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Abstract

This paper addresses the problem of recognizing multi-
ple rigid objects that are common to two images. We pro-
pose a generic algorithm that allows to simultaneously de-
cide if one or several objects are common to the two images
and to estimate the corresponding geometric transforma-
tions. The considered transformations include similarities,
homographies and epipolar geometry. We first propose a
generalization of an a contrario formulation of the RANSAC
algorithm proposed in [6]. We then introduce an algorithm
for the detection of multiple transformations between im-
ages and show its efficiency on various experiments.

1. Introduction
This paper tackles the problem of object recognition : the

aim is both to detect that a given object is common to sev-
eral images and to estimate its pose, that is, to estimate the
geometric transformation between the corresponding views.
A classical approach to this problem is to extract local fea-
tures from images (such as SIFTs [4]) and match them using
some decision criterion (see e.g. [10]). Then, a last step of
this procedure usually consists in detecting groups of lo-
cal correspondences under coherent geometric transforma-
tions. In this work, we propose a fully automatic and ro-
bust method for this last step. The method does not require
any parameter tuning and allows the detection of multiple
groups. These multiple groups occur in a variety of com-
puter vision tasks, such as the detection of several objects
(or several occurrences of the same object) in a photograph,
or the segmentation of motion in image sequences.

Some previous works An important body of work has
been dedicated to the recognition of one or several ob-
jects through the grouping of correspondences. This non-
exhaustive paragraph summarizes the most common ap-
proaches to this problem. Let us first recall that, because
of a potentially large number of outliers, direct estimation
methods such as least squares or M-estimators are usually
not considered. Such approaches also hardly deal with mul-
tiple detections.

A first classical approach is the Hough transform [3].
Groups are detected thanks to a voting procedure where
samples of correspondences increment bins in a quantized
transformation space. While this approach is naturally
suited to the recognition of multiple objects, its complexity
strongly reduces its usefulness for recognizing complex ge-
ometric models such as projective transformations or epipo-
lar geometry.

A widely used alternative is the RANSAC (RANdom
SAmple Consensus) algorithm [2], to be recalled in the next
section. Its principle is to detect a unique transformation by
randomly sampling n-uplets. For each of these n-uplets, the
corresponding transformation(s) is estimated and the ade-
quacy of this transformation to the remaining data is then
tested. The transformation that maximizes this adequacy
(yields the best consensus) is then kept. This approach has
two main advantages: its robustness and its speed. Never-
theless, its practical use requires the setting of several sensi-
tive parameters. Several interesting possibilities to tune pa-
rameters have been proposed, including MSAC and MLE-
SAC [15], MINPRAN [11] and the a contrario approach
presented in [6]. This last approach, that from now we
call AC-RANSAC (A Contrario RANdom SAmple Consen-
sus), has the advantage of allowing the automatic tuning of
parameters without any a priori on the distribution of in-
liers. It is the starting point of the approach presented in the
present paper. In view of object recognition in a fairly gen-
eral setting, we will first generalize this approach to the case
of planar transformations and adapt it to deal with matching
between SIFT-like descriptors [4].

Next, we tackle the problem of multiple object recogni-
tion. Indeed, one of the strong limitation of the RANSAC
algorithm is that it only allows the recognition of a sin-
gle object. Several approaches have been proposed to
allow the detection of multiple groups with RANSAC.
These can be roughly categorized as follows. A first strat-
egy [19, 13, 14, 18] is to detect all groups simultaneously
by fusing the different groups found by RANSAC. A sec-
ond strategy [11, 16] is to sequentially detect groups by it-
eratively running RANSAC. While the practical implemen-
tation of this simple idea is non-trivial, we will advocate the



use of the sequential approach and detail our algorithm for
the detection of multiple groups, MAC-RANSAC, in Sec-
tion 4. We will see that the quality measure of a group given
by AC-RANSAC is a key point of this algorithm, acting
both as a way to select groups and as a stopping criterion.
Eventually, we illustrate the method in an experimental sec-
tion.

2. Notations and RANSAC algorithm

Let C = {(mi,m′
i) | i = 1, . . . ,N} be a set of point corre-

spondences between two images I and I′, obtained for in-
stance thanks to [10]. In order to remain completely gen-
eral, consider that some of the mi (respectively m′

i) can be
identical: a point in one image can thus be matched with
different points in the other image. We want to find if some
of these correspondences can be explained by a common
geometrical transformation. In this paper, we focus on pla-
nar transformations and on epipolar geometry between im-
ages. Recall that, in general, a planar transformation HS′

can be entirely defined from a set S′ of n correspondences,
where n = 2 for similarities, n = 3 for affine transforma-
tions, and n = 4 for projective transformations (or homo-
graphies). As for epipolar geometry between two images,
recall that a fundamental matrix FS′ can be estimated from a
set S′ of n = 7 correspondences (mi,m′

i) satisfying the con-
straints m′

iFS′mi = 0 in homogeneous coordinates.

RANSAC algorithm In this context, the aim of the Ran-
dom Sample Consensus (RANSAC) algorithm is to find a
geometric transformation T which explains as well as pos-
sible a maximum of correspondences in C (these correspon-
dences are called inliers for T ). At each step, a subset S′ of
n correspondences is drawn from C and used to estimate
a planar transformation HS′ or a fundamental matrix FS′ .
For each correspondence (m,m′) in C \ S′, a transfer error
is defined to measure the adequation between (m,m′) and
the transformation. A symmetric transfer error can be de-
fined for a planar transformation HS′ as a function of the
quantities d(m′,HS′m)2 and d(H−1

S′ m′,m)2, where d(., .) is
a distance between points. If FS′ is a fundamental matrix,
the symmetric transfer error can be defined as a function
of d(m′,FS′m)2 and d(FT

S′ m
′,m)2, where d(., .) is a distance

between a point and a line on the plane and where FT
S′ is

the transposed matrix of FS′ . In both cases, the inliers in
C are then defined as all the correspondences (m,m′) for
which this error is smaller than a threshold δ . The score of
a group is given by its size. This process is repeated imax
times and the largest consensus found during these steps is
kept if its size is larger than a threshold NC.

Observe that three thresholds must be set by the user: the
distance threshold δ , the threshold on the minimal number
of inliers NC and the number of iterations imax. The setting

of these thresholds is critical for the output of the algorithm.

3. Generalization of AC-RANSAC
In order to avoid the shortcomings of the RANSAC al-

gorithm (in particular the high sensibility to the different
parameter settings), the authors of [6] propose an a con-
trario approach to fix these parameters automatically. This
approach is presented in [6] in the context of epipolar ge-
ometry. The RANSAC algorithm is combined with a hy-
pothesis testing framework to decide –for each sample S′–
if a set of correspondences S should be considered as a
valid consensus for the fundamental matrix FS′ . We present
here a slightly generalized version of this work for different
families of transformations, either planar transformations or
epipolar geometry. We will refer to it as AC-RANSAC.

3.1. A contrario framework

The null hypothesis Assume that we have a set C :
{(mi,m′

i) | i = 1, . . . ,N} of correspondences between two
images I and I′. We want to decide if a subgroup of these
correspondences can be explained by a unique transforma-
tion. To answer this question, the AC-RANSAC approach
relies on a null hypothesis H0, describing a “generic” distri-
bution of random correspondences (mi,m′

i), i = 1, . . . ,N for
which it is commonly accepted that no consistent consensus
should be found. A real set of correspondences will then be
defined as meaningful if it is unlikely to appear under the
hypothesis H0. This approach permits to limit the type I
errors, i.e. the cases where a consensus is detected whereas
the distribution of points follow H0. The null hypothesis
H0 is defined in the following way, N being a fixed integer:

Definition 1 (Null Hypothesis) A set C of N random cor-
respondences (mi,m′

i), i = 1, . . . ,N is said to follow the null
hypothesis H0 if

◦ the points mi and m′
j, i, j = 1, . . . ,N are mutually in-

dependent random variables ;
◦ the points mi, i = 1, . . . ,N are uniformly distributed on

the image I and the points m′
j, j = 1, . . . ,N are uni-

formly distributed on the image I′.

In the following, we compute the probability for a group
of correspondences to follow H0, and we infer the defini-
tion of the rigidity of a group.

Probabilities under the null hypothesis Let C be a set of
N random correspondences, following the null hypothesis
H0, and let S′ be a given subset of C, such that #S′ = n. Let
S be a subset of C such that S∩S′ = /0. In the context of
epipolar geometry (n = 7), Moisan and Stival [6] define the
rigidity of the set S for the fundamental matrix FS′ as

α(S,FS′) := max
(m,m′)∈S

max
(

2D′

A′
d(m′,FS′m),

2D
A

d(m′,FT
S′ m

′)
)

,
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where D (resp. D′) and A (resp. A′) are the length of the
diagonal and the area of I (resp. I′). This quantity measures
the adequacy between the set S and the fundamental matrix
FS′ . They show that under the null hypothesis H0, the prob-
ability to observe a rigidity α(S,FS′) smaller than a value α

is bounded by α#S:

PH0 [α(S,FS′)≤ α]≤ α
#S. (1)

In the case of planar transformations, this inequality re-
mains valid if one replaces FS′ by HS′ and if the rigidity
is defined as

α(S,HS′) := max
(m,m′)∈S

max
(

π

A′
d(HS′m,m′)2,

π

A
d(m,H−1

S′ m′)2
)

.

Validation criterion A set S is considered as a valid con-
sensus for TS′ , the transformation associated to the group S′,
as soon as PH0 [α(S,TS′)≤ α(S,TS′)] is small enough. To
put it more simply, S is considered as a good consensus for
TS′ if it is highly unlikely to observe such a small rigidity
under the hypothesis H0. The following definition precises
what we mean by “small”.

Definition 2 Let C = {(mi,m′
i) | i = 1, . . . ,N} be a set of N

correspondences between I and I′. Let S be a subset of C,
constituted of #S = K correspondences. For a given ε >
0, the set S is said to be ε-meaningful if there exists n ∈
{2,3,4,7} and a subset S′ of C, such that #S′ = n, S′∩S = /0
and

NFA(S,S′) := γ (N−n)
(

N
K

)(
N−K

n

)(
α(S,TS′)

)K ≤ ε .

In this definition, the coefficient γ denotes the largest
number of transformations TS′ which can be estimated from
n correspondences, that is γ = 1 for planar transformations
and γ = 3 for epipolar geometry 1. The quantity NFA(S,S′)
defines a consensus quality between the set S and the trans-
formation TS′ . Observe that this quantity combines in the
same term the TS′ -rigidity of S and its size. By using a
unique threshold ε , which will always be set to 1 in the
experiments, this formula yields adaptive thresholds on the
rigidities α(S,TS′).

3.2. AC-RANSAC algorithm

At each iteration i, a set S′ of size n is drawn from C and
the transformation TS′ is estimated. All the correspondences
ci = (mi,m′

i) in C \S′ are then sorted according to the value
of the residuals αi = α(ci,TS′). At this point, finding the
set S which minimizes NFA(S,S′) is easy: for each value

1In the case of epipolar geometry, the 7-points algorithm can yield 3
fundamental matrices [6]. The matrix used for the definition is the one
minimizing the rigidity α(S,FS′ ).

of K smaller than N−n, the set of size K which minimizes
NFA(S,S′) is composed of the K correspondences with the
smallest αi. The algorithm continues until imax iterations
are realized or until a set S satisfying NFA(S,S′) < 1 is
found. In this last case, a refinement step, called ORSA
(Optimal Random Sampling Algorithm) focuses on inliers
to optimize the consensus (for more details the reader is re-
ferred to [6]).

3.3. Null hypothesis and local features

In [6], the AC-RANSAC algorithm is used to estimate
the epipolar geometry with control point correspondences
selected from stereoscopic image pairs. In [8], the authors
propose an extension of AC-RANSAC where the match-
ing procedure of SIFT features is performed simultaneously
with the estimation of fundamental matrix. In this paper, we
suppose that the correspondence set C is obtained by match-
ing local features between images I and I′, e.g. in a similar
way to [4, 10]. However, the null hypothesis on which AC-
RANSAC is based, is not necessarily appropriate in such a
case. Indeed, let us recall that the null hypothesis H0 for
random correspondences C rely on the assumption that the
matched points mi ∈ I and m′

i ∈ I′ are mutually independent
random variables. As a consequence, there are two struc-
tural reasons for which some matches obtained from local
descriptors cannot follow this assumption.

The first one is the presence of multiple correspon-
dences: a point m of image I can have several correspon-
dents in I′, and reciprocally. This property has the great
advantage of allowing the detection of an object appearing
several times in an image, or the detection of objects pre-
senting some repeated structures (such as texture). How-
ever, it contradicts obviously the null hypothesis H0. In
order to deal with such multiple correspondences, we intro-
duce the simple following maximality principle.

Definition 3 (Maximality principle) Only one correspon-
dence per interest point could be selected into a consensus
set S. For a given interest point, the chosen correspondence
is the one which minimizes the residual error α according
to the transformation TS′ evaluated.

The second phenomenon incompatible with the null hy-
pothesis H0 is the redundancy of interest points: detec-
tors of interest points (or regions) used to build local de-
scriptors (SIFT [4], MSER [5], . . . ) tend to detect certain
structures in a redundant way. The same structure, typically
a corner, are then represented by several interest points,
which only differs slightly in position and scale. These re-
dundant points induce not-independent matches.

Before sequentially running the AC-RANSAC algo-
rithm, we propose to detect and discard redundant corre-
spondences using the scale information of interest points.

3



Redundant correspondences are those that share the same
interest point in either I or I′ and whose corresponding
points in the other image are close enough.

Definition 4 (Redundant correspondences) Two corre-
spondences ci = (mi,m′

i) and c j = (m j,m′
j) between interest

points are redundant if one of the following statements is
true
◦ mi = m j and ‖m′

i−m′
j‖2 < min{σi,σ j}

or
◦ m′

i = m′
j and ‖mi−m j‖2 < min{σ ′

i ,σ
′
j}

where ‖.‖2 stands for the Euclidean norm, and σk repre-
sents the characteristic scale of the interest point mk.

Next, a criterion is needed to choose among redundant
matches. We propose to discard the less meaningful re-
dundant matches c, making use of the quality measure
q(c) from the matching step. Note that other RANSAC-
like methods also exploit the quality measure of correspon-
dences, see e.g. [1, 8]. Using this quality measure, we define
the following exclusion principle for redundant matches. A
match ci is discarded as soon as it is redundant with a match
c j such that q(c j) < q(ci).

4. MAC-RANSAC for multiple group detection
The RANSAC algorithm (and consequently its a con-

trario extension AC-RANSAC) enables one to detect only
one transformation from a set of correspondences. Now,
as it has been previously stressed, it is often necessary to
be able to detect several groups of correspondences. This
multiple detection may be achieved through the sequential
use of RANSAC, although various authors have pointed out
several difficulties raised by this approach[11, 12, 16].

4.1. Sequential AC-RANSAC

The so-called “sequential RANSAC” algorithm consists
in iteratively applying RANSAC on the set of correspon-
dences, from which detected inlier groups are withdrawn
after each iteration. The algorithm stops only if no new
groups are detected. This simple approach suffers from
strong limitations:

• Detection of false transformations. This refers to the
validation of groups that are composed of outliers.

• Fusion of nearby transformations [12]. In the case
of multiple transformations, it is quite likely that two
or more of these are detected as the same consensus
set.

• Segmentation of a single transformation into
smaller ones. This phenomenon, opposite to the previ-
ous one, will occur for instance when the spatial toler-
ance is too small.

• Ghost transformations [7] This term refers to the de-
tection of several spurious transformations echoing a
single real transformation. This happens when the ob-
ject of interest is composed of repeated structures, such
as a building facade.

In practice, combining the a contrario framework with
sequential RANSAC offers significative advantages. First
of all, the validation criterion 2 also defines a very robust
stopping criterion for the sequential detection. In addition,
the detection thresholds are automaticaly set on the residual
errors of inliers, without requirering any prior knowledge on
the data, which avoids the problem of over-segmentation.

Nevertheless, the two other problems in the above taxon-
omy (Fusion of transformations and ghost transformations)
remain. We address these two limitations in the next para-
graphs, first by proposing a spatial filtering of correspon-
dences in § 4.3, then by defining a splitting criterion in § 4.4.

4.2. MAC-RANSAC algorithm overview

The final and complete MAC-RANSAC algorithm –
including the principles to be defined in the next two
paragraphs– is summarized in Table 1. Observe that the
only parameter is the maximal number of iterations imax,
since, as it is classical with a contrario methods, the NFA
is simply thresholded at the value ε = one, automatically
yielding both a spatial tolerance threshold and a minimum
number of inliers to validate a group. All experiments to be
displayed later on will be obtained with this value for ε .

4.3. Spatial correspondence filtering

A remaining source of error when sequentially applying
AC-RANSAC is what we have coined the ghost transforms.
To the best of our knowledge, few studies [7, 17, 16] de-
scribed the phenomenon of self-similarity in object recogni-
tion. Indeed, repetitive matches due to self-similarity create
artificial detections “echoing” to the unique true transfor-
mation between the two images. The same object is then
detected several times with different poses.

The correct transformation usually has the best score, so
that it is detected first. In order to then discard subsequent
detections of echoing transformations, the following defini-
tion of repetitive correspondences is used.

Definition 5 (Repetitive correspondences) Let S be a
given consensus set, and C the remaining correspondences
(so that C ∩ S = /0). A match ci = (mi,m′

i) ∈ C is repeti-
tive with respect to S if both the following conditions are
satisfied:

◦ ∃ m ∈ S s.t. ‖m−mi‖2 < min{σ ,σi}
and
◦ ∃ m′ ∈ S s.t. ‖m′−m′

i‖2 < min{σ ′,σ ′
i }
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Table 1. MAC-RANSAC algorithm for multiple group detection
MAC-RANSAC

Inputs: Set of non-redundant correspondences C (obtained
using definition 4) and maximal number of
iterations imax. Initialization: i := 0 and S := { /0}.

1) Detection: While i < imax, uniform sampling of S′ ⊂C
and search of S ⊂C \S′ minimizing NFA(S,S′).
◦ If NFA(S,S′) < 1, (Sopt,S′opt) := (S,S′) and go to step 2).
◦ Else i := i+1.

2) ORSA optimization: Repeat imax/10 times :
sampling of S′ among Sopt and search of S ⊂C \S′

minimizing NFA(S,S′).
◦ If NFA(S,S′) < NFA(Sopt,S′opt), (Sopt,S′opt) := (S,S′).

3) Fusion detection: Search of an optimal subset pairs
included in Sopt with criterion 1.
◦ If detection of fusion, two 1-meaningful subsets
(S1,S′1) and (S2,S′2) are identified.
◦ Else, S1 := Sopt and S2 := /0.

4) Spatial filtering: Discarding of correspondences
that are repetitions of S1 (identified with definition 5).
Definition of C := C \S1.

5) Iteration: Addition of S1 to the list S , i := 0.
◦ If S2 = /0, go to step 1)
◦ Else, (Sopt,S′opt) := (S2,S′2), then go to step 2).

Output: List of disjoint groups S .

where ‖.‖2 stands for the Euclidean norm, and σk repre-
sents the characteristic scale of the interest point mk.

Now, each time a new group of correspondences is
validated, the repetitive correspondences according to this
group are discarded from the remaining correspondences set
C (i.e. step 4 of the MAC-RANSAC algorithm in Table 1).

4.4. Detection of the fusion of several groups

We will see in the experimental section that, when
more than one transformation is concerned, sequential AC-
RANSAC could validate groups of correspondences which
result from the fusion of several transformations. To avoid
this phenomenon we propose an original algorithm for the
detection of such fusions.

Detection of fusions involving two groups For the sake
of clarity, we first study the case of a fusion involving two
transformations. Let S0 be a group of correspondences, S1
and S2 two disjoint sub-groups of S0, such that S1 ∩S2 = /0
and S0 ⊃ S1 ∪ S2. The group S0 is said to result from the
fusion of these distinct groups when it is validated whereas
the transformations of S1 and S2, respectively noted T1 and
T2, are sufficiently different.

The reason why the fusion group S0 can be validated is
that its meaningfulness (NFA) is lower than those of each
of the two sub-groups S1 and S2, whereas these groups have
a lower rigidity: NFA(S0,S′0) < min

{
NFA(S1,S′1) , NFA(S2,S′2)

}
α

(
S0, TS′0

)
≥ max

{
α

(
S1,TS′1

)
, α

(
S2,TS′2

)} .

This result is due to the “greedy” behavior of AC-RANSAC
which looks for the group of correspondences minimiz-
ing the NFA. In order to be able to detect the fusion of
two groups, we must define a criterion which compares the
group S0 = S1 ∪ S2 with both groups S1 and S2 simultane-
ously.

We propose the following splitting criterion:

Criterion 1 (Splitting criterion) Let S0 be an ε-
meaningful group of correspondences from the set C,
with transformation TS′0

. If there exist two disjoint subsets
S1 and S2 from S0, and also two disjoint subsets S′1 and S′2
in S0 \ {S1 ∪ S2}, such that both following statements are
satisfied:

◦ NFA(S1,S′1)≤ ε and NFA(S2,S′2)≤ ε

◦ NFA(S1,S′1)×NFA(S2,S′2) < NFA(S0,S′0) ,
then, the two groups S1 and S2 are validated as two distinct
groups of correspondences instead of a unique group S0.

In order to be able to exploit this splitting criterion, we
now define a strategy to find optimal subsets S1 and S2, as
well as a recursive splitting scheme to deal with the fusion
of more than two groups.

Recursive dyadic splitting into sub-groups. We choose
to identify only one of the sub-groups involved in the pre-
viously described fusion. For that purpose, we first define
a strategy to test for the splitting of a group into two sub-
groups. This strategy is then applied recursively to the ini-
tial group S0.

First observe that if S1 and S2 are two subsets of S0, and
if S1 is the smallest of the two, then #S1 ≤ #S0/2 ≤ #S2.
This straightforward observation suggests (as also noticed
by Stewart in [11]) the following. The sub-group S1 is
obtained by searching (through random sampling) a sub-
set S′1 ⊂ S0 which minimizes the quantity NFA(S1,S′1) un-
der the constraint that #S1 ≤ #S0

2 . The sub-group S2 is then
obtained by searching a set S′2 among the remaining corre-
spondences of S0 which minimizes NFA(S2,S′2). The split-
ting criterion (1) then enables one to know if this splitting
should be kept or not.

As long as the criterion validates the splitting, this strat-
egy of dyadic splitting is recursively applied to the group
S(k)

1 which has been identified at the previous iteration k.
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This principle is illustrated in Figure 1 in a case involving
the fusion of 5 groups.

Figure 1. Illustration of the recursive splitting approach used to
identify one optimal subset.

This process stops when the last subset found S(k)
1 cor-

responds to a single transformation, i.e. when the splitting
criterion does not validate its split into S(k+1)

1 and S(k+1)
2 ,

or when such ε-meaningful sub-groups do not have been
found.

Remark: When S0 is split into S1 and S2, the only group
validated is S1. The second group S2 being ε-meaningful, it
is considered as a detection and the MAC-RANSAC algo-
rithm go directly to the optimization stage (step 2 in table 1).

5. Experimental results
In this experimental section, we illustrate the efficiency

of the proposed MAC-RANSAC algorithm in various situa-
tions. Preliminary correspondences between points are ob-
tained following the matching procedure described in [10],
with a detection threshold fixed to ε = 1. Observe that
this matching procedure allows multiple matchings between
points, a desirable property in view of multiple detections.

In the following experiments, the MAC-RANSAC algo-
rithm is used with various geometrical models (planar trans-
formations and epipolar geometry), with a detection thresh-
old always fixed to ε = 1 (a group is validated as soon as
its NFA is smaller than 1). We first consider the picture pair
shown in Figure 2. This experiment illustrate the interest of
the recursive splitting procedure presented in the previous
section. A poster has been photographed before and after
its folding into three parts. On this pair, MAC-RANSAC
is performed using the homographic model. We thus ex-
pect to detect the tree planes corresponding to the folded
parts. Without using the splitting criterion (see Figure 2(c)),
two groups are detected, of which the largest (in red) results
from the fusion of three distinct transformations. The use
of the splitting criterion allows us to detect the three correct
groups (see Figure 2(b)).

In order to illustrate the robustness of our approach for
multiple object recognition runs, we now examine in the

(a) Pair of photographs analyzed

(b) Grouping of correspondences
with the splitting criterion

(c) Grouping of correspondences
without the splitting criterion

Figure 2. Illustration of the interest of the recursive splitting pro-
cedure.

four following experiments various scenarios with different
geometrical models.

Figure 3(a) displays two frames from the sequence Leu-
ven castle [9], where the camera moves and the scene is
fixed. This scene represents an ‘L’-shaped building with
self-similarity. The result of the MAC-RANSAC algorithm
with epipolar constraints is shown in Figure 3(b). Correctly,
only one group is detected in this case. Results using homo-
graphies is displayed in Figure 3(c)). Three different groups
corresponding to the different planes of the building are de-
tected, as well as an additional group related to the trees
in background (group of blue dots). Observe that there are
no detections of ghost transformations, thanks to the spatial
filtering of repetitive correspondences (criterion 5).

In Figure 4(a) are displayed two different points of view
on the same scene in which only one object (the phone) that
has been displaced. In the case of epipolar geometry (Fig-
ure 4(b)), two groups are correctly identified: a large group
(in red) corresponding to the static part of the scene, and a
second group (in blue) corresponding to the phone which
has been moved. When considering homographic transfor-
mations (Figure 4(b)), MAC-RANSAC provides the same
group for the telephone (in yellow), the rest of the scene
being segmented in several planes.

Figure 5(a) shows an extreme case for the recognition of
multiple objects. A first picture represents a soda can, and
a second one a scene with 28 cans having the same logo.
The result of the grouping with MAC-RANSAC using pla-
nar transformations is given in Figure 5(b) (similarity, affine
transform and homography give very similar results) : the
28 occurrences of the can are correctly detected. Let us in-
sist on the fact that each detected group corresponds to a
small proportion of correspondences according to the initial
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(a) Two views of a 3D scene from the image sequence of [9]

(b) A unique group is detected
when using epipolar geometry

(c) 4 groups are detected with ho-
mography

Figure 3. Application of the MAC-RANSAC algorithm for a static
scene with a camera motion.

set of correspondences. In particular, the two groups corre-
sponding to partially occluded cans (in dark blue) represent
each only 1% of the total of correspondences. After these
28 cans have been identified, the algorithm automatically
stops because no meaningful group (i.e. with NFA ≤ 1) is
found.

In the last example, two photographs are used (Fig-
ure 6(a)), representing some identical objects in different
context: a cereal box and three similar cans. Nothing dis-
tinguishes these three cans, so that 9 corresponding trans-
formations are theoretically possible between the two pic-
tures. By using MAC-RANSAC with a planar transfor-
mation (similarity, affine or projective transform), a sin-
gle group corresponding to the cereal box is correctly de-
tected, and 9 groups of correspondences are found between
the cans (Figure 6(b)).

6. Summary and future work
In this paper we have proposed a robust algorithm for

multiple object recognition and 3D transformation estima-
tion. The MAC-RANSAC algorithm avoids strong limita-
tions and drawbacks of the sequential RANSAC approach;
it does not require the setting of detection parameters, ex-
cept the maximal number of iterations imax which is gener-
ally fixed under time complexity considerations. An inter-
esting aspect of this approach, which has not been presented

(a) Pair of photographs analysed

(b) Grouping with epipolar geom-
etry constraints

(c) Grouping with projective ge-
ometry constraints

Figure 4. Application of the MAC-RANSAC algorithm for a non-
static scene with a camera motion.

here, is the automatic selection of geometrical models for
object pose estimation. Indeed, this may be achieved by
comparing the NFA’s corresponding to different geometri-
cal models and provide an interesting alternative to model
selection criteria relying on information theory, a direction
that we are currently investigating.
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