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Abstract. Interpreting the celebrated Rudin-Osher-Fatemi (ROF) mo-
del in a Bayesian framework has led to interesting new variants for Total
Variation image denoising in the last decade. The Posterior Mean variant
avoids the so-called staircasing artifact of the ROF model but is com-
putationally very expensive. Another recent variant, called TV-ICE (for
Iterated Conditional Expectation), delivers very similar images but uses
a much faster fixed-point algorithm. In the present work, we consider
the TV-ICE approach in the case of a Poisson noise model. We derive
an explicit form of the recursion operator, and show linear convergence
of the algorithm, as well as the absence of staircasing effect. We also
provide a numerical algorithm that carefully handles precision and nu-
merical overflow issues, and show experiments that illustrate the interest
of this Poisson TV-ICE variant.
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1 Introduction

Since the seminal paper of Rudin, Osher and Fatemi [1], total variation (TV)
regularization has been used in numerous image processing applications (see,
e.g., [2] and references therein). Reasons for this popularity are multiple. First,
TV regularization allows discontinuities (contrary to the L2 norm of the gradi-
ent), which is essential in the world of natural images, dominated by occlusions.
Second, its continuous counterpart is part of a fruitful mathematical theory (the
space of functions with bounded variation) which results in strong possibilities
of theoretical interpretations [3]. Third, in the last decade several very efficient
algorithms have been designed to handle the non-smooth convex optimization
problems occurring with TV regularization (e.g., [4, 5]). In terms of pure de-
noising performances, TV denoising is less efficient than modern patch-based
approaches like NL-means [6] or BM3D [7] for example, but remains useful as
the simplest possible framework for the study of TV regularization. Understand-
ing the strengths and weaknesses of TV denoising (and variants) certainly helps
a lot apprehending more complex inverse problems involving TV regularization.
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One weakness of TV regularization is the so-called staircasing effect: where
one would have expected a smoothly varying image, the L1 norm promotes a
sparse gradient that results in piecewise constant zones with artificial boundaries.
This undesirable effect can be avoided by using a smoother functional, but at the
expense of loosing the nice theoretical properties of TV. Other solutions have
been proposed that keep the true definition of TV but change the minimization
framework. Indeed, when considering the TV as the Gibbs energy of an image
prior in a Bayesian framework, the ROF model can be reinterpreted as finding the
image that maximizes the associated posterior density. Replacing this maximum
a posteriori (MAP) estimate with the posterior mean leads to a variant of the
ROF model, called TV-LSE, that delivers images without staircasing artifacts
[8, 9]. More recently, a new variant called TV-ICE [10] was proposed to overcome
the slow convergence rate of the TV-LSE Monte-Carlo algorithm. It is based on
the repeated estimation of conditional marginal posterior means, which boils
down to iterating an explicit local operator. In practice, TV-ICE delivers images
very similar to TV-LSE results, but at a much smaller computational expense.

In the present work, we propose to adapt to the case of Poisson noise this
TV-ICE method, derived in [10] in the case of Gaussian noise. Contrary to
most noise sources (electronic noise, dark current, thermal noise) whose effects
can be reduced by the improvement of captors, Poisson noise is inherent to the
quantum nature of light and thus unavoidable for images acquired in low-light
conditions, which is very common in astronomy or in microscopy for example.
Even if image restoration models are generally first designed in the simpler case
of a white Gaussian additive noise, they need to be adapted to the specific case
of Poisson noise. Due to the importance and the inevitability of Poisson noise,
this adaptation is almost systematic, as shows for example the case of TV-based
image deblurring [11] or NL-means denoising [12].

In the case of the TV prior, the posterior distribution obtained with Pois-
son noise strongly differs from the Gaussian case, but the conditional marginal
posterior means can be explicitly computed using the incomplete Gamma func-
tion. In Section 2, we show that the associated iterative algorithm converges
linearly and that no staircasing occurs, thanks in particular to the log-concavity
of the Poisson distribution. We then give the explicit form of the recursion op-
erator defining our Poisson-TV-ICE model (Section 3) and discuss numerical
issues, in particular the handling of machine over/under-flow and the efficient
computation of the (slightly generalized) incomplete Gamma function. We then
numerically check the theoretical properties of the method (convergence rate,
absence of staircasing) in Section 4, and compare the obtained results with the
Poisson noise variant of the ROF model, before we conclude in Section 5.

2 The Poisson TV-ICE model

2.1 Definition

Let u : Ω → R+ be an (unobserved) intensity image defined on a discrete domain
Ω (a rectangular subset of Z2). A photon-count observation of the ideal image u
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is a random image v following the Poisson probability density function (p.d.f.)

p(v|u) =
∏
x∈Ω

u(x)v(x)

v(x)!
e−u(x) ∝ exp (−〈u− v log u , 1Ω〉) , (1)

where 1Ω denotes the constant image equal to 1 on Ω and 〈·, ·〉 is the usual
inner product on RΩ . The notation ∝ here indicates an equality up to a global
multiplicative constant (which depends on v). Note that we have to take the
convention that v(x) log u(x) = 0 as soon as v(x) = 0 in (1). The discrete
anisotropic TV of u is

TV(u) =
1

2

∑
x∈Ω

∑
y∈Nx

|u(y)− u(x)| , (2)

where Nx denotes the 4-neighborhood of a pixel x with a mirror boundary
condition. Using the improper TV prior p(u) ∝ e−λTV(u) (where λ is a positive
regularization parameter) and Equation (1), we get thanks to the Bayes rule the
posterior density

π(u) = p(u|v) =
p(v|u)p(u)∫

RΩ+
p(v|w)p(w)dw

=
e−〈u−v log u , 1Ω〉−λTV(u)∫

RΩ+
e−〈w−v logw , 1Ω〉−λTV(w)dw

. (3)

The equivalent of the classical ROF model [1] in the case of a Poisson noise
model corresponds to the unique maximizer ûMAP of π, or equivalently the min-
imizer of the convex energy E(u) = 〈u− v log u , 1Ω〉 + λTV (u). It can be effi-
ciently computed using the primal-dual algorithm recently proposed in [5]. As
mentioned in Introduction, a main drawback of this approach is that ûMAP gen-
erally suffers from the staircasing effect, which results in the appearance of flat
regions separated by artificial boundaries.

In the case of a Gaussian noise model (when π(u) ∝ e−‖u−v‖2/(2σ2)−λTV(u)),
this can be avoided by considering, instead of ûMAP, the posterior mean

ûLSE = Eu∼π(u) =

∫
RΩ

uπ(u)du , (4)

which is the image that reaches the Least Square Error under π (see [8, 9]).
The numerical computation of ûLSE proposed in [8] is based on a Markov Chain
Monte Carlo Metropolis-Hastings algorithm, which exhibits a slow convergence
rate (O(n−1/2) for n iterations). To overcome this computational limitation, the
same authors proposed in [10] a new variant based on the iteration of conditional
marginal posterior means. More precisely, the estimate ûICE is defined as the
limit (for an appropriate initialization) of the iterative scheme

un+1(x) = Eu∼π
(
u(x)

∣∣∣ u(xc) = un(xc)
)

=

∫
R
un(x)π(un)dun(x) , (5)

where u(xc) denotes the restriction of u to Ω \ {x}. In the case of the Poisson
noise model (3), we obtain the following
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Definition 1 (Poisson TV-ICE). The Poisson TV-ICE recursion is

∀n ∈ N, ∀x ∈ Ω, un+1(x) =

∫
R+
sv(x)+1e−(s+λ

∑
y∈Nx |u

n(y)−s|)ds∫
R+
sv(x)e−(s+λ

∑
y∈Nx |u

n(y)−s|)ds
. (6)

2.2 Convergence

Theorem 1. Given an image v ∈ RΩ, the sequence of images (un)n≥0 defined
by u0 = 0 and the recursion (6) converges linearly to an image ûICE.

In the following, we denote by Pp(s) the pointwise Poisson noise p.d.f. with
parameter p, that is, Pp(s) = spe−s1R+(s)/p!. If a = (ai)1≤i≤4, we write

fp(a) =

∫
s Pp(s) e

−λ
∑4
i=1 |s−ai| ds∫

Pp(s) e−λ
∑4
i=1 |s−ai| ds

=

∫ +∞
0

sp+1e−s e−λ
∑4
i=1 |s−ai| ds∫ +∞

0
spe−s e−λ

∑4
i=1 |s−ai| ds

(7)

and F : u 7→
(
x 7→ fv(x)(u(Nx))

)
, (8)

so that the recursion (6) can be simply rewritten un+1 = F (un).

To prove Theorem 1, we need some intermediate Lemmas.

Lemma 1. [13] Assume that X, a random variable defined on RΩ, has a finite
second order moment. Then the inequality

cov(X, g(X)) ≥ 0

holds for every nondecreasing function g : RΩ → R for which g(X) has a finite
second order moment. If, moreover, X is not deterministic and g is strictly
increasing, then cov(X, g(X)) > 0.

Proof. One has

cov(X, g(X)) = E[(X − E[X])(g(X)− E[g(X)])]

= E[(X − E[X])(g(X)− g(E[X]))]

The assertion follows because g is increasing. If X is not deterministic, then
there exists a Borel set A such that P (X ∈ A) > 0 with E[X] /∈ A. Hence the
covariance is a sum of nonnegative terms, some of which (those for X ∈ A) are
positive. Finally cov(X, g(X)) is positive.

Lemma 2. F is monotone: for all images u0 and u1,

u0 ≤ u1 ⇒ F (u0) ≤ F (u1).
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Proof. Using Lebesgue dominated convergence theorem, one can prove the dif-
ferentiability of fp with respect to each ai and obtain

∂fp
∂ai

(a) =

∫
λ sign(s− ai) s Pp(s) e−λ

∑4
j=1 |s−aj | ds∫

Pp(s) e
−λ

∑4
j=1 |s−aj | ds

−
∫
s Pp(s) e

−λ
∑4
j=1 |s−aj | ds∫

Pp(s) e
−λ

∑4
j=1 |s−aj | ds

·
∫
λ sign(s− ai)Pp(s) e−λ

∑4
j=1 |s−aj | ds∫

Pp(s) e
−λ

∑4
j=1 |s−aj | ds

.

Hence
∂fp
∂ai

(a) can be seen as the covariance of S and λ sign(S − ai), where S

is a random variable with p.d.f. s 7→ 1
ZPp(s) e

−λ
∑4
j=1 |s−aj |, which has a finite

second order moment. Using Lemma 1, the quantity
∂fp
∂ai

(a), as the covariance
of S with a nondecreasing function of S, is nonnegative. Now if u0 ≤ u1, then
as fp is C1 we can write

(F (u1)− F (u0))(x) =

∫ 1

0

∇fv(x)(ut(Nx)) · (u1(Nx)− u0(Nx)) dt,

where ut(Nx) = (1− t)u0(Nx) + tu1(Nx). As
∂fv(x)
∂u(y) and u1(y)− u0(y) are both

nonnegative, so is (F (u1)− F (u0))(x) as the integral of a nonnegative function.

Lemma 3. F is strictly nonexpansive for the `∞ norm: for any images u 6= u′,

‖F (u′)− F (u)‖∞ < ‖u′ − u‖∞.

Proof. For fixed values of p and a = (ai)1≤i≤4, let us define the real mapping

g : c 7→ fp(a+ c)− c,

where a + c is a shorthand for (ai + c)1≤i≤4. We first prove that the strict
decrease of g on R for all p and a implies the strict nonexpansiveness of F . We
must prove that F (u′) < F (u) + c and that F (u′) > F (u)− c for c = ‖u′−u‖∞.
As u′ ≤ u + c and as F is monotone, we have F (u′) ≤ F (u + c). It remains to
prove that F (u+ c) < F (u) + c, i.e. that

∀p ∈ N, ∀a ∈ R4, ∀c > 0, fp(a+ c) < fp(a) + c,

which is true as soon as g is strictly decreasing on R+. For the other inequality,
we have F (u′) ≥ F (u− c), so that it remains to prove that F (u− c) > F (u)− c,
i.e. that

∀p ∈ N, ∀a ∈ R4, ∀c > 0, fp(a− c) > fp(a)− c,
which is true as soon as g is strictly decreasing on R−.

Second, we prove that g is strictly decreasing. One can prove that

g′(c) = cov

(
S,
P ′p(S + c)

Pp(S + c)

)
= cov(S, (logPp)

′(S + c)),

where S follows a distribution with p.d.f. s 7→ 1
ZPp(s+c)e−λ

∑4
i=1 |s−ai| ds. Now,

Pp is positive and differentiable and (logPp)
′(s) = p/s − 1 so for all c, the
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mapping s 7→ (logPp)
′(s + c) is strictly decreasing on (−c,∞). Again thanks

to Lemma 1, as the distribution on S is not deterministic, we get that g′(c) is
negative. Hence g is strictly decreasing and the proof is complete.

Lemma 4. There exists a subset K of RΩ containing 0 such that F (K) ⊂ K.

Proof (abridged). We set G(p, c) = fp(c1N )− c and proceed in 4 steps:
1) For every p ∈ N, the function c 7→ G(p, c) is continuous and decreasing.

Indeed, G(p, c) is exactly g(c), defined in the proof of Lemma 3, with a = 0. So
it is differentiable and decreasing.

2) For each p ∈ N, the limit of G(p, c), when c goes to +∞, is negative (proof
not given here).

3) We deduce from 1) and 2) that

∀p ∈ N, ∃ c(p) ∈ R, c ≥ c(p)⇒ G(p, c) ≤ 0.

4) With the latter definition for p 7→ c(p), we define c = maxx∈Ω c(v(x)) and
K = [0, c]Ω . If u ∈ K, then u ≤ c, and as F is monotone, F (u) ≤ F (c1Ω). Now,
as c ≥ c(v(x)), by definition of c, fv(x)(c) ≤ c holds for each x ∈ Ω, which exactly
means that F (u) ≤ F (c1Ω) ≤ c. Secondly, as F (u)(x) is a ratio of nonnegative
quantities, it is nonnegative and F (u) ≥ 0. In conclusion, F (u) ∈ K.

Proof (of Theorem 1). Since the map F is strictly non-expansive (Lemma 3)
and continuous on the compact set K, there exists a real number α ∈ (0, 1) such
that ‖F (w1)− F (w2)‖∞ ≤ α‖w1 − w2‖∞ for all images w1, w2 ∈ K. Moreover,
K is stable by F (Lemma 4), so the Banach fixed-point theorem applies and the
sequence (un) defined in Theorem 1 converges to a fixed point of F , which is
unique. The convergence is linear as ‖un+1 − ûICE‖∞ ≤ α‖un − ûICE‖∞, or in
other terms, ‖un − ûICE‖∞ = O(αn) as n→∞.

2.3 No staircasing for Poisson TV-ICE

We here prove that Poisson TV-ICE cannot produce large constant regions that
were not at least partially present in the initial data.

Theorem 2. Let v : Ω → N be a noisy image, and ûICE its denoised version.
Let x and y be two pixels in Ω. Then if ûICE is constant on Nx ∪ Ny ∪ {x, y},
necessarily v(x) = v(y).

To establish the proof, we need the following

Lemma 5. For any constant c, the mapping p 7→ fp(c1N ) is strictly increasing.

Proof. The mapping p 7→ fp(c1N ) can be naturally extended to real positive
values of p using the right-hand part of Equation (7). Using the dominated
convergence theorem, we can assess the differentiability of p 7→ fp(c1N ) and
obtain

∂fp
∂p

(c1N ) = cov
(
S, logS

)
,
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where S is a random variable with p.d.f. s 7→ 1
ZPp(s) e

−4λ|s−c|. But as the log

function is strictly increasing, using Lemma 1, we have that
∂fp
∂p (c1N ) is positive.

Considering only integer values of p, we obtain the desired result.

Proof (of Theorem 2). Assume that ûICE has value c ∈ R for every pixel in
Nx ∪ Ny ∪ {x, y}. Then taking the limit in (6) tells us that c = ûICE(x) =
fv(x)(ûICE(Nx)) = fv(x)(c1N ), and similarly c = ûICE(y) = fv(y)(c1N ). But
using Lemma 5, p 7→ fp(c1N ) is strictly increasing, so there exists at most one
value p such that fp(c1N ) = c. We conclude that necessarily v(x) = p = v(y),
which finishes the proof.

3 Numerical computation of Poisson TV-ICE

3.1 Explicit form of the Poisson TV-ICE recursion operator

Proposition 1. The Poisson TV-ICE recursion un+1(x) = fv(x)(u
n(Nx)) can

be written

un+1(x) =

∑
1≤k≤5 ckI

µk,v(x)+1
ak−1,ak∑

1≤k≤5 ckI
µk,v(x)
ak−1,ak

, (9)

where a1, a2, a3, a4 are the values of un(Nx) sorted in nondecreasing order (that
is, 0 = a0 ≤ a1 ≤ a2 ≤ a3 ≤ a4 ≤ a5 = +∞),

∀k ∈ {1, . . . , 5}, µk = 1− (6− 2k)λ, log ck = λ

k−1∑
j=1

aj −
4∑
j=k

aj

 , (10)

and Iµ,px,y =

∫ y

x

spe−µsds . (11)

Proof. This result is directly obtained after breaking the integration domain in
Equation (6) so as to get rid of all absolute values.

3.2 Numerical issues

To compute the integral (11), we introduce the following generalized lower (γµ)
and upper (Γµ) incomplete gamma functions,

γµ(p, x) =

∫ x

0

sp−1e−µsds , Γµ(p, x) =

∫ +∞

x

sp−1e−µsds , (12)

so that Iµ,px,y = γµ(p+ 1, y)− γµ(p+ 1, x) (13)

and, for µ > 0,

Iµ,px,y = Γµ(p+ 1, y)− Γµ(p+ 1, x) =
p!

µp+1
− γµ(p+ 1, x)− Γµ(p+ 1, y). (14)

Note that when µ > 0, the change of variable t = µs would lead us back to the
standard definition of incomplete gamma functions (corresponding to µ = 1),
but this is not the case when µ < 0.

The effective computation of (9) with one of the formulas given in (13)-(14)
raises several numerical issues:
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1. For some values of the parameters, the numerator and the denominator
cannot be represented in the computer floating point arithmetic (for example
because they both exceed 1.9 · 10308, the largest double precision number),
although their ratio can be represented. To solve that issue, we represent
each integral Iµ,px,y involved in (9) under the form ρ · eσ, where ρ and σ are
floating point (double precision) numbers.

2. The possibility to compute efficiently γµ(p, x) and Γµ(p, x) depends on the
parameters µ, p, x. We divided the plane (µx, p) so as to compute γµ(p, x) or
Γµ(p, x) efficiently for each parameter set µ, p, x.

3. When the difference A−B is computed numerically, the result can be very
inaccurate if A and B are close to each other, which may happen for the
differences given in Equations (13)-(14). When x and y are very close to
each other, the integral (11) is very well approximated by the rectangle
numerical integration formula (with one term); we found a good criterion to
decide when this approximation should be used.

We reviewed the literature to find the available methods for the computation
of γµ(p, x) and Γµ(p, x), and found that for the explored domain |µx| ≤ 1000,
1 ≤ p ≤ 1000 (and even far beyond in fact), the selection of the three following
algorithms was satisfactory :

1. A continued fraction [14–17] for the computation of γcfracµ (p + 1, x) = ρeσ

with ρ = α1

β1+
α2

β2+
α3

β3+
. . . and α1 = 1, α2n = −(p+n) ·µx, α2n+1 = n ·µx,

βn = p+ n for n ≥ 1, valid for any µ.
2. An simple recursive integration by parts formula, only valid when µ < 0,

yielding γibpµ (p+ 1, x) = ρeσ with ρ = 1
µx

(
p! eµx

(µx)p −
∑

0≤k≤p
p!(µx)−k

(p−k)!

)
.

3. A continued fraction [18, 19] for the computation of Γ cfrac
µ (p + 1, x) = ρeσ

with ρ = α1

β1+
α2

β2+
α3

β3+
· · · , βn = µx + 2n − 2 − p (n ≥ 1), α1 = 1 and

αn = −(n− 1) · (n− p− 2) (n > 1), valid for any µ > 0.

In all cases, σ = −µx + (p + 1) log x. Fig. 1 shows the partition of the plane
(µx, p) we found as nearly optimal (in terms of computation time) to choose
between these 3 algorithms. The resulting procedure used to compute Iµ,px,y is
given in Algorithm 1.

4 Experiments

We first checked the convergence of the proposed Poisson TV-ICE algorithm
obtained by iterating the recursion (9) using Algorithm 1 and the initialization
u0 = 0. As can be seen in Fig. 2, numerical convergence is attained for Poisson
TV-ICE after a few hundred iterations, and the convergence rate is linear as
expected.

We then chose 3 images taken from areas concerned with Poisson noise (2
from microscopy, 1 from astronomy), and simulated a low-light observation (that
is, a Poisson noise process) for each of them. Then, we restored the noisy images
with both the Poisson TV-MAP and the proposed Poisson TV-ICE methods (see
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Fig. 1. Partition of the domain (µx, p) for the evaluation of the generalized
incomplete gamma function. The rectangular domain of the plane (µx, p) above
is cut into three regions delimited by the red curves (their equations appear in Al-
gorithm 1). On each region, one of the three selected algorithm (circled) is used to
compute numerically either γµ(p, x) or Γµ(p, x): the continued fraction for γµ (gcf),
the recursive integration by parts for γµ (Ibp), or the continued fraction for Γµ (Gcf).
Names without circles and dotted/dashed lines correspond to regions where another of
the 3 algorithms could be used too.

Algorithm 1: Numerical estimation of Iµ,px,y

inputs: three numbers µ ∈ R, x ∈ R+, y ∈ R+ ∪ {+∞} such as x ≤ y, and an
integer p ≥ 0. The value y = +∞ is allowed only when µ > 0.
outputs: ρ and σ such that ρ · eσ is an accurate estimate of Iµ,px,y .
if x = y up to machine precision then (ρ, σ)← (0,−∞)

else if 0 < y−x
y
≤ 10−9 then (ρ, σ)←

(
y−x
y
,−µy + (p+ 1) · log y

)
else if µ ≤ 0 then

if µ = 0 or p ≥ −0.33µx+ 8 then (ρx, σx)← γcfrac
µ (p+ 1, x)

else (ρx, σx)← γibp
µ (p+ 1, x) end

if µ = 0 or p ≥ −0.33µy + 8 then (ρy, σy)← γcfrac
µ (p+ 1, y)

else (ρy, σy)← γibp
µ (p+ 1, y) end

(ρ, σ)←
(
ρy − ρxeσx−σy , σy

)
else

if p ≥ µy then
(ρx, σx)← γcfrac

µ (p+ 1, x); (ρy, σy)← γcfrac
µ (p+ 1, y)

(ρ, σ)←
(
ρy − ρxeσx−σy , σy

)
else if p < µx then

(ρx, σx)← Γ cfrac
µ (p+ 1, x); (ρy, σy)← Γ cfrac

µ (p+ 1, y)
(ρ, σ)←

(
ρx − ρyeσy−σx , σx

)
else

(ρx, σx)← γcfrac
µ (p+ 1, x); (ρy, σy)← Γ cfrac

µ (p+ 1, y)
(ρ, σ)← (1− ρxeσx−σ − ρyeσy−σ, log p!− (p+ 1) logµ)

end
end
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Fig. 2. Convergence rates for TV-MAP and TV-ICE. We display in logarithmic
scale the convergence rates obtained for the proposed implementation of the Poisson
TV-ICE algorithm (green plain curve), and for the Chambolle-Pock [5] implementation
of the Poisson TV-MAP (with anisotropic and isotropic TV) algorithms (red/blue
dashed curves). As expected, Poisson TV-ICE achieves a linear convergence rate.

Fig. 3). As predicted by the theory, TV-ICE results do not exhibit staircasing
effects, contrary to TV-MAP images which provide less details, in particular in
the areas where the staircasing artifact causes an important loss of contrast (see,
e.g., the bottom-right part of the images of the first row of Fig. 3). This visual
effect was confirmed by the systematically smaller I-divergence values obtained
with TV-ICE.

5 Conclusion

We proposed a variant of the recent TV-ICE denoising method adapted to the
special case of Poisson noise. The absence of staircasing and the better-quality
restored images attested by experiments make Poisson TV-ICE a good alter-
native to Poisson TV-MAP, and suggests that it could be interesting to derive
Poisson TV-ICE variants for more complex inverse problems involving TV terms.

The linear convergence rate of the method is appealing but is not sufficient
to compensate for the heavy computations required by the form of the recursion
operator (several evaluations of the exponential and logarithm functions are
required for each pixel). In our current (non-optimized) implementation, one
iteration of TV-ICE is approximately 100 times slower than one iteration of TV-
MAP. However, further work could focus on the fast approximation of TV-ICE,
and the precise implementation we here proposed would be useful in that context
to check the quality of the approximation.

As in the Gaussian case, the generalization of the proposed algorithm to
three-dimensional images (or more), or to larger neighborhood systems, is straight-
forward. However, the comparison with the Poisson TV-LSE variant is, both
from a theoretical or practical point of view, still open.
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TV-MAP TV-ICE reference \ noisy

Fig. 3. Comparison of Poisson TV-MAP and Poisson TV-ICE. Three images
(first row: actin filaments and microtubules in interphase cells, second row: mouse dorsal
root ganglion, third row: NGC 1672 spiral galaxy) were corrupted with Poisson noise,
then denoised with the Poisson TV-MAP algorithm (left column) and the proposed
Poisson TV-ICE method (middle column). For each algorithm, we selected the value
of the λ parameter that achieved the smallest Csiszar I-divergence [20] (a measure of
distance adapted to the case of Poisson noise) between the reference image uref (bottom-
left part of the images in the right column) and the denoised image û, which is defined
by I-div(uref , û) =

〈
uref log(uref/û)−(uref−û) , 1Ω

〉
.One can clearly see that TV-MAP

results exhibit staircasing effects and an associated loss of details in the corresponding
flat regions; on the contrary, the TV-ICE images are more natural and more faithful
to the fine details of the reference, especially in the regions where TV-MAP produces
staircasing. Note that in order to increase the readability of the figure, the dynamic of
the images has been linearly amplified, causing some (limited) saturation in dark and
white areas. Image sources: cellimagelibrary.org and wikimedia.org.
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