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Abstract

The perspective projections of n physical points on two views (stereovision) are con-
strained as soon as n > 8. However, to prove in practice the existence of a rigid motion
between two images, more than 8 point matches are desirable in order to compensate for
the limited accuracy of the matches. In this paper, we propose a computational definition of
rigidity and a probabilistic criterion to rate the meaningfulness of a rigid set as a function
of both the number of pairs of points (n) and the accuracy of the matches. This criterion
yields an objective way to compare, say, precise matches of a few points and approximate
matches of a lot of points. It gives a yes/no answer to the question : “could this rigid points
correspondence have occurred by chance 7”7, since it guarantees that the expected number
of meaningful rigid sets found by chance in a random distribution of points is as small as
desired. It also yields absolute accuracy requirements for rigidity detection in the case of
non-matched points, and optimal values of n, depending on the expected accuracy of the
matches and on the proportion of outliers. We use it to build an optimized random sampling
algorithm that is able to detect a rigid motion and estimate the fundamental matrix when
the set of point matches contains up to 90% of outliers, which outperforms the best currently
known methods like M-estimators, LMedS and classical RANSAC.

keywords : stereovision, point matches, structure from motion, rigidity detection, funda-
mental matrix, meaningful event.

1 Introduction

Stereovision, and more generally structure from motion, is based on the fact that two images of a
static scene taken by a pinhole camera from two different viewpoints are redundant. A classical
approach to use this redundancy is to find the position of several physical parts of the scene
(typically points, or lines) in each image. This feature matching approach allows to recover, up
to a scale factor, not only the 3D position of the points before their projection in each image,
but also the camera motion and its intrinsic parameters [7, 2, 5]. All these methods use the fact
that two perspective projections of a static scene are related by the so-called epipolar geometry,



which is itself described by the fundamental matrix. This outlines the importance of estimating
the fundamental matrix from point matches, and explains the large attention it received in the
last two decades [3, 9, 11, 15, 17, 18, 19].

The epipolar geometry relies on a rigidity constraint. Indeed, in the camera referential,
changing the point of view amounts to apply an Euclidean motion (3D rotation and translation)
to the scene, or, in other words, to move it like a rigid object. Thus, stereovision is equivalent
to rigid motion estimation, though the latter is more general since several rigid motions may be
allowed at the same time.

In this paper, we propose a probabilistic criterion to detect the existence of a rigid motion
between two sets of point matches, that permits to decide whether these points are independent
or if they are correlated by a rigid motion. Since a rigid motion only involves a small number of
parameters (a 3D translation followed by a 3D rotation), a large number of point correspondences
between the two images cannot in general be explained by such a simple transform, so that true
point correspondences can be detected as large deviations from randomness.

Detecting the existence of a rigid motion between two images has several interesting appli-
cations. It can first be used as a high-level object (or scene) recognition method, relying on 3D
structure comparison rather than on photometric information, more subject to variations. The
detection and segmentation of rigid moving objects is also a potential application. Our approach
can also be used for stereovision and structure from motion, since it provides a very efficient
and robust way to estimate the fundamental matrix from a set of point matches.

Given a set of point matches, we define its rigidity as the least maximum epipolar distance
achieved for all epipolar geometries defined from 7 sub-pairs. Then, we define the meaningfulness
of a set as the expected number of similar sets (that is, having the same size and at least the
same rigidity) in a random uniform distribution of points. Such a detection against a random
uniform assumption had been proposed by Lowe [8] and Stewart[16], before a systematic simple
formulation, based on expectation (instead of probability), was developed in [1]. In the case we
consider here, the criterion we obtain not only gives a yes/no answer to the question “could it
have happened by chance that this set is so rigid ?”, but also provides a way to compare the
rigidity of sets with different sizes. Indeed, it combines the measurement of several parameters
(relative and total number of points, rigidity, etc.) into a single intuitive “expected number of
false alarms”. Such a parameter reduction has important consequences on the identification of
outliers in the fundamental matrix estimation problem. Compared to McReynolds and Lowe’s
approach [10], our method has several advantages. Among them are the fact that it has zero
parameter (the algorithm that computes the rigidity is not iterative and does not require multiple
thresholds to define a “stopping criterion for convergence” [10]) and the fact that it does not
require any assumption on the camera motion or preliminary estimates of the noise variance.

As we mentioned above, the criterion we define allows to build an efficient algorithm for
robust estimation of the fundamental matrix. For a small number n of point matches (say
n < 25), a deterministic algorithm (systematic search) may be used, but for the general case we
use a stochastic algorithm following the random sampling consensus (RANSAC), introduced in
the context of image analysis by Fischler and Bolles [4]. The rigidity detection criterion allows to
dramatically improve the performance of classical RANSAC algorithms. Our approach permits
to detect rigidity and to provide a good estimate of the fundamental matrix when the initial
set of point matches contains up to 90% of outliers. This outperforms the best currently known
algorithms like M-estimators, LMedS and RANSAC [15, 17], which typically break down around



50% of outliers.

This paper is organized as follows. In Section 2, we recall some basics of epipolar geometry.
In section 3, we give a computational definition of rigidity, before we derive probabilistic criteria
to rate the meaningfulness of a given rigid set of point matches. We also discuss the case of
non-matched points, and prove the existence of an absolute accuracy requirement for rigidity
detection, and of an optimal value of n, depending on the accuracy of the matches and on the
proportion of outliers. In Section 4, we describe the deterministic and stochastic algorithms
mentioned above, before we present some experiments in Section 5.

2 Epipolar geometry

2.1 The epipolar constraint

Epipolar geometry describes in a elegant way the constraints satisfied by two perspective pro-
jections m = (z y)T and m’ = (2’ y')7 of a physical 3D point M on two different images. For
pinhole cameras (calibrated or not), the relation

@y )F(zy)T =0 (1)

holds, where F', the fundamental matrix, is a 3 x 3 matrix with rank 2 that depends on the rigid
motion between the two image planes and on the camera parameters (position of the optical
center, and relative pixel size along both axes). Equation (1) has the following interpretation :
the point m’ of the second image plane belongs to the epipolar line F'm whose equation az’ +
by’ + ¢ = 0 is obtained from m = (z,y) by

(abce)T =F (zy1)T.

This epipolar line is nothing but the projection in the second image of the optical ray going
from M to the optical center of the first camera. The position of m' on this line is related to
the (unknown) depth of M, which is not involved in (1). The intersection of all epipolar lines
is called the epipole : it is the projection in the second image of the optical center of the first
camera.

The fundamental matrix can be factorized under the form F = C'EC~!, where C and C' are
3 x 3 calibration matrices depending on the cameras only and FE is the essential matrix defined
from the motion parameters T' = (% t, t,)" (3D translation vector) and R (3D rotation matrix)
by

0 —t, t,
E=| t 0 —t | R
~t, ty 0

The essential matrix has, like F', a null singular value, but in addition its two other singular
values are equal (see [3]).

2.2 Estimating the fundamental matrix from point matches

For calibrated cameras, only the essential matrix has to be recovered and the epipolar geometry
depends on 5 parameters : 2 for the 3D translation (the unknown scale factor lets us impose



||| = 1 for example), and 3 for the 3D rotation (matrix R). Since each point correspondence
produces one equation like (1), a minimum of 5 matchings is required to recover the epipolar
geometry. As shown by Faugeras [3], 5 matchings are sufficient but the computation is rather
complex (and unstable) and provides in general 10 solutions.

For that reason, and because more points are needed in the case of uncalibrated cameras, the
much simpler linear 8 points algorithm is preferred in general. Introduced by Longuet-Higgins
[7], this algorithm has been refined in several ways. The classical formulation is the following :
for each point match (m;,m;}), Equation (1) can be rewritten as a linear equation depending
on the 9 coefficients of F', viewed as a 9-dimensional vector f. Hence, 8 point correspondences
yield a 8 x 9 linear system

Af =0,

where the i-th line of A is obtained from the coordinates of m; and m/ (as noticed by Hartley [6],
these coordinates must be normalized to improve the conditioning of the matrix A). Since f is
defined up to a scale factor, this system permits to recover f. This can be done by looking for a
unit norm vector in the (generally 1-dimensional) null space of A. However, this method presents
a small drawback : the solution F' obtained is not a rank 2 matrix in general, which means that
the “epipolar geometry” underlying F' may not be consistent with a physical realization (epipolar
lines may not all intersect at the epipole).

The 7 points algorithm avoids this drawback by considering only 7 point matches while
enforcing the rank 2 constraint. The 7 x 9 linear system Af = 0 obtained with 7 point corre-
spondences yields in general a 2-dimensional space of solutions. If (F;, F3) is a basis of this space
(whose elements are now written as 3 x 3 matrices), then the fundamental matrix is obtained as
a solution F' = aF; + (1 — a)F5 of det F' = 0. This condition requires, in order to determine «,
the computation of the roots of a real cubic polynomial, and may yield 1 or 3 solutions. The fun-
damental matrices obtained with this method define a true epipolar geometry, where all epipolar
lines pass through a unique point (the epipole) while each of the 7 point correspondences are
realized exactly.

When dealing with more than 7 or 8 points, several methods exist. The classical Least Square
Minimization (LMS) looks for F' that minimizes ), (m;TFmZ)2 The solution, easily computed
using linear algebra, can then be improved by minimizing a more geometric criterion [9], the
sum of the squared distances from each point to the corresponding epipolar line, ir?, where
r; = dist(m}, Fm;). This criterion can be symmetrized into 37, 7247, with r} = dist(m;, FTm}).
These methods, and similar ones, heavily suffer from badly located points or false matches. This
is the reason why robust methods have been introduced, that are able to reject outliers in the
optimization process.

2.3 Robust methods

Among the most efficient robust methods are M-estimators, LMedS and RANSAC [15, 17]. M-
estimators (see [20] for example) try to reduce the influence of outliers by applying an appropriate
weighting of the distances. The criterion to minimize becomes ), p(r;), where p grows more
slowly than the square function. As pointed out by Faugeras and Luong, “it seems difficult to
select a p-function for general use without being rather arbitrary” [3]. RANSAC methods use a
set of fundamental matrices obtained from random sets of 7 point matches (with the 7-points
algorithm), to find the largest consensus set, that is the largest set of point matches achieving
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a given accuracy of the matches. Like M-estimators, RANSAC suffers from an arbitrary choice,
since an accuracy threshold has to be preset.

We shall see that the criterion we propose solves this difficulty by giving a way to combine
the set size and the matching accuracy into a single value, which in addition has an absolute
meaning. The algorithm we describe in section 4 is a generalization of the RANSAC method
that takes advantage of this absolute criterion. Contrary to the LMedS [19], which solves the
threshold problem by using Least Median of Squares, our approach is valid far beyond 50% of
outliers, as shown in Section 5.

3 A criterion for rigidity detection

3.1 Measuring rigidity

The question we ask is the following : let m; = (z;,y;) and m] = (z},y.) be the n points
found in the two images, how can we decide that each pair (m;,m}) represents the projection
of a 3D point in two different image planes 7 If this was exactly true, the epipolar constraint
(2} 44 1) F (z; y; 1)7 = 0 should be satisfied for all i and for some 3 x 3 matrix F with rank 2, but
in practice some location errors will occur and we have to measure how bad a correspondence
is. We choose to measure the rigidity of a matching set S = {(m;,m})}i=1., € (I x I')" (I and
I' represent the (convex) domains of the 2 images) with the following physical criterion.

Definition 1 Let F be a 3 X 3 matriz with rank 2. The F-rigidity of a set S of point matches
between two images is

2D’
= max _dist(m’, Fm) (2)

aF(S) Al (m,m’)eS

where F'm is the epipolar line associated by F to m, dist the Euclidean distance, A’ the area of
the second image domain and D' its diameter.

We shall justify later the normalization coefficient %, but we can notice that it yields a scale-
independent definition of rigidity. Contrary to classical criteria, we use the [*® norm (maximum)
instead of the /2 norm (sum of squares). This has the advantage of being extremely selective
against outliers, and simplifies most of the computations that will follow. However, our approach
could also be applied to a more usual I? criterion by using the Central Limit Theorem. As usual,
(2) may be symmetrized by using

2D’ 2D
ap(S) = (mgln%cesmax ( T dist(m', Fm), e dist(m,FTm')> . (3)

Now, we could define a meaningful point correspondence as a matching set S for which
ap(S) is too small (for some F') to be reasonably explained by randomness. Let us precise this :
if we suppose that the points of S are randomly, uniformly, and independently distributed in
(I x I')™, then we can define the probability ¢(t) = P [infr ap(S) <t]. A meaningful point
correspondence could then be defined as a matching set S for which ¢(infr ap) is very small,
say less than 1072. However, the computation of the probability q seems very difficult, and
this is why we develop a more feasible approach based on ezpectation, following [1]. Instead



of controlling the probability of a false detection (a false detection is a rigid set detected in a
random distribution of points), we shall measure the expected number of false detections. In
other words, our criterion will be designed in order to ensure that the number of detections for
random data is as low as desired. As we shall see, this requires a quantization of the number of
tests (candidates for F') performed.

3.2 A computational definition of rigidity

According to the previous remark, the rigidity of a matching set S should be defined by
infp ap(S), that is to say by minimizing the matching error among all possible F. However,
this definition is too difficult to manage with and we adopt a more computational point of view.

Definition 2 A matching set S = {(mi, m})}i=1..n is a-rigid if there exists a fundamental matriz
F associated to a subset of 7 matchings of S such that ap(S) < a.

Note that we could have used as well ap(S) in this definition. From this definition, the
rigidity of S could be defined as the least « for which S is a-rigid. This implies the computation
of up to 3(?) fundamental matrices (since, as we saw previously, the 7-points algorithm may
produce up to 3 solutions). The fact that this computation becomes rapidly unfeasible when n
becomes larger than 25 (see Table 1) justifies the use of less systematic estimates, allowed by
Definition 2.

number of transforms, 3(?) expected computation time

8 24 0.0008 s

10 360 0.012 s

15 19,305 0.64 s

20 232,560 7.7s

25 1,442,100 48 s

30 6,107,400 3 min 30 s

50 3 108 2h45

100 4.8 1010 18 days

Table 1: Number of transforms that would be required to define the exact rigidity of a set of
n point matches, and the associated computation time on a recent PC laptop (1 GHz). The
rapidly increasing computational cost justifies the less systematic Definition 2 of a-rigidity. Our
implementation of the 7-points algorithm is able to handle around 10,000 7-point matches (that
is, up to 30,000 fundamental matrices) per second (see Section 4).

In comparison with the ideal approach that would consist in estimating the best F' among
all possibilities (and not only among solutions of the 7-points algorithm), we have reduced the
number of possible F' in the spirit of the RANSAC paradigm. This is not too restrictive, though,
since if there exists a good correspondence between the point matches of S, it is likely that the
7-points algorithm will produce a good approximation of the “ideal” F (that is, minimizing
ap(S)) for some subset of 7 point matches of S. Moreover, this quantization of the possible F
will have very important consequences in the next section.



3.3 Meaningful rigid sets
3.3.1 The ideal case (checking rigidity)

Now we have given a definition of approximate rigidity, we use the notion of e-meaningful event
introduced in [1] to reduce the set parameters (n, the size of S, and «, the rigidity threshold)
to a single intuitive parameter, an expected number of false alarms.

Definition 3 Let E be a discrete set of random variables taking values in an ordered set, and
e € E. The event “e < t” is e-meaningful if its associated number of false alarms, defined by
|E| - Ple < t], is less than ¢.

This definition ensures that the expected number of e-meaningful events among a realization
of E is less than ¢ (in average, we have less than ¢ false detections). In the following, we will
use this simple criterion to define meaningful rigid matching sets. The underlying model will be
the following : the points m; and m] are uniformly and independently distributed on I and I".

Proposition 1 A matching set S of size n (n > 8) is e-meaningful as soon as it is a-rigid with
e1(a,n) :=3- (:) v < e (4)

The number €1 measures the meaningfulness of the rigidity of a given set of point matches.
Hence, Proposition 1 not only provides an intuitive threshold for rigidity detection, but also
gives a way to compare the meaningfulness of two sets : since €1 measures the expected number
of a-rigid sets of size n for random points, the smaller €1, the better the accuracy of S is. We
can also notice that Proposition 1 remains true when a-rigidity is defined with &y (instead of
ap) since ap < ap. We keep using ap in the following because we did not see how to improve
significantly the meaningfulness thresholds in the symmetric case (in particular because some F'
are such that ap = ap).

Proof of Proposition 1 : Let T C S be a set of 7 point matches, and F' one of the associated
rank 2 fundamental matrix. If (m;, m;) belongs to T', then the distance from m/ to the epipolar
line [ = F'm; is zero by construction. If it belongs to S — T', then m/} and [ are independent and
since the intersection of [ with I’ has length less than D, the t-dilated of [ in I’ has area less than
2tD and the probability that dist(m},l) < ¢ is less than 2¢D/A. Consequently, the probability
that ap(S) < « is less than " 7. Now, the number of subsets T' of S with 7 elements is (7),
and since each of these subsets can produce at most 3 matrices F', we have |E| < 3- (?) Hence,
for every « satisfying (4), any a-rigid set of n point matches is e-meaningful. O

Equation (4) is very encouraging for the detection of rigidity in the case of already matched
points. Indeed, as n grows, the left term goes quickly to zero and a set of point matches is not
required to be a-rigid with « very small to be detected as rigid, provided that it contains enough
points. More precisely, when n tends to infinity (4) writes

1 C+1 1
loga < —7 08T | + loge + O ( Oan) , (5)
n n n—+00 n




where C' = log(7!/3) = 3.22... (all logarithms taken in base 10). The proof is given in Appendix.
The link between «, n and ¢ is illustrated on Figure 1. We can see, for example, that even with
a low accuracy (3.5 pixels on a 1000 x 1000 image), 10 points are enough to define a meaningful
rigid set (e = 1073).
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Figure 1: Detectability curves in the (n,loga) plane for several meaningfulness values €1. A
rigidity value of loga = —2 corresponds to a maximum epipolar distance equal to 3.5 pizels on
a 1000 x 1000 image (all logarithms taken in base 10).

3.3.2 The case of outliers

Up to now, we have studied the meaningfulness of the whole set of point matches. This is not
very realistic since in practice the presence of outliers (badly located points or false matches)
cannot be avoided. Moreover, our definition of rigidity, defined as a maximum epipolar distance,
is very sensitive to outliers. Hence, we need to consider the case when the set we consider for
rigidity detection is not the whole set S of point matches but only a subset of it, S’. Compared
to the previous case, we now have to count, in the expected number of false alarms, the number

n

of possible choices for k (that is, n — 7) and the number ( k) of possible subsets of S with size k.

Proposition 2 A set S’ C S of k point matches among n is e-meaningful as soon as it is

a-rigid with
ea(a,n, k) :==3(n—17)- (Z) . ({;) T < e (6)

As before, we can derive asymptotic estimates from (6). If p = 1 — k/n is the (fixed)
proportion of outliers, then assuming 0 < p < 1 and n — 0o, we can rewrite (6) into

15logk C+loge + B, — 74, logn
logar < =4, = 2k + k + n—>O+oo n? )’ (7)
with A, = —log(l — p) — £-logp and B, = —3log (2mp(1 — p)?). This estimate is proven

in Appendix. Compared to (%), the main difference lies in the leading term —A, that forces
a fixed gain (depending on p) in the accuracy of the matches. On Figure 2, we can see that
discovering a rigid set among 75% (resp. 90%) of outliers requires a gain of 1 (resp. 1.4) for



log o, which comes down to dividing the maximum allowed epipolar distance by 10 (resp. 25).
Figure 3 illustrates the relation between n, p = 1 — k/n and « for ¢ = 1073, On figure 4, the
meaningfulness achieved for fixed values of n and « is presented as a function of p.
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Figure 3: Detectability curves (g2 = 1072) in the (n,loga) plane for different proportions p of
outliers. The curves present small oscillations because p = 1 — k/n cannot be ezactly achieved
in reason of the discrete nature of k and n (this could be avoided by interpolating the binomial

coefficients with the Gamma function).
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Figure 4: Log-meaningfulness log(ez) in function of the proportion p of outliers. Left : o = 1072
and n varies. Right : n =100 and a varies.



3.3.3 The case of non-matched points

We now consider a less structured situation : we suppose that some characteristic points have
been detected on the 2 images but we do not know how to match them together. In this case,
we have to take into account the fact that two subsets of k& points have to be chosen, and that
k! possible permutations remain to define point matches between these two subsets.

Proposition 3 Let P = {m;}i=1.n and P' = {m}}i=1.n the points detected on each image. A
matching set S of size k formed by disjoint pairs taken from P x P' is e-meaningful as soon as
it is a-rigid with

es(a,n k) == 3(n—7)- (Z>2 k! (’;) b T < (8)

We have assumed for simplicity that |P| = |P’|, but in the general case where |P| = n and
|P'| = n', we would obtain the condition

3min(n — 7,n' —7) - (Z) : (Z) K- (’;) b7 <.

The condition (8) is very different from the previous case (6), because the matching pairs now
have to be found. In particular, even for n = k (all points matched), the function n — e3(a,n,n)
is increasing when n grows to infinity. This means that for a fixed rigidity «, no meaningful
rigid set can be found beyond a certain value of n. The following proposition states this more
precisely (see Appendix for the proof).

Proposition 4 If e3(a,n,n) < 1, then

1 e
a < 3 and n < o + ago(log a),

and the minimum of n — e3(a,n,n) is obtained for a unique n =1 such that

1
n=—-—8+ O (a).
(67 a—0
Moreover, one has
1 3
loges(a,n,n) = — o8c _ —loga—C'+ O (a), (9)
o 2 a—0

with C' = log%! — 2log(2m) = 2.82... and loge = 0.434...

This proposition calls for several comments. First, it yields a universal threshold (1/32)
on the rigidity coefficient «, above which a set cannot be meaningfully rigid. Second, for any
expected rigidity « it suggests an optimal number n = (@) of characteristic points to be found
on each image, and guarantees that rigidity detection is possible for that n, since the right term
of (9) is negative for o small enough.

The situation is similar in the case of outliers. On Figure 5 (right), we can see that given
a precision @ and a meaningfulness threshold (e.g. €3 = 1073), the maximum allowed amount
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Figure 5: Detectability curves (e3 = 1073) in the (n,loga) plane for several values of p (left)
and in the (n,p) plane for several values of a (right).

p of outliers is not an increasing function of n : it increases up to an optimal value of n and
then decreases for larger values of n. For p fixed, the required rigidity threshold « behaves in a
similar way, and the less restrictive threshold is obtained for a particular value of n (Figure 5,

left).

For a practical! value of @ = 10~2?, we can see on Figure 6 (left) or on Figure 5 (right) that
the maximum allowed amount of outliers is around p = 0.25, and is attained around n = 80.
Large values of p can be attained for & = 10~* for example (see Figure 6, right), but this would
require an irrealistic precision (0.035 pixel in a 1000 x 1000 image) in the localization of the
characteristic points. This outlines an absolute limit of rigidity detection in the case of non-
matched points, and suggests that in most situations rigidity detection is not possible, since a
large amount of outliers is to be expected if no matching criterion is involved in the detection

of characteristic points.
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Figure 6: Log-meaningfulness log(es) in function of the proportion p of outliers, for several
values of n. Left : oo = 10725, Right : o = 1072.

However, small values of a (say o = 10~* and even less) may be attained by considering
what we could call colored rigidity. If we attach to each point some quantity ¢ that is expected
to be the same in each view (for example, a kind of dominant color around the point, or any

'ay = 1072® means a precision of about 1 pixel on a 1000 x 1000 image (see Equation 2). Achieving smaller
values is not impossible, but requires an excellent compensation of the camera distortions, and an accurate
sub-pixel registration algorithm.
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other measure not related to the location of the point), then the meaningfulness of a rigid set can
be improved by constraining not only a good match between each pair of points (« small), but
also between the values of ¢ measured at these points. If ¢ is a scalar quantity that is uniformly
distributed in 1,..M, then constraining |c(m;) — ¢(m})| < § for each pair (m;, m}) of matching
points allows to multiply the meaningfulness coefficient €3 by (%T’Ll)k, which practically amounts
to multiply « by 2‘57"'1. In this paper, we shall not investigate further this possibility of colored
rigidity, but we think this could yield an interesting way to compensate for the tight rigidity

thresholds and the huge computational cost required in the case of non matched points.

3.4 A few remarks

Before we describe the algorithms and present experiments, let us discuss the validity of the 3
models we presented. The first model (e1) concerns only the case when all point matches are to
be kept in the rigidity detection. Even if it is known that no outliers can be present, the use of
this model is questionable (that is, the second model should be preferred) since the less precise
point matches may reduce the meaningfulness of the whole set and compromise the precision of
F'. Hence, this first model has mainly a pedagogic value.

The second model (g9) is applicable when point matches are available between the two images,
provided that no location criterion was involved in the matching process. If, for example, each
point m; has been matched to the nearest mg in the second image (for some distance that may
not be the usual Euclidean distance), which supposes that some a priori assumption is made on
the relative camera positions, then a meaningful rigid set may be found by accident with the e
criterion, since the uniform model against which rigid sets are detected is not valid any more.
In this case, or when point matches are not known, the third model (e3) should be used.

The meaningfulness thresholds we derived should be distinguished from the algorithms used
for rigidity detection. Even if the meaningfulness thresholds count all possible transforms F
obtained from 7 point matches, which may represent a huge number (especially for €3), a selective
exploration of these transforms can be used in practice to detect rigidity. If, for example, some
restrictions are known about the epipolar geometry (this may be the case for a stereo pair, for
example), then this knowledge might be very useful to speed up the rigidity detection. All kinds
of optimized strategies for rigidity detection may be used, provided that all possible transforms
are counted in the derivation of the meaningfulness thresholds, as we did for e3.

We also would like to point out that even if our model uses a uniform distribution of points
to derive the meaningfulness coefficient, this is not an assumption to be realized by the observed
data since we detect rigid sets against this uniform model. If, for example, all points of the
second image are concentrated in a very small region, then this particular concentration (which
is in some way meaningful) might raise the detection of a rigid set. If a symmetrical definition
of rigidity is used, as suggested in Section 3.2, then this might only happen if this concentration
also occurs in the first image. In this case, the existence of a rigid set still makes sense, though
it would probably not be the simplest explanation of the observed distribution of points. This
suggests that a similar approach should also be applied for the detection of simpler motions
(given by homographies, affine or even Euclidean transforms), in order to allow the use of
Occam’s razor principle ( “the simplest explanation is the best”), which could be realized for
example with a Minimum Description Length [13, 14] criterion.
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4 Algorithms

4.1 Combinatorial search

We implemented the 7 points algorithm in C using the Singular Value Decomposition algorithm
from Numerical Recipes [12] and a classical explicit solver for the third degree equation raised
by the rank 2 constraint. Our algorithm is able to test 10,000 7-point matches per second (that
is, between 10,000 and 30,000 fundamental matrices) on a recent PC laptop (1 GHz).

When considering a fundamental matrix F' given by a subset 7' of 7 point matches of S,
we compute for each of the n — 7 remaining pairs the normalized distance «; between m; and
the epipolar line F'm;. We then sort these distances in the increasing order and obtain for each
value of k between 8 and n the subset Si(F) of size k such that 7' C Sy C S and ap(Sk) is
minimal. Since e2(a,n, k) is increasing with respect to « (see Equation 6), Sx(F') is also the
most meaningful (with respect to F') rigid set of size k containing 7. Then we find, among the
sets (Si(F)) , the most meaningful one (that is the one minimizing &), written S(F).

The deterministic algorithm works as follows : for each subset 7' of 7 point matches of S
and each of the (possibly 3) fundamental matrices F associated to T, we compute S(F). The
result of the algorithm is simply the most meaningful set S encountered in this systematic
search. We also compute, for each value of k, the most meaningful set with size k, that is the
most meaningful set Sy among the Si(F'). By construction, this function of k£ is minimal when
S =S.

k=8..n

4.2 Random Sampling algorithm

The algorithm above must be abandoned when n > 25 in favor of a stochastic version, as
shown by Table 1. Following the random sampling consensus, we run similar computations of
rigidity and meaningfulness as above, but only for certain fundamental matrices F' obtained
from randomly sampled 7-point matches. The algorithm can be written as follows :

set € = +00
repeat
find a random set T of 7-point matches
for each fundamental matrix F' associated to T’
compute the most meaningful rigid set S = S(F) associated to F
if £2(S) < &,set e=¢eo(U) and U = S
end
until the number of trials T exceeds N

return U and &

If we assume that among n point matches, k are correct (that is, we have n — k outliers), then
the probability of selecting at least one set of 7 correct point matches in N trials is

q:1—(1—%)N=1—<1—g2:2)N.

13




For ¢ = 95% (that is, log,(1 — q) ~ —3), we can see that the number of trials required is
approximately

N:3(%)7, (10)

which allows a proportion p = 1—k/n of outliers of about 70% to stay in reasonable computation
time limits (10,000 trials). A proportion of 90% outliers would require N = 30,000,000 trials,
which is unfeasible. However, we shall see that this estimate of N is questionable, and that we
manage to find a rigid set among more than 90% outliers in much less than 30,000,000 trials.

How do we compare to classical random sampling algorithms 7 In the RANSAC algorithm
(see [17] for example), a threshold has to be preset arbitrary to decide whether a set of point
matches is “compatible” with a fundamental matrix F. Then, using random sampling, the
largest compatible set is selected. Our algorithm works in a similar way, except that no arbitrary
threshold has to be selected : we use the €2 criterion to rate the meaningfulness of a set of point
matches in function of its size (k) and its rigidity («). This way, we allow large sets of fair point
matches as well as small sets of accurate ones, which probably explains why we obtain better
results (see Section 5). More than that, we know in the end if the most meaningful set found
by the algorithm can be considered as meaningfully rigid (that is €9 < 1) or if it could have
been that rigid by accident. Last, the selection of the most meaningful rigid set allowed by the
€9 criterion permits to define a very efficient optimization step, as shown below.

4.3 Optimized Random Sampling Algorithm (ORSA)

There is a simple way to improve the stochastic algorithm. It relies on the idea that, in average,
the proportion of outliers should be smaller than p among the most meaningful rigid sets. This
suggests that the final optimization step below should be applied to the most meaningful rigid
set U found so far.

set € = e9(U)
repeat
find a random set T' of 7-point matches among U
for each fundamental matrix F' associated to T
compute the most meaningful rigid set S = S(F) associated to F
if £9(S) < &,set £=¢eo(U) and U = S
end
until the number of trials T' exceeds Ny

If U is absolutely meaningful (that is, e2(U) < 1), this optimization step converges very quickly
and N,y does not require to be large. In any case, it cannot be harmful since € is constrained
to decrease. In practice, we set Ny = % and apply this optimization step to the first absolute
meaningful set found by random sampling, or, if none has been found after N — N, trials, to
the most meaningful set found so far. In this way, we ensure that the total number of trials
cannot exceed N (but can be as small as Ny, + 1), while improving dramatically the detection
of outliers, as shown in Section 5. We shall refer to this algorithm with the ORSA acronym.

The algorithms we presented could probably be improved by using a “positive depth” con-
straint to quickly detect potential outliers associated to a given fundamental matrix F. However,
we did not implement this constraint for simplicity reasons.
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5 Experiments

5.1 Checking all matchings

We took two images (resolution 800 x 600) of the same scene with a digital camera and we
recorded by hand a set S of 23 point matches on them, with about one pixel accuracy (see
Figure 7). However, by taking a snapshot of a regular grid we noticed that geometric distortions
were between 0 and 5 pixels, so we could expect a rigidity coefficient between 0 and

2-5-4/800% + 6002
o =

~ 107198,

800 - 600

Using the systematic combinatorial search, we obtained log(«) = —2.31 with the best 7-points

Figure 7: The first stereo pair with 23 point matches, and the best epipolar geometry recovered
by the systematic exploration of all 7-points transforms.

transform, while the Least Mean Squares optimization applied to the 23 x 9 linear system yielded
a transform F' such that log ap(S) = —2.32. As expected, the meaningfulness of the rigidity
test was very good :

7

One could argue that testing (273) ~ 250,000 configurations takes time (25 seconds), but in
fact a nearly optimal accuracy is achieved by testing only a small number of random 7-points
transforms, as shown on Figure 8. This justifies the systematic use of the random sampling
algorithm we presented in Section 4.

g1 =3- (23> 10—2.31(23—7) ~ 10—31.

5.2 Detecting outliers

We simulated outliers by replacing the first 10 point matches (among 23) by random points. Then
we computed, for each fundamental matrix F' yielded by a 7-point transform, the most rigid set
size k, S,(F) (see Section 4.1), as well as its rigidy of (F) = ap(Sk(F)) and its meaningfulness
e#(F) = eo(ag(F),23, k). On Figure 9 are represented the two functions k +— @(k) = ming o (F)
and k — &(k) = €*(F). The function a(k) is increasing with respect to k (by construction), and
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Figure 8: Left : the histogram of logap(S) for all possible F obtained from sets of 7 point
matches taken out from S. From this histogram (measured at a much finer scale), we computed
the expectation of min;—; plogar,(S) when F; are obtained from independent random sets of
7 of point matches. This expectation is represented as a function of logn on the right. We
can see that the systematic exploration of all sets of 7 point matches is not really required :
an excellent rigidity coefficient (loga = —2.23) would be obtained in about 1000 random trials,
which is to be compared to the 550,000 trials needed to obtain the best possible rigidity coefficient
loga = —2.31.

presents only a small gap between k£ = 13 and k£ = 14, from which it would be difficult (and
uncertain) to detect directly the outliers. On the contrary, the function £(k) presents a strong
minimum for £ = 13, which identifies without doubt the true set of 13 point matches and the
10 outliers. The epipolar geometry is well recovered too, as shown on Figure 10.

log(alpha) —+—
) \og(epsllaq) X

L L L L L
6 8 10 12 14 16 18 20 22 24

Figure 9: Rigidity error a(k) and meaningfulness (k) of the most rigid subset of size k (log
scale). Whereas a(k) can hardly be used alone to detect outliers, €(k) presents a strong minimum
which permits to detect the 13 inliers easily.

16



Figure 10: When we replace the first 10 point matches (among 23) by random points, the use
of the eo criterion allows to identify the meaningfully rigid set of 13 inliers and to recover the
right epipolar geometry, as shown above.

5.3 Evaluation of the Optimized Random Sampling Algorithm

In some situations, the number of point matches n may be large (say n > 25) and a systematic
exploration of all sets of 7 point matches is not possible (see Table 1). In this case, we use
the Optimized Random Sampling Algorithm (ORSA) presented in Section 4.3. In fact, it is
interesting to use this algorithm even for small values of n, as shown on Figure 8. In this
section, we propose a systematic evaluation of ORSA and we prove in particular the usefulness
of the final optimization step we introduced in Section 4.3.

We took a second couple of 800 x 600 images, and recorded by hand 70 point matches on
them (see Figure 11). Then we selected a set T, of k point matches (among these 70) for three

Figure 11: The second stereo pair with 70 point matches (only 30 of them are shown here
for readability). The epipolar geometry is recovered in no time an yields loga = —1.92 and
loge = —110.

values of k (k = 10, k = 30 and k = 70), and added kp/(1 — p) random outliers for several values
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of p before we ran ORSA on these data with N = 10,000. We repeated this 100 times for each
pair (k,p), so that we could compute :

e the empirical probability of success (by success, we mean that an absolute meaningful set
has been found, that is € < 1) ;

e the average proportion of true points (that is, belonging to T}) among all points found in
case of success ;

e the average proportion of points found among true points in case of success ;

e the average meaningfulness < €9 > in case of success.

The results are shown on Figure 12. We can notice on these experiments that for N = 10,000
(which is not very large), the detection thresholds are good, and in case of success the recovery
of the true set of inliers is almost perfect (notice that by adding random points, we may also
add new pairs that match well with the true epipolar transform). With a probability of success
of 50% (which would become 1 — 0.55 = 97% for N = 50,000), we can allow a proportion of
outliers equal to p = 0.5 for n = 10, to p = 0.83 for n = 30 and to p = 0.86 for n = 70. This
last case means that we are able to detect 70 inliers among 500 points, and proves that (10)
underestimates by far the performance of ORSA.

Figure 12: Performance of the Optimized Random Sampling Algorithm (10,000 trials) in func-
tion of the proportion p of outliers (horizontal axis). Left : 10 inliers. Middle : 30 inliers.
Right : 70 inliers. Up : empirical probability of success (detection of an absolutely meaningful
rigid set), average proportion of true inliers among the most rigid set found (in case of success),
and average proportion of points found among true inliers (still in case of success). Down :
observed and theoretical average meaningfulness < ez > in case of success.

Another interesting point is that the €9 criterion allows us to predict the performance of the
algorithm. From the rigidity coefficient « obtained with p = 0 (no outliers), we could compute
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a theoretical estimate of < g9 > with

This number measures the meaningfulness of U in function of the proportion p of outliers, U
being the most meaningful rigid set found for p = 0. On Figure 12 (down), we can see that
this estimate is generally very accurate, which shows that our rigidity detection algorithm is
efficient (the rigidity « of the most meaningful set it finds is quite insensitive to the proportion
of outliers) and that we are able to predict the value of p for which it breaks down, as the

number pg for which 52(1}%’ k,a) = 1.

The optimization step described in Section 4.3 appeared to be very efficient. By using pure
(non-optimized) random sampling instead of ORSA, we obtained much worse results both for
the probability of success and for the precision of the estimate of F', as shown by the loss
of meaningfulness (see Figure 13). Hence, our optimization process not only speeds up the
algorithm, but often permits to find a meaningful rigid set when none has been found in N — N,,;
trials, by choosing sets of 7 point matches only from the most meaningful rigid set found so far.

" Random Samy
Optimized Random Samj

S5

ing ——
ing ——

Figure 13: Performance of non-optimized random sampling, compared to ORSA (30 inliers,
10,000 trials). Left : empirical probability of success. Right : average meaningfulness < e >.
This shows the efficiency of the optimization step described in Section 4.8 : instead of being
able to detect (with probability 1/2 for 10,000 trials) the 30 inliers among 175 point matches
(p = 0.83), the non-optimized random sampling algorithm reaches its limit for 115 point matches
(p = 0.74), and the accuracy of the fundamental matriz it computes is far from being optimal

(right).

6 Conclusion

The a contrario model we presented in this paper yields absolute thresholds for rigidity detection
and allows the design of an optimized random sampling algorithm that is able to estimate the
epipolar geometry between two images, even for a very large proportion of outliers. It can be
applied to stereo pairs, or in the context of Structure From Motion, since no assumption is
required on the magnitude of the camera motion. It could also be used to detect several rigid
motions in an image sequence, though we did not make any experiment for that application.
The case of non-matched points revealed the existence of an absolute accuracy threshold (1/32)
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in the matching process and of an optimal value for the number of points to be matched,
depending on the expected accuracy and on the expected proportion of outliers. It suggests that
additional measures should be used for point correspondence, like color or other perspective-
invariant qualities. Our criterion does not measure the uncertainty of the fundamental matrix,
and it might happen that a very meaningful rigid set be found with a very uncertain associated
fundamental matrix. Hence, computing this uncertainty (see [19] for a review) may still be
useful for practical applications. The approach we presented could also be applied to simpler
motions, as mentioned in Section 3.4. The case of lines matches [2] or of simultaneous points
and lines matches could probably be treated as well. The extension to more than two views and
to the detection of several simultaneous rigid motions could also have interesting applications.
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Appendix
Proof of (5) — We have, when n — +o0,
log (:) = Tlogn — log(7!) + O (%) )

so that if 3(?) a" 7" =¢, then

! 1 1 1 1
loga = % (loge—l—log% —Tlogn + O (ﬁ)) = -7 ogn + O loge +0 ( og2n> (11)
n—

n n n

with C = log(7!/3). O

Proof of (7) — If k = (1 —p)n (p fixed, 0 < p < 1) and n — +o0, Stirling’s formula yields

log (Z) = —n(plogp-l— (1 —p)log(1 —P)) - %logn - %log (27rp(1 —p)) +0 (%) - (12)

so that if (n —7)(}) - 3(’;) a*~7 = ¢, then (12) and (11) can be combined into

1 1 1 1
loga = A (log(n—7)-I—kAp—Elogn—ilog(%rp(l—p))-I-O(E))

logk C+loge log k
ok COES o (VEE),
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with Ay, = —log(1 —p) — l%p log p. Hence, writing B, = —1 log (2mp(1 — p)?), we get

O

_ 15logk n C+loge+ B, — T4, 40 (logn) ‘

loga = —A, 2% A n2

Proof of Proposition 4 — Let us write u, = e3(e, n,n) = 3(n — 7)n!(7)a™ 7. We have

Unp, n—"7 n neq

Up—1 n—38 n—"7T n—8’

so that
Up < Up_1 < om2—n+8§0.

If @ > 1/32, this last inequality can never be realized so that u,, is increasing and
Uy >ug=3-8-8-a>6-7">1,

which is impossible since we assumed e3(a,n,n) < 1. Thus, we necessarily have o < 1/32, and
since one root of n? —n + 8 is in ]0, 8] and the other (72) larger than 8, u,, is decreasing for n <
and increasing for n > 7, with

1+4++1-32 1
poitViZS2e 1 o 5 ()

2c « a—0
Moreover, when n — oo one has

log u, = nlog % + O(logn),

so that the condition u,, — 1 imposes

gﬁ:1+O(1°gn),

(& n

which means that o
n=—+ O (loga).

(0% a—0

Last, we have

7! 1 1
log u, = —logg —I—logn—#nlog% + Elog(27rn) +7logn+ (n—"T)loga+ O (—) ,

n—+o0 \ N
and since o = %(1 - %),
1 % n—(n+8)1 1 7!+112 + 0 =
n = =—logn — oge —log — + —log2m —
0g Ur o ogn — ge 83 T 508 P
_ loge 3 ,
= - —Eloga C +a9>0(a)
with C' = log% — 2 log 2. O
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