LM-Uzawa algorithm. Table 4 gives some statistics of the restored images obtained
after running the algorithms for 5000 iterations. The Max, Mean and Pro. statistics
correspond to the definitions given in Equations (23), (25) and (24), except that u is
replaced with Au to take into account the blur operator A. Although the maximum
of the violated constraints is a little larger than that of the LM-Uzawa algorithm in
the case of a uniform blur kernel, the proportion of violated constraints is always
much smaller for the proposed model.
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Figure 8. Restoration from Gaussian blur. Top, left: blurred
image; Top, right: ROF model (452 iterations, CPU time=4.0s,
PSNR=25.52dB); Bottom, left: LM model (1602 iterations, CPU
time=1639s, PSNR=27.16dB); Bottom, right: Proposed model
(966 iterations, CPU time=861s, PSNR= 27.43dB).

Algorithms TV Max Pro. Mean
Gaussian blur LM-Uzawa 10.0958 7.9479 3.93% 0.0038

τ = 5 Algorithm 2 11.2513 7.9154 0.90% 0.0027
Uniform blur LM-Uzawa 8.8571 8.0361 2.27% 0.0031

τ = 5 Algorithm 2 9.3452 8.0533 0.96% 0.0029
Motion blur LM-Uzawa 11.7072 3.8542 5.79% 0.0038

τ = 2 Algorithm 2 12.7043 3.0598 2.50% 0.0024

Table 4. Experimental statistics obtained for the deblurring case
after 5000 iterations: Total Variation, maximum of the violated
constraints, proportion of violated constraints, mean of the violated
constraints (see Equations (23) to (25) with u replaced by Au).

6.3. Simultaneous image deblurring and inpainting. In several image pro-
cessing applications, some entire image regions are damaged or lost. The goal of
image inpainting is to restore the missing and/or damaged areas using the valid
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Figure 9. Restoration from uniform blur. Top, left: blurred
image; Top, right: ROF model (522 iterations, CPU time=4.6s,
PSNR=24.73dB); Bottom, left: LM model (1978 iterations, CPU
time=1991s, PSNR=25.49dB); Bottom, right: Proposed model
(1083 iterations, CPU time=968s, PSNR= 25.75dB).

surrounding information. Since the pioneering work of [34] and [5], this problem
has been extensively studied [11]. In this subsection, we consider a more compli-
cated image degradation problem: images are blurred and pixels are missing in
some regions.

Let Ω1 denote the set of indices corresponding to missing pixels. The linear
transform operator for inpainting is defined as

(A2u)i,j =

{

ui,j , if ui,j /∈ Ω1,
0, if ui,j ∈ Ω1.

Let A1 denote the convolution operator. Then the degraded operator considered
in this subsection is A = A2 ◦ A1. In this case, because the operator A∗

1 ◦ A2 ◦ A1

can not be diagonalized by the FFT, the update step 4 in Algorithm 2 can not be
solved as above. Fortunately, thanks to the I term, the matrix I+tuλA

∗A is always
invertible. Thus we can use the preconditioned conjugate gradient method to solve
this sub-problem.

We study two situations for missing pixels: randomly missing pixels and struc-
tured missing regions. In these experiments, we use the same parameter values as
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Figure 10. Restoration from motion blur. Top, left: blurred
image; Top, right: ROF model (806 iterations, CPU time=8.1s,
PSNR=25.58dB); Bottom, left: LM model (3348 iterations, CPU
time=3402s, PSNR=26.21dB); Bottom, right: Proposed model
(1546 iterations, CPU time=1382s, PSNR= 27.14dB).

Figure 11. RDS in function of CPU time (in seconds) for the
deblurring case. From left to right: Gaussian blur, uniform blur,
motion blur.

in the motion deblurring experiments, except for the randomly missing pixels case
for which we take τ = 1.2 (because there are lots of missing pixels, the coefficients
of the wavelet packet decomposition are smaller). To accelerate the convergence of
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Figure 12. Image inpainting with randomly missing pixels. Top,
left: corrupted image; Top, right: ROF model (993 iterations, CPU
time=142s, PSNR=24.29dB); Bottom, left: LM model (2449 iter-
ations, CPU time=2477s, PSNR=24.63dB); Bottom, right: Pro-
posed model (1856 iterations, CPU time=2084s, PSNR=25.06dB).

the algorithms, we use a initial image obtained by performing the nearest neighbor
interpolation on the corrupted image.

In the first experiment, the corrupted image is obtained by randomly removing
50% pixels on the motion-blurred image used in the previous section. On Fig. 12,
we can see that the visual quality of the image restored by the proposed model
is better. In the second experiment, we still use the same motion-blurred image
but the missing pixels now correspond to a superimposed text. The results are
displayed on Fig. 13. Table 5 gives some statistics of the restored images obtained
by running the algorithms for 5000 iterations, and Fig. 14 shows the resulting RDS.
One can observe that the proposed model still exhibits better performances on the
simultaneous deblurring and inpainting problem.

7. Combining nonlocal total variation (NLTV)

Recently, much literature has focused on exploiting nonlocal similarities of tex-
tures and has reached higher restoration quality than methods only based on the
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Figure 13. Image inpainting with structured missing pixels (su-
perimposed text). Top, left: corrupted image; Top, right:
ROF model (925 iterations, CPU time=151s, PSNR=25.06dB);
Bottom, left: LM model (2721 iterations, CPU time=2803s,
PSNR=25.30dB); Bottom, right: Proposed model (1388 iterations,
CPU time=1546s, PSNR=26.20dB).

Algorithms TV Max Pro. Mean
random pixels inpainting LM-Uzawa 10.3346 1.4823 7.13% 0.0031

τ = 1.2 Algorithm 2 10.3569 1.5168 5.17% 0.0023
text inpainting LM-Uzawa 10.0482 2.7645 4.57% 0.0025

τ = 2 Algorithm 2 11.1518 2.9219 1.79% 0.0013

Table 5. Experimental statistics of the resulting images obtained
after running the algorithms for 5000 iterations (inpainting case).

similarity between pixels. Buades et al. [10] proposed the nonlocal means algo-
rithm, which exhibits good performances for image denoising. Gilboa and Osher
[27] proposed the NLTV approach, based on a variational framework. Zhang et al.
[51] used this regularization for image deconvolution and sparse reconstruction.
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Figure 14. RDS in function of CPU time (in seconds) for the
inpainting case. Left: randomly missing pixels; Right: structured
(text) missing regions.

We use the definitions of the NL functionals presented in [8, 27, 51]. The general
NLTV framework for image restoration can be defined as

(26) min
u

‖∇wu‖1 +
λ

2
‖Au− g‖22,

where (∇wu) (x, y) = (u(y)− u(x))
√

w (x, y). The weight function w is a symmet-
ric function that can be defined from the initial image g and h as

w(x, y) = exp

(

− 1

h2

∫

Ω

Ga ∗ ‖g(x+ z)− g(y + z)‖22 dz
)

,

where
∫

Ω
Ga ∗ ‖g(x+ z)− g(y + z)‖22 dz is the distance between patches located at

x and y on the given degraded image, Ga is a Gaussian function with standard
deviation a and h is a filtering parameter that has to be set according to the noise
level. The divergence of the dual variable is defined by

(divw p) (x) =

∫

Ω

(p(x, y)− p(y, x))
√

w(x, y)dy,

and we have
〈∇wu, p〉 = −〈u, divw p〉 .

We can easily replace TV regularization by the NLTV regularization in the pro-
posed algorithm. In the following, we give some experimental results of the proposed
algorithm and the NLTV restoration model which can be solved by Algorithm 1.

To compute the weights (the values of the all pixels of the degraded image are
scaled in the range [0, 1] when computing the weights), the MATLAB code provided
by Bresson3 was used. We set the patch size to 9 × 9, the searching window size
to 11 × 11 and the number of neighbors to 10. The filtering parameter was set
to h = 0.45 for image denoising, h = 0.01 for restoration from Gaussian blur and
uniform blur, and h = 0.005 for motion deblurring. Since NLTV regularization uses
more neighbors than TV regularization, the parameter λ has to be increased, so we
took λ = 0.05 for denoising, λ = 10 for restoration from Gaussian blur and uniform
blur, and λ = 30 for motion deblurring. We included the 4 nearest neighbors in

3http://www.cs.cityu.edu.hk/∼xbresson/ucla/code.html
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Figure 15. Image denoising based on NLTV regularization. Left:
NLTV restoration model (PSNR=28.11dB); Right: Proposed
model (PSNR=28.68dB).

image deblurring cases. Fig. 15 and Fig. 16 display the recovered images, and show
the clear improvement brought by NLTV regularization.

8. Conclusion

We presented a modified model for image restoration based on Total Variation
and wavelet packets. In this model, the original TV regularization term is replaced
by its dual formulation, and a first-order primal-dual algorithm is used to solve
the corresponding optimization problems. The performance of the proposed model
is demonstrated by experiments on several standard image restoration problems
(denoising, deblurring and inpainting), and the results show that it manages to
recover textures better than previous comparable approaches. To further improve
the performance of the proposed model, we then replaced TV regularization with
NLTV regularization, which resulted in a clear improvement of the quality of the
restored images. Future work could focus on the choice of an adaptive dictionary
to increase further the performance of the proposed model.
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