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Abstract. We design a generic contrast and affine invariant planar shape recognition al-
gorithm. By generic, we mean an algorithm which delivers a list of all shapes two digital
images have in common, up to any affine transform or contrast change. We define as ”shape
elements” all pieces of level lines of the image. Their number can be drastically reduced
by using affine and contrast invariant smoothing Matheron operators, which we describe as
alternate affine erosions-dilations. We then discuss an efficient local encoding of the shape
elements. We finally show experiments. Applications aimed at include image registration,
image indexing, optical flow.
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1. Introduction

Recently, various strategies to rigorously define distances between shapes have
been proposed[25]. This distance method allows large nonparametric defor-
mations. In this communication, we shall restrict ourselves to the case where
perturbations boil down to contrast changes, planar affine transforms and oc-
clusions. This restrictive framework is just sufficient to recognize an image
which has undergone a xerocopy or a photograph (if it is a painting) and is
thereafter subject to contrast changes and an arbitrary framing (occlusion on
the boundary). The affine invariant framework is a well acknowledged top-
ic[3, 4, 12, 13].

The restrictions we are taking are not arbitrary, but result from a hopefully
rigorous invariance analysis. We first argue that the local contrast invariant
information of an image is completely contained in its level lines ([5, 6]), which
turn out to be Jordan curves. In order to overcome the occlusion phenomena,
we wish to have an encoding as local as possible. The locality is obtained by
segmenting each level line into its smallest meaningful parts which must finally
be described by small codes. The curve segmentation-encoding process must
therefore be itself invariant.

Moreover, the description of the curves must involve some smoothing since
level lines are influenced by the quantization process. Thus, smoothing must
be performed in order to get rid of this influence. Another reason to smooth
shapes, is given by the ”scale space ideology”[24]. Indeed, many of the fine
scale oscillations of the shapes may be parts of the shape; the analysis of the
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shape would be lost in those details.
Following [1], the only contrast invariant, local, smoothing and affine invari-
ant scale space leads to a single PDE,

ou

5 = |Dulcurv(u)3, (1)

where Du is the gradient of the image, curv(u) the curvature of the level line
and t the scale parameter. This equation is equivalent to the ”affine curve
shortening” ([22])

= |Curv(li, &)
where z denotes a point of a level line, Curv(x) its curvature and 7 the signed
normal to the curve, always pointing towards the concavity.

This equation is the only possible smoothing under the invariance require-
ments mentionned above. This gives a helpless bottleneck to the local shape
recognition problem, since it is easily checked ([1]) that no further invariance
requirement is possible. Despite some interesting attempts [10], there is no way
to define a projective invariant local smoothing. The use of curvature-based
smoothing for shape analysis is not new[2, 14, 9].

The contrast invariance requirement leads us to describe the shapes in terms
of mathematical morphology|[23]. In [7], connected components of level sets are
proven to be invariant under contrast changes and [6] proposed to take as basic
elements of an image the boundaries of the level sets (the so called level lines),
a complete representation of the image which they call topographic map. A
fast algorithm for the decomposition of an image into connected components
of level lines is described in [20] and its application to a semi-local scale-space
representation in [21]. Each one of these connected components is a closed
Jordan curve and in many cases, we shall identify the term ”shape” with these
Jordan curves.

In Section 2, a fast algorithm to perform equation (2) is derived by going
back to the mathematical morphology formalism ([23, 16]) and defining first
an affine distance and then affine erosions and dilations. This leads us to an
axiomatic justification for a fast algorithm introduced by Moisan ([17, 18]).
This presentation follows the general line of a book in preparation [11].

In Section 3, we explain how to segment the smoothed curves into affine
invariant parts and how these pieces of level lines can be encoded in an efficient
way for matching. Section 4 gives a first account of what can be done with the
generic algorithm.

2. Affine invariant mathematical morphology and PDE’s

We first define an ”affine invariant distance” which will be a substitute to the
classical euclidean one. We consider shapes X, subsets of IR2. Let z € IR?
and A an arbitrary straight line passing by x. We consider all connected
components of R? \ (X U A). If z ¢ X, exactly two of them contain =
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in their boundary. We denote them by CA;(x,A,X), CAx(x,A,X) and call
them the ”chord-arc sets” defined by z, A and X, and we order them so that
area(CA1(x, A, X)) < area(CAa(x, A, X)).

Definition 1 Let X be a ”shape” and x € IR?>,x ¢ X. We call affine distance
of x to X the (maybe infinite) number 6(z,X) = infa area(CA;(x, A, X))1/2,
0z, X)=01ifzeX.

Definition 2 For X C IR?2. We call affine a-dilate of X the set D, X =
{z,d(z, X) < a'’?}. We call affine a-eroded of X the set E,X = {z,6(x, X¢) >
a1/2} — (DaXC)C.

Proposition 1 E, and D, are special affine invariant (ie they commute with
area preserving affine maps) and monotone operators.

Proof 1 It is easily seen that if X C Y, then for every z, 6(z,X) > 6(z,Y).
From this, we deduce that X C Y = D,X C D,Y. The monotonicity of E,
follows by the duality relation E,X = (D X°)¢. The special affine invariance
of D, and E, follows from the fact that if detA = 1, then area(X) = area(AX).

Remark 1 One can show that E, and D, are affine invariant in the sense
of Definition 14.19, in [11] that is, for every linear map A with det A > 0,
AE(detA)1/2a = EaA.

We shall now use Matheron Theorem (Theorem 6.2 in [11]) in order to give
a standard form to E, and D,.

Definition 3 We say that B is an affine structuring element if O is in interior
of B, and if there is some b > 1 such that for every line A passing by 0, both
connected components of B\ A containing 0 in their boundary have an area
larger or equal to b. We denote the set of affine structuring elements by Bag.

Proposition 2 For every set X,

E,X = U ﬂ X —y={z,3B € Bug,z +a'/*B Cc X}
BeBass yeal/2B

Proof 2 We simply apply Matheron theorem. The set of structuring elements
associated with E, is B = {X,E,X 3 0}. Now,

E,X 504 8(0,X°) > a'/? & infparea(CA; (0, A, X))'/2 > ¢'/?

This means that for every A, both connected components of X \ A containing
0 have area larger than some number b > a. Thus, X belongs to a'/?>Bug by
definition of Bag -

By Proposition 2, z belongs to E,X if and only if for every straight line A,
chord-arc sets containing = have an area strictly larger than a. Conversely we
can state :

Corollary 1 E,X is obtained from X by removing, for every straight line A,
all chord-arc sets contained in X which have an area smaller or equal than a.
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2.1. APPLICATION TO CURVE AFFINE EROSION/DILATION SCHEMES

Let ¢ be a Jordan curve, boundary of a simply connected set X. Iterating
affine erosions and dilations on X gives a numerical scheme that computes the
affine shortening cr of ¢y at a given scale T. In general, the affine erosion of
X is not simple to compute, because it can be strongly non local. However, if
X is convex, then it has been shown in [18] that it can be exactly computed in
linear time. In practice, ¢ will be a polygon and the exact affine erosion of X
—whose boundary is made of straight segments and pieces of hyperbolae— is
not really needed; numerically, a good approximation of it by a new polygon
is enough. Now the point is that we can approximate the combination of an
affine erosion plus an affine dilation of X by computing the affine erosion of
each convexr component of ¢, provided that the erosion/dilation area is small
enough. The algorithm consists in the iteration of a four-steps process:

1. Break the curve into convex components.

2. Sample each component.

3. Apply discrete affine erosion to each component.

4. Concatenate the pieces of curves obtained at step 3.
¢ Discrete affine erosion. This is the main step of the algorithm: compute
quickly an approximation of the affine erosion of scale ¢ of the whole curve. The
first step consists in the calculus of the “area” A; of each convex component
Ci = PR{P{..P]_,, givenby A; = Y2i=" [R{P/, P{Pi,, | /2. Then, the effective
area used to compute the affine erosion is 0, = max {¢/8, min; A;} . We restrain
the erosion area to o, because the simplified algorithm for affine erosion may
give a bad estimate of the continuous affine erosion+dilation when the area
of one component is less than the erosion parameter. The term o/8 is rather
arbitrary and guarantees an upper bound to the number of iterations required
to achieve the final scale. The discrete erosion of each component is defined as
the succession of each middle point of each segment [AB] such that

1. A and B lie on the polygonal curve

2. A or B is a vertex of the polygonal curve

3. the area enclosed by [AB] and the polygonal curve is equal to o,
e Tteration of the process. To iterate the process, we use the fact that if
E, denotes the affine erosion plus dilation operator of area o, and h = (h;) is

a subdivision of the interval [0, H] with H = T/w and w = 1 (%)2/3, then

E(h1—ho)3/2 [¢] E(hg—h1)3/2 0...0 E(hn_hn—1)3/2 (C()) — CT

as |h| = max; h;iy1 — h; = 0, where cr is the affine shortening of ¢y described
above by (2).

The algorithm has linear complexity in time and memory, and its stability
is ensured by the fact that each new curve is obtained as the set of the middle
points of some chords of the initial curve, defined themselves by an integration
process (an area computation). Hence, no derivation or curvature computation
appears in the algorithm.
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Fig. 1. Inflexion points (marked with small triangles) and bitangents of a closed curve. The
area defined by each bitangent and the original curve is marked (A1l).

Fig. 2. Left: Local reference system for similarity invariant normalization: reference direc-
tion (RD), normal directions (N1, N2) and reference points (R1, R2). The portion of the
curve normalized with this reference system starts at P1 and ends at P2, passing through
the inflexion point. Right: Similarity invariant normalization. The y-ordinate of the marked
points is used to encode the piece of curve.

3. Algorithms for the description of the shapes in an image.

3.1. SIMILARITY INVARIANT DESCRIPTION OF CURVES

In the search for an invariant description of a curve, the starting point for the
sampling must be invariant, and so must be the sampling mesh. Typically,
inflexion points have been chosen because they are affine invariant. Now, since
the curve is almost straight at inflexion points, their position is not robust, but
the direction of the tangent to the curve passing through them is. Another affine
invariant robust semilocal descriptor is given by the lines which are bitangent
to the curve (see Fig. 1).

Our reference system is formed by such a line, and the next and previous
tangents to the curve which are orthogonal to it (see Fig. 2). The intersections
of each one of these lines with the reference line provide two reliable points
independent of the discretization of the curve. The portion of the curve to be
normalized is limited by these points. Normalization consists in a similarity
transform that maps the reference line to the z-axis and that sets the distance
between the two reference points to 1. We discretize each one of the normalized
portions of the curve with a fixed number n of points, and we store, for each
discretized point, its y coordinate (see Fig. 2). This set of n values is used to
compare portions of curves.
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X (1]

Fig. 3. Left: Local reference system for affine invariant normalization: reference points (R1,
R2, R3). The portion of the curve to be encoded has endpoints P1 and P2. Right: Affine
invariant normalization. The length of the normalized piece of curve together with the  and
y coordinates of the marked points are used to locally encode the curve.

3.2. AFFINE INVARIANT DESCRIPTION OF CURVES

If we look at Fig. 1, we can observe that the portion of the curve between the
points defining the bitangent, together with the bitangent itself, define an area
(A1), from which further invariant features can be computed. In particular,
we can compute the barycenter of this area, an affine invariant reference point.
We compute then the line BI parallel to the bitangent and passing through
the barycenter. BI divides the initial area into two parts and we compute
the barycenter of the part which does not contain the bitangent (see Fig. 3).
This second barycenter is a second reference point. Finally a point in line B1
such that the area of the triangle formed by this point and the two preceding
barycenters is a fixed fraction of the initial area A1 is a third reference point
(see Fig. 3). We therefore obtain three nonaligned points, that is an affine
reference system. This strategy is related to [8]. The discretization points are
taken at uniform intervals of length on the normalized curve. The total length
of the normalized curve is also used in the code. This set of 2n + 1 values is
what we use to compare portions of curves.

4. Experimental results

Figure 4 displays a picture of a man and the same picture after an occlusion
of the face with his forearm and their level lines after smoothing with the
iterative scheme described in section 2. Clearly some level lines have suffered a
significant occlusion, and, even if some parts of the level line remain unchanged,
registration methods based on global matching would fail in detecting those
lines. In Figure 5, we show the result of the matching of several pieces of an
occluded level line with other pieces of level lines in the second image.
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