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Abstract

The years 1985-2000 have seen the emergence of several nonlinear P.D.E. models in image restoration and image
analysis. Before that date, the heat equation and the reverse heat equation had been considered as relevant, one
as a model of image smoothing compatible with Shannon conditions, and one as a restoration model proposed by
Gabor. We try in this review to organize the P.D.E. models according to their genealogy from the initial heat
equation and according to their very diverse use : some are useful for image denoising, some for image deblurring,
some for invariant smoothing in view of shape recognition. Some permit to define easily active contours (snakes),
some may be used for a nonlinear interpolation of sparse images. We show many experiments illustrating these
different applicative aspects.

1 Introduction

This paper adresses a possible theory of image low level analysis. Image “low level” analysis aims at
extracting reliable, local geometric informations from a digital image. Such informations are often called
“features” and they are used in order to compare an image to other images. For instance, these features
can be used for motion estimation, or to retrieve shapes, or to build the still hypothetic “high level” vision.
The observed image is the result of a smoothing of the original photon flux and is therefore continuous.
It is nontheless well admitted that the subjacent “real image”, namely the focused photon flux, is either
a measure or, for more optimistic authors, a function which presents strong discontinuities. Rudin and
de Giorgi proposed independently in 1984 the space BV of functions with bounded variation as the right
function space for “real” images. More recently (1999), however, Gousseau and Alvarez [1] used a sta-
tistical device on digital images to estimate how their real subjacent images oscillate. They deduced, by
geometric measure arguments, that the “real” physical images have in fact unbounded variation. We may
therefore accept the idea that the subjacent high resolution image behaves in a strongly oscillatory way.
Although the digital images present an averaging of this oscillatory phenomenon, common sense tells us
that they must have anyway strong discontinuities at transitions between different observed objects, i.e. on
the apparent contours of physical objects. The BV space looked at first well adapted to that aim because
it contains functions having step discontinuities.

One of the goals of image analysis has ever been to find such discontinuities in an image. This search
is called “edge detection” because early vision research played with images of cubes. Along the edges of
the cubes, the light intensity behaved, in a first approximation, as a step function. Unfortunately, the
early research in vision led to the sad discovery that one could find edges “everywhere” in a digital image
(Marr Marr:1982:V), due to the oscillations remaining in the digital image after the digitization step. As
a consequence, the image analysis process was conceived as a smoothing process, permitting to decluster
the true “edges” from the inherent noise. As in Distribution theory, a smoothing was necessary before
computing any derivative. This is why the heat equation was proposed and a new doctrine proposed :
the “scale space”. Scale space means that, instead of talking of features of an image at a given location,
we talk of them at a given location and at a given scale. The scale quantifies the amount of smoothing
performed on the image before computing the feature. We shall therefore see in experiments “edges at
scale 4” and “edges at scale 7” as different outcomes of an edge detector.

Which kind of smoothing should be performed ? Three terms associated with image analysis opera-
tors arise here, to which we will give a more and more precise meaning.



The first one, “locality”, is related to the occlusion problem : most optical images are made of a super-
position of different objects partly hiding each other. It is plain that we must avoid mixing them in the
analysis, as would do e.g. a wide convolution. Thus, the analysis must be made as local as possible. As
we shall see, the heat equation is the worst candidate to the task, since it makes a wide-range mélange of
grey levels.

The second key word is “iteration”. Indeed, we shall see that it is generally better, from the locality
viewpoint, to iterate a very local smoothing operator than to apply it directly at a large scale. This is
precisely not true for the heat equation ! Iterating the convolution of small gaussian kernels is stricly the
same as convolving directly the image with a big gaussian. Now, iteration of very local filters will bring
a significant improvement for some of the most relevant nonlinear filters which we shall consider, namely
the median filter and the affine erosion-dilations. At this point, it must be immediately announced that
the combination of smoothing, locality and iteration implies that we are talking about parabolic partial
differential equations.

Our last key word is “invariance”. The invariance requirements play a central role in image analysis be-
cause the objects to be recognized have to be recognized under varying conditions of illumination (contrast
invariance) and from different points of view (projective invariance). Contrast invariance is one of the
key requirements of a famous image analysis theory, the Mathematical Morphology (Matheron [25], Serra
[32]). This theory proposed a list of contrast invariant image analysis operators (dilations, erosions, me-
dian filters, openings, closings,...) We shall involve this theory, as we shall attempt to localize as much
as possible the “morphomath” operators to extract their behaviour at small scale, and then iterate them.
As an outcome, we shall prove that several geometric partial differential equations, namely the curvature
motions, can be considered as the common asymptotic denominators to many “morphomath” operators.
These P.D.E.’s permit therefore to fuse the Scale Space doctrine and Mathematical Morphology. In par-
ticular, affine invariant morphomath operators, which looked unpractical, turn out to yield in their local
iterated version a very affordable P.D.E., the so called “affine morphological scale space” (A.M.S.S.).

In this paper, we shall make a survey of most P.D.E.’s which have been proposed for image analysis.

2 Image Processing and Analysis
Image processing can be divided in three parts, corresponding to as many different goals. The first one

derives from the discrete nature of images and the search of their minimal representation in terms of digital
memory. This discipline is called image compression (see Figure 1). The second goal is the restoration of

Figure 1: Compression. From left to right : An original image and its more and more compressed versions : compression
factor 7, 10 and 25 respectively. One of the first goals of image processing is the definition of algorithms permitting high
compression factors without visible alteration. Compression may, however alter the image.

a better version of an image, given a generation model with noise and blur, or other perturbations. This
is illustrated in Figure 2. The image on the left is apparently destroyed: more than 75% of its pixels
have been put at a random value. We can nontheless restore it significantly: here is, on the right, such
a restored version. The third goal is analysis , which means in Greek “breaking into parts”. Look at the
level curve of Figure 3, extracted from a hand image: it is full with a mix of details and noise. What
if we ask for a sketchy version, where, however, all essential details are kept ? The curve on the right



Figure 2: Denoising. A second goal of image processing : the restoration. Left: original noisy image (simulated salt and
pepper noise up to 75%), right: denoised version

is such a sketchy version, where most of the spurious details have disappeared, but the main structures
are maintained. This is what we shall call image analysis . The aim is not denoising or compression : it
is to construct an invariant code putting in evidence the main parts (here, for instance, the fingers) and
permitting a fast recognition in a large database of shapes.
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Figure 3: Analysis of a shape. Left : Original scanned shape, then some simplified versions : the aim here is not restoration,
but analysis, that is, to define more and more sketchy versions of the shape. Those sketchy versions may permit a very short
and invariant encoding of the shape. Notice how the number of inflexion points of the shape has decreased in the simplification
process.

3 The Heat equation

The heat equation arises naturally in the image generation process. Indeed, according to Shannon’s the-
ory, an image can be correctly represented by a discrete set of values, the “samples”, only if it has been
previously smoothed. This is illustrated in Figure 4 : Let us call the original baby image “Victor”. If
we attempt to reduce the size of Victor by a mere subsampling, that is by taking a point of each sixteen,
we obtain a new and smaller image, in which the subsampling has created new and unstable patterns :
see how new stripes have been created, with a frequency an direction which has nothing to do with the
original ! If, instead of being steady, the camera moved, those newly created patterns would move and
flicker in a totally uncontrolled way. This kind of moving pattern appears often in recent commercial
DVD’s. They have simply been subssampled against the Shannon rule. Let us now comment briefly how
the subsampling should be done. According to Shannon’s theory, a previous smoothing must to be done
before the subsampling. We start with ug, the original image, a real function defined on a domain of IR2.
Then a blur kernel k is applied, i.e. we convolve ug with k£ to obtain a new image k * ug. A subsequent
subsampling is thereafter possible, where the distance between samples is related to the band-width of the
blur kernel by the Nyquist rule. Stability of the image representation is maintained.

This simple remark, that smoothing is a necessary part of image formation, leads us to our first PDE’s.
Gabor remarked in 1960 that the difference between the original and the blurred image is roughly propor-
tional to its laplacian. In order to formalize this remark, we have to notice that k is spatially concentrated,



Figure 4: Shannon theory and subsampling. From left to right: original image, smoothed image, subsampling of the original
image and subsampling of the smoothed image. In the subsampling, one point of each 4 is taken in the horizontal and vertical
directions. In order to make the reduced image still visible, we have zoomed back the subsampled versions by a zoom factor
4. We clearly see that subsampling an image without previous smoothing creates aliasing : high frequencies are projected
onto lower frequencies and therefore generate new patterns. Shannon theory tells us how to remove those potentially parasite
high frequencies before subsampling. This results in the necessity of smoothing the image before subsampling.

and that we may introduce a scale parameter for k, namely kj(x) = h=' k(h~'/?x). Then

ug * kp(x) — uo(x)

A — Aug(x),

so that when h gets smaller, the blur process looks more and more like the heat equation

0
8—1: = Au, u(0) = uo.

Conversely, Gabor deduced that we can, in some extent, deblur an image by reversing time in the heat

Figure 5: Heat equation and blur. Left : original image, right : the heat equation has been applied to some scale and the
resulting image is blurred.

equation :

ou
E = _Au; U(O) = Uopbserved-
Numerically, this amounts to substracting its laplacian from the observed image :

Urestored = Wobserved — RAUobserved-

This operation can be repeated several times with some small values of h, until it... blows up. Indeed,
the reverse heat equation is extremely ill-posed. All the same, this Gabor method is efficient and can be
applied with some success to most digital images obtained from an optical device. Let us examine what
happens with Victor (Figure 6). We see that the method yields some improvement at the beginning and
then blows up. We can also simulate a blur on Victor and try to go back : again, the process blows up
but yields a significant improvement at some scale.



Figure 6: Gabor’s deblurring. Gabor proposed in 1960 to deblur an image by substracting its laplacian : this means
inverting the heat equation ! Left : original image, middle : three iterations of Gabor’s algorithm, right : ten iterations. As
is well known, and can be observed in the right image, the inverse heat equation blows up. A few iterations can, as we see
in the middle, nicely enhance the image.

Figure 7: Gabor’s deblurring again. Same deblurring experiment as in Figure 6, but applied on a much more blurred image

We therefore see two directions. One is to improve, to stabilize, the reverse heat equation. We shall
see that this is doable by nonlinear models. The second direction is to go on with the heat equation :
we can numerically simulate a further blurring of the image. Why should we do so ? Because, first, this
leads to the wavelet theory and its applications to optimal multiscale sampling and compression. Second,
iterated linear and nonlinear smoothing (that is, nonlinear PDE’s) will be relevant to our main goal :
image analysis.

4 Inverse heat equation and deblurring

We can indeed improve the time-reverse heat equation. The first example, due to Rudin and Osher in
87 [31] and 92 [30] proposes an pseudoinverse, where the propagation term —Du— (the modulus of the
gradient of u) is tuned by the sign of the laplacian.
ou

— = —sign(Au)|Du-
o gn(Au)| Dy
The equation is called “shock filter”. As we shall see, this equation propagates, with a constant speed, the
level lines of the image in the same direction as the reverse heat equation would do. It therefore enhances
the image. The equation is more or less equivalent to a good old nonlinear filter due to Kramer in the
seventies. Kramer’s filter [21] can be interpreted as a partial differential equation, by the same kind of
heuristic arguments which Gabor developed to derive the heat equation. This equation is

ou

5; = —sisn(D*u(Du, D)) |Dul.



Thus, the laplacian is replaced by a directional second derivative of the image, D?u(Du, Du). We shall
later on interpret this differential operator as an “edge detector”. Kramer’s equation yields a slightly
better version of shock filter as is illustrated in Figure 8. Both deblurring equations work... to some

Figure 8: Image deblurring by shock filters and by a variational method. From left to right : blurred image, Rudin-Osher
shock filter [30] which is a pseudoinverse of the heat equation attaining a steady state, Kramer’s [21] improved shock filter,
also attaining a steady state and the Rudin, Osher, Fatemi [30] restoration method, obtained by deblurring with a controlled
image total variation. This last method is very efficient when the noise and blur models are known. It is currently being
used by the French Space Agency (CNES) for satellite image restoration.

extent. They experimentally do not blow up and attain steady states ! The third deblurring method we
can mention here is, to our knowledge, the best version. It poses the deblurring problem as an inverse
problem. Given the observed image ug, we try to find a restored version u such that k x u is as close as
possible to ug and the oscillation of « is nontheless bounded :

Urestored = Argmin (/ |DU| + )‘(k *U — u0)2> .

The parameter A tunes the oscillation we allow for the restored version. If A is large, the restored version
will satisfy accurately the equation k * u = ug, but may be very oscillatory. If instead A is small, we get a
smooth but unaccurate solution. This parameter can be computed in principle as a Lagrange multiplier.
The obtained restoration can be remarkable. We display the best result we can obtain with the blurred
Victor in Figure 8-right. This total variation restoration method also has fast wavelet packets versions. It
recently won a benchmark in satellite image deblurring organised by the French Space Agency (CNES).

The original remark of Gabor, about image generation being related to the Laplacian of the image,
leads to the wavelet theory as well. Here is how it works : if we convolve the image with some smoothing
kernel and thereafter make the difference, we obtain a new image, actually a laplacian, which turns out to
be faded with respect to the original. In Figure 9, the last image on the right shows in black the values of
this laplacian image of Victor which differ significantly from zero : in most natural images, as here, this
representation is sparse and adapted to compression. This is why one of the first wavelet representations,
due to Burt and Adelson in 83 [4], was called “Laplacian pyramid”. It boils down to the iteration of a
convolution followed by subsampling. We only keep the differences between images smoothed at different
scales, i.e. their laplacians. The objective is a compressed representation, but to the price of a loss of
invariance due to the multiscale subsampling.

In image analysis, the heat equation has had a very different use: Marr [24], Hildreth [24], Canny [5],
Witkin [38], Koenderink [19] proposed in the eighties to analyse an image by applying the heat equation.
As Rudin and Florack noticed, this is related to distribution theory. Indeed, details of the images, like
boundaries, corners and other singularities cannot be computed without some previous smoothing because
they are derivatives of a nonsmooth function. And this smoothing has to be multiscale because the image
is multiscale ! The heat equation is easily proved to be the only good candidate to the task if image analysis
has to be linear. What derivatives should be computed in an image ? The early research in computer vision
proposed “edge detection” as a main tool : it is assumed that the apparent contours of the objects and
also the boundaries of the facets of objects, result in step discontinuities in the image, while, inside those
boundaries, the image oscillates mildly. The apparent contour points, or “edges points” will be computed



Figure 9: The “laplacian pyramid” of Burt and Adelson [4]. From left to right : original image, image blurred by gaussian
convolution, then difference between the original image and the blurred version, which simulates the laplacian of the original
image. In black in the last image, points where this laplacian image is large. This experiment simulates the first step of
the laplacian pyramid. The laplacian image is, for most digital images, a sparse representation, therefore well adapted to
compression.

as points where the gradient is is some sense largest. Two ways to do so : Hildreth and Marr proposed the
points where Aw crosses zero. A significant improvement was done by Canny, who proposed to compute
the points where |Du| is maximal on the gradient lines. Such points satisfy D*u(Du, Du) = 0. Figure 10
displays what happens when we smooth the image with the heat equation and compute the points where
D*u(Du,Du) = 0 and |Dul| is large enough. At first, everything in the image is boundary : the image,
being a very oscillatory function, has “inflexion points” everywhere ! After some evolution of the heat
equation, we can see what happens : we are able to extract some structure.

Figure 10: Heat equation and Canny’s edge detector. Boundaries, or “edges” of the image can be defined as points where
the gradient attains a maximal and large value along the gradient lines. This amounts to say that edge points are points
where D2?u(Du, Du) crosses zero and |Du]| is large. Canny’s edge detector [5] computes those points. On the left, the original
image, followed by the edge points found. They make a very dense set, because of the oscillatory character of the image.
Next, the image blurred by the Gauss kernel (heat equation) and the Canny edges found. The heat equation has removed
the “irrelevant” edges

5 Nonlinear diffusion models

If the heat equation is, under sound invariance requirements, the only good linear smoother, there are
instead many nonlinear ways to smooth an image. The first one was proposed by Perona and Malik in 87
[29]. The idea is roughly to smooth out what has to be smoothed, the irrelevant, homogeneous, regions
and to enhance instead the boundaries. Thus, the diffusion should look like the heat equation when |Du|
is small and an inverse heat equation should instead be applied when |Du| is large. Here is the equation
in divergence form.

S = aiv (g(DuP))
1

where g(s) = Tas7 decreases when s increases. It is easily checked that we have a diffusion equation when
|Du| < X and an inverse diffusion equation when |Du| > A. In order to do so, we rewrite the equation in



the following way. We consider the second derivative of u in the direction of Du,

Du Du
=Dy =, =
tm = 20 (|Du|’ |Du|>

and the second derivative in the orthogonal direction,

Du 1 Dut
=D%y | === =
e “( D[’ |Du|)’

where Du = (ug,u,) and Dut = (—uy,u,). The laplacian can be rewritten in the intrinsic coordinates
(&,m) as Au = uge + uy,. The Perona-Malik equation rewrites

Ou _ Ugg + (1 = X?|Dul?)ugy
0t 14+ X2|Dul? (14 X2|Dul?)? ~

So the first term always appears as a one-dimensional heat equation in the direction orthogonal to the

Figure 11: Perona-Malik equation [29] and edge detection : same experiment as in Figure 10, but the heat equation has
been replaced by the Perona-Malik equation. Notice that the edge map looks slightly better localized than with the heat
equation.

gradient, tuned by the size of the gradient though. The second term can be a directional heat equation, or
reverse heat equation in the direction of the gradient. So we indeed mix in this model the heat equation
and the reverse heat equation ! We compare in Figure 11 the Perona-Malik with the classical heat equa-
tion in terms of accuracy on the boundaries obtained by Canny’s edge detector : at a comparable scale of
smoothing, we clearly gain some accuracy in the boundaries and get rid of more “spurious” boundaries.
The representation is both more sparse and more accurate.

Now, this ambitious model attempts to put in a single operator two very different goals which we
already mentionned, namely restoration and analysis. This has a cost : the model contains a “constrast
threshold” which can only be fixed manually. Mathematical existence and uniqueness are not guaranteed,
despite some attempts by Kichenassamy [17] and Weickert. Let us summarize the involved parameters :
we need to fix both X and the smoothing scale(s) ¢ and the threshold on the gradient in Canny’s detector as
well. We obviously must take the same gradient threshold A in Canny’s detector and in the Perona-Malik
equation. All the same, we have a two parameters game : how will this be dealt with in automatic image
analysis 7 This question seems to have no general answer for the time being. An interesting attempt based
on statistical arguments is made, however, in Black, Sapiro.

If any nonlinear diffusion can be an image analysis model, why not trying them all ? This is exactly what
has happened in the past ten years. We can claim that almost all possible nonlinear parabolic equations
have been proposed. The logic in this proliferation of models is this : each attempt fixes one intrinsic
diffusion direction and tunes the diffusion by the size of the gradient or by the size of a nonlinear estimate
of the gradient. Sometimes, the proposed models are even systems of PDE’s, but in order to remain
concise, we shall focus on the simplest proposed examples. We can start with Rudin-Osher-Fatemi’s model



[30], which consists, for the smoothing term, of minimizing the total variation of u. The gradient descent

for [|Dul| writes
Ou Qi Du 1 "
— =div | 7= | = —=—uge.
ot |Du|) ~— |[Du|

Written in that way, the method appears as diffusion in the direction orthogonal to the gradient, tuned by
the magnitude of the gradient. Caselles et al. proved that this equation is indeed well posed in the space
of bounded variation. A variant was proposed independently by Alvarez and al. [2],

Ou | Dul| dgi Du 1 "
— = v =
dt |k Dul [Du|) — |k Du|

where the tuning of the gradient is nonlocal. Kimia, Tannenbaum and Zucker [18] proposed, endowed in
a more general shape analysis framework, the simplest equation of the list,

ou Du Du 1 Dut
— = |Du|div | = | = D*u | —=—, T | = uge.
o~ 1P ”<|Du|) “(|Du|’|Du|) et

This equation had been proposed some time before in another context by Sethian [33] as a tool for front
propagation algorithms. This equation, which we call in continuation “curvature equation”, is a “pure”
diffusion in the direction orthogonal to the gradient. The Weickert equation is a variant of the curvature
equation, with nonlocal estimate of the direction orthogonal to the gradient : the diffusion direction
d = SEigen(k * (Du ® Du)) is computed as the eigenvector of the least eigenvalue of k * (Du ® Du) : if
the convolution kernel is removed, this eigenvector simply is Du®. The three mentionned models can be
interpreted as diffusions in a direction orthogonal to (an estimate of) the gradient, tuned by the magnitude
of the gradient (Figure 13). Other diffusions have been considered as well : for interpolation goals, Caselles

b v

Figure 12: A proliferation of diffusion models. From left to right: Original image, Perona and Malik equation 1987
[29], Zhong, Carmona 1998 [6] (diffusion along the least eigenvector of D2u) and Sochen, Kimmel and Malladi, 1998 [34]
(minimization of the image graph area.

et al. [10] proposed a diffusion which may be interpreted as the strongest possible image smoothing,

Ou
ot
This equation is not used as the other ones as a preprocessing of the image, but a way to interpolate
between the level lines an image with sparse level lines (Figure 14). Zhong and Carmona [6] proposed a
diffusion in the direction d = SEigen(D?u) of the eigenvector with least eigenvalue of D?u (Figure 12).
Sochen, Kimmel and Malladi [34] propose instead a nondegenerate diffusion, associated with a minimal

surface variational formulation : their idea was to make a gradient descent for the area of the graph of u,
J /1 + |Dul?, which leads to the diffusion equation (Figure 12).

D?u(Du, Du).

ou gi Du
— =div| — | .
ot 1+ |Dul?



Figure 13: A proliferation of diffusion models (II). From left to right: Osher, Sethian (1988) curvature equation [33], Rudin,
Osher and Fatemi(1992) minimization of the image total variation [30], Alvarez, Lions et al. (1992) nonlocal variant of the
preceding [2], Weickert (1994) nonlocal variant of the curvature equation [36]. All of these models only diffuse in the direction
orthogonal to the gradient, with a more or less local estimate of this direction.

Figure 14: A proliferation of diffusion models (III) Here, the diffusion is made in the direction of the gradient and the
model is applied for image interpolation when level lines are sparse. From left to right : original image, quantized image
(only 10 levels are kept - 3.32 bits/pixel) and reinterpolated image by the Caselles and Sbert (1998) algorithm [10]. They
apply a diffusion on the quantized image, with values on the remaining level lines as boundary conditions.

6 Contrast invariance and shape analysis

Among the mentionned models, only the curvature motion was explicitly proposed by Kimia, Tannenbaum
and Zucker [18] as shape analysis tool. We shall now explain why.

In order to do so, we have to give a definition of image analysis. There might be as many ways to define
this discipline as they are applicational goals involving digital images. Now, the range of applications is
as wide as the human activity, since most of the scientific and technical human activity, including even
sound analysis (visual sonagrams), involves the perceptual analysis of images. Fortunately, we have at
hand a mathematical shortcut to avoid an endless list of partial and specific requirements : this shortcut,
well known in Mechanics, consists of stating invariance requirements. Invariance requirements will be a
short list and they will, as we shall see, give a possible classification of models and point out the ones
which are the most adequate for all purposes image analysis tools. The first invariance requirement is
the Wertheimer principle [37] according to which visual perception (and therefore, may we add, image
analysis) should be independent of the image contrast. We state this in the following way :

Contrast invariant classes
u and v are said to be (perceptually) equivalent if there is a continuous increasing function g such that

v = g(u).
Contrast invariance requirement

An image analysis operator T' must act directly on the equivalence class. As a consequence, we may ask
that T'(g(u)) = g(T'u), i.e. a commutation of the image analysis operator with contrast changes.
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The contrast invariance requirement rules out the heat equation and all models stated before, except
the curvature motion. Contrast invariance led Matheron in seventy-five to reduce image analysis to a set
analysis, namely the analysis of level sets. We call upper level set with level A of an image u the set

Xu = {x,u(x) > A}.

We can define in exactly the same way the lower level sets, by changing “>” into “<”. The main point
to retain here is the global invariance of level sets under contrast changes, namely, if g is a continuous
increasing contrast change, then,

Xg()\)g(u) = X)\u.

According to Mathematical Morphology, this image analysis doctrine founded by Matheron, all of the
image shape information is therefore contained in the level sets : it can be proved that an image can be
reconstructed, up to a contrast change, from its set of level sets (Figure 15 : an image and some of its level
sets).

Figure 15: An image and one of its level sets. Right : level set 140 of the left image. This experiment illustrates Matheron’s
thesis that the main shape information is contained in the level sets of the image. Level sets are contrast invariant.

The contrast invariance requirement yields powerful and simple denoising operators as the so called
“Extrema killer” defined by Vincent [35] and Serra in 1993. This image operator simply removes all con-
nected components of upper and lower level sets with area smaller than some fixed scale. This is not a
PDE, actually it’s much simpler ! Now, its effect is amazingly good for impulse noise i.e. local destruc-
tions of the image, spots. In Figure 16, we see a image degraded up to 75%. Below, its restoration by the
extrema killer. Left, result of the same operator applied to the original.

Figure 16: The ”extrema killer” filter : all connected components of the upper or lower level sets with small area are
removed from the image. From left to right : original image, extrema killer applied with area 80 pixels, then 75% salt and
pepper noise added to the original image and the same filter applied.

Caselles and Coll localized farther in 1996 [8] the contrast invariance requirement in image analysis. They
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proposed as the main object of analysis the level lines of the images, that is, the boundaries of level sets.
This proposition makes sense for a digital image, which is assumed to be a sampling of a very smooth func-
tion as the result of the optical smoothing. We can therefore define the level lines if, e.g., the interpolated
image is C! as is guaranteed by the canonical Shannon interpolation. There may be other interpolation
methods, and even interpolations into a discontinuous functions : this is the case if, e.g., we consider the
digital image as constant on each pixel. We must then for each interpolation method make clear how the
level lines are computed and what their structure is. Two properties are desirable : that the level curves
indeed are curves in some affordable sense (Jordan rectifiable curves) and that they are nested, i.e. never
cross, so that they make an inclusion tree. A study of Kronrod (1950) shows that if the function v is
continuous, then the isolevels sets {x,u(x) = A} are nested : they build a tree ordered by inclusion. Now,
these isolevel sets need not be really curves. Monasse (2000) generalized recently the preceding result to
lower semicontinuous or upper semicontinous functions. His result implies that the simplest, piecewise
constant, interpolation of an image yields a nested set of Jordan curves bounding the pixels. Thus, we
have two good ways to associate with the digital image a set of nested Jordan curves. We call this set
“topographic map” !. We display in Figure 17 the level lines of a digital image at some fixed level. By the
introduction of the topographic map, the search for image smoothing, which we had already reduced to
set smoothing, is further reduced to curve smoothing, provided of course this smoothing preserves curve
inclusion.

Figure 17: Level lines of an image. Level lines, defined as the boundaries of level sets, can be defined to be a nested set of
Jordan curves. They give a contrast invariant representation of the image. Right : level lines with level 183 of the left image.

Chen, Giga and Goto [11] and Alvarez et al. Alvarez:1993:AFE proved that, under the usual invariance
requirements for image processing, including the contrast invariance, all image multiscale analyses should
have the form of a curvature motion, namely

du = F(curv(u),t)|Dul,

ot
where F' is increasing with respect to its first argument. This equation can be interpreted as this : we
consider a point x on a given level curve of u(t), at time t. We call n(x) the normal vector to the level
curve and curv(x) its curvature. Then the preceding equation turns out to be associated with the curve
motion equation

ox
o5 = F(curv(x))n(x),

which describes how the point x moves in the direction of the normal. Not much more can be said at
this level of generality on F. Now, two particular cases happen to play a prominent role. First, the case
F(curv(u),t) = curv(u), the so called curvature equation which we already met, and second the case

I This point of view also is coherent with the “BV assumption” which we mentionned at the beginning of the introduction,
according to which the right function space for images should be the space BV of functions with bounded variation. By
coarea formula, we can then describe the image by a bunch of Jordan level curves (see Ambrosio et al.) Now, it is in general
false for BV functions that boundaries of lower and upper level sets make a nested set of curves : these curves may cross.
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F(curv(u),t) = curv(u)?.

This particular form for the curvature dependence, the power one third, permits to get a very relevant ad-
ditional invariance, the affine invariance. We would like to have a full projective invariance, but a theorem
proved by Alvarez et al. shows that this is impossible. The best we can have is invariance with respect to
the so called chinese perspective, which preserves parallelism. Most of the mentionned equations, particu-
larly when F is a power of curvature, have a viscosity solution in the sense of Crandall and Lions [12], as
shown by recent works of Ishii and Souganidis [16].

Contrast invariance is also naturally relevant in motion analysis, according to the principle that the light
intensity reflected by a same physical point (lying on a Lambertian surface) should not depend on the point
of view. In image epipolar geometry, where the x axis represent space and the y axis represent time, this
means that level lines correspond to trajectories (see Figure 18). In this non-isotropic context, a diffusion
has been proposed [26] that writes

T
ug = D?u(v,v), with v = (——, 1) .

Such a diffusion can be interpreted as follows : each level line of u, considered as a (potentially multivalued)
graph y(z), is filtered independently by the 1-dimensional heat equation [13]. The smoothing it performs
preserve the physical interpretation of the scene, as proven in [28].

Figure 18: A non-isotropic contrast-invariant diffusion devoted to epipolar motion filtering and depth recovery [26]. The
left images are original epipolar images : the x axis represent space, the y axis is time, and the level lines of each image are
trajectories of physical points. In order to estimate the slope of each trajectory (from which the geometry of the underlying
scene can be deduced), an anisotropic diffusion driven by the motion vector field is applied (right). Such a diffusion preserves
the physical interpretation of the image generation process, and thus does not interfere with the scene reconstruction process.

7 Affine Scale Space

As we already mentionned, contrast invariant processing boils down to level set, and finally level curve
processing. The above mentionned equations indeed are equivalent to curve evolution models, provided
strong existence results are at hand. This is the case for the most important cases, namely the power 1,
the so called “curve shortening” and the power 1/3, known as “affine shortening”. Grayson [15] proved
existence, uniqueness and analycity for the first equation,

B_)t( = curv(x)n(x)

and Angenent, Sapiro and Tannenbaum [3] for the affine shortening

ox (x)
— = curv(x
ot
Those results are very relevant to image analysis as they ensure that the diffusion process indeed reduces
the curve to a more and more sketchy version. We check the affine invariance in Figure 20 . We performed

W=

n(x).
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Figure 19: The Affine and Morphological Scale Space (AMSS model). From left to right : original image, level lines of the
images (16 levels only), smoothed image by using the affine and morphological scale space, and its level lines.

he numerical tests according to the fast and fully affine invariant numerical scheme described in [27], [20].
In the middle, the initial shape is an affine transform of the first one ; the shape on the right will be an
inverse affine transform of the middle shape. If everything is correct, we can expect that, after processing,
the shape on the right will be identical to the shape on the left. We make the experiment with both the
the curve shortening and the affine shortening. So, it works !

Evans, Spruck [14] and Chen, Giga, Goto [11] proved in 1991 that a continuous function moves by curva-

Figure 20: Experimental check of the affine invariance of the affine shortening (AMSS). We display on the left image three
shapes. The second one is obtained by applying an affine transform A to the first shape S, yielding a shape S’ = AS. The
third one is obtained from the second by the inverse affine transform. It therefore initially is A~1S’ = S. On the right
image : result after application of AMSS to the two first shapes : for some t, are viewed S(t), S’(t) and A=1(S’(t))). If the
numerical scheme is affine invariant, this third shape should coincide with S(t), which is indeed the case. Middle : the same
procedure applied with the curvature equation, which proves not to be affine invariant, as expected.

ture motion if and only almost all of its level curves move by curve shortening. This yields, in that case,
a mathematical justification of the now classical Osher-Sethian numerical method for moving fronts by
moving a distance function to the front. The same result is true for the affine invariant curve evolution.
The Osher-Sethian point of view is just converse to the point of view adopted here : they associate with
some curve C or surface its signed distance function v , so that the curve or surface is handled indirectly
as the zero isolevel set of u. Then w is evolved by, say, the curvature motion with a classical numerical
difference scheme. In that way, the curve evolution is dealt with efficiently and accurately. From our point
view, the image can be viewed as a distance function to all and each of its level sets, since we are interested
in all of them.

We show in Figure 19 an application of this numerical method, with both curvature and affine invariant
curvature motions. In order to gain visibility, we do not display all level curves, but only for about eigh-
teen levels. Notice that the aim is not here subsampling ; we keep the same resolution. It is not either
restoration : the processed image is clearly worse than the original. The aim is invariant simplification
leading to shape recognition.

8 Contours

Before proceeding to shape recognition, let us mention that a well adapted variant of curvature equation
can be used for shape detection. It’s a by now famous method of contour detection in an image, initially
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Figure 21: Computation of the curvature of the original sea bird image after it has been smoothed by curvature motion
at calibrated scale 1. The first image displays the smoothed version of the sea bird at a small scale. The second image
displays the absolute value of the curvature, with the convention that the darkest points have the largest curvature. We
have displayed the curvature only at points where the gradient of the image was larger than 6. (The image grey levels range
from 0 to 255). In continuation, we display on separate images the positive part of the curvature and the negative part. The
curvature motion can be used as a nonlinear means to compute a "multiscale” curvature of the original image. Compare
with Figure 22, where the calibrated scale of smoothing is 4 (a calibrated scale ¢ means that at this scale a disk with radius
t disappears).

Figure 22: Same as Figure 21, except that now the calibrated scale of smoothing is equal to 4 (instead of 1)

proposed by Kass, Witkin and Terzopoulos. This method was very unstable and the winning method
turns out to be a variant of curvature motion proposed by Caselles, Catté, Coll, Dibos [7] and improved
simultaneously by Caselles, Kimmel, Sapiro [9], and Malladi, Sethian [23]. Here is how it works. The user
draws roughly what are the contours he wants in the image and the algorithm then finds the best possible
contour in terms of some variational criterion. This turns out to be very useful in medical imaging. The
motion of the contour is a tuned curvature motion which tends to minimize the energy E which we will
now explain. Given an original image uy containing some circular contours which we wish to approximate,

we start with an “edge map”
1

1) = T Duy P

that is, a function which vanished on the edges of the image. The user then points out the contour he
is interested in, by drawing a polygon 7y surrounding roughly the desired contour. The “geodesic snake”
algorithm then builds a distance function vy to this initial contour, so that -y is the zero level set of vg.

15



The energy to be minimized is
E(v) = /g(X(S))ds,
¥

where ¢ is the edge map associated with the original image ug and s denotes the length parameter on ~.
The motion of the “analysing image” v is governed by

% = g|Dv|curv(v) — Dv - Dg.

We display an example in Figure 23.

Figure 23: Active contour, or ”snake” From left to right : original image, initial contour, evolved distance function, final
contour.

The main obvious application of invariant PDE’s seems to be shape retrieval in large databases. There are
thousands of different definitions of shapes, and of shape recognition algorithms. Now, the real bottleneck
has ever been extraction of the relevant shapes. The discussion above points to a brute force strategy : all
contrast invariant local elements, are are the level lines of the image, are candidates to be “shape elements”.
Of course, this name of shape element suggests the contours of some object, but there is no way to give
a simple geometric definition of objects. We must give up the hope of jumping from the geometry to the
common sense world. We may instead simply ask the question : given two images, can we retrieve all level
lines similar in both ? This would give a factual, a posteriori definition of shapes : they would be defined
as pieces of level lines common to two different images, no matter what their relationships to real physical
objects are. Of course, this brute force strategy would be impossible without the previous invariant fil-

W

Figure 24: Level lines based shape parser. Shape extraction has ever been the bottleneck of shape recognition algorithms.
With the presented algorithm, this problem is solved by a brute force method : it compares all level lines of the images to
be compared. Left pair of images : two images of a desk taken from different angles. In the left hand desk image, one level
line has been put in white. We display, also in white, in the right image of the pair, the matching level lines. The match is
ambiguous, as must be expected when the same object is repeated twice in the scene ! In the right pair of images, we display
in white all matching pairs of level lines. (Experiment : J.-L. Lisani).

tering (AMSS). It is instead doable if the level lines have been significantly simplified. This simplification
entails the possibility of compressed invariant encoding. In Figure 24, we present an experiment due to
Lisani et al. [22]. Two images of a desk are taken from different angles, and then, in white, all of the
pieces of level lines in Image 1 and in Image 2 which found a match in the other image. In continuation,
we present some of the matches. We notice that several of these matches are doubled : indeed, there are

16



two similar chairs in each images ! A Gestalt law comes immediately to mind. This law states that human
perception tends to group similar shapes. We now see the numerical necessity of this perceptual grouping :
a previous self-matching of each image, with grouping of similar shapes, must be performed before we can
compare it to other images !
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