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ABSTRACT

When sampling a continuous image or subsampling a dis-
crete image, aliasing artifacts can be controlled by filtering
the data prior to sampling. Bandlimiting filters completely
avoid aliasing artifacts, but have to find a compromise be-
tween blur and ringing artifacts. In this paper, we propose a
new joint definition of blur/ringing artifacts, that associates
to a given bandlimited prefilter its so-calledSpread-Ringing
curve. We then build a set of filters yielding the optimal
blur/ringing compromise according to the previous defini-
tion. We show on experiments that such filters yield sharper
images for a given level of ringing artifact.

1. INTRODUCTION

Producing a high quality low-resolution image from a high-
resolution one, or building a high quality image from a con-
tinuous model both require a good understanding of the sam-
pling process. The solution to avoid aliasing artifacts, that
may introduce dramatic texture changes, losses of connect-
edness or staircase effects, has been given in 1949 by Shan-
non [1]: aliasing can be avoided by bandlimiting the input
image (that is, setting to 0 its high frequency components),
or, equivalently, by filtering the image with asincfilter. Un-
fortunately this filter oscillates with slow decay, and intro-
duces unwanted oscillations in the vicinity of sharp edges.
Since then, other filters were developed such as splines [2],
prolate [3] or Ces̀aro filter [4] but the necessary trade-off
between blur and ringing they introduce was never really
evaluated.

In the literature, the ringing artifact (sometimes referred
to –unproperly– as the Gibbs phenomenon [5]) is often de-
scribed as noise and is measured with the SNR [6]. More
specific measures of ringing, like the perceptual ringing met-
ric [7] and the visible ringing metric [8], manage to control
the amount of ringing artifacts put in a signal, but do not try
to define the ringing phenomenon by itself.

In this paper, we propose a joint definition of ringing
and blur artifacts, yielding what we call aSpread-Ringing

curve (Section 2). This curve allows us to compare the
relative sharpness of classical bandlimited prefilter for any
given level of ringing (see Fig. 5). In Section 3 we numer-
ically design an optimal filter (Spread-Ringingfilter (SR))
that minimizes both ringing and blur artifacts, and compare
it with other filters (Fig. 5). By preserving better edges,
this filter reduces the deterioration of image quality usually
observed with classical filters, as shown by the image ex-
periment reported on Fig. 3 and 4.

2. THE SPREAD-RINGING CURVE

In all the following, we shall only consider 1D signals and
filters. Associated 2D filters for images will be built in a
separable way. Let us first define the set of bandlimited sig-
nals by

BW = {g ∈ L2(R), supp (ĝ) ⊂ [−W,W ]},

ĝ standing for the Fourier Transform ofg. The ringing arti-
fact may occur when a signalf is projected ontoBW (fre-
quency cutoff), or more generally when it isapproximated
by a signalg ∈ BW . We propose the following definition.

Definition 1 When we approximate a signalf ∈ L2(R)
by a bandlimited signalg ∈ BW , g may have additional
oscillations the sampled signalf(kπ/W ) does not have:
this is thecontinuous ringing phenomenon.

Note that thediscrete ringing phenomenoncould be defined
as well by considering only oscillations of the sampled sig-
nal g(kπ/W ). Now following Definition 1, we would like
to define a way tomeasureringing artifacts, in order to be
able to constrain them to a non-perceptible level (that is,
below the image noise level).

Let us consider a filterϕ ∈ BW , and apply it to the
Heaviside function (H), yielding a new signalg = H ∗ ϕ.
Two phenomena may appear forg : first, the transition from
0 to 1 has a certain spread; second, oscillations may appear
around this transition. Defining a measure only for these
oscillations (ringing) is difficult because in general there is
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Fig. 1. DS,R domain.

no natural way to define the transition domain (spread) of
g. This is why we choose to simultaneously measure the
spread of the transition (S) and the amplitude of the oscilla-
tions outside the transition domain (R) by constraining the
graph ofg, Γg = {(x, g(x)); x ∈ R} to be contained in a
certain domain (Fig. 1).

Definition 2 We denoteDS,R the subset ofR2 defined by

DS,R =


x ≤ −S

2
and |y| ≤ R

(x, y) or |x| ≤ S
2

and −R ≤ y ≤ 1 +R
or x ≥ S

2
and |1− y| ≤ R

 .

We observe that a smallR prevents too large oscillations
of g, while a smallS ensures a sharp edge approximation of
the discontinuity ofH. Hence, the couple(S,R) reflects
the blur/ringing trade-off to be satisfied byg. This leads to

Definition 3 The Spread-Ringing domain associated to a
filter ϕ ∈ BW is

D(ϕ) = {(S,R) ∈ (0,+∞); Γϕ∗H ⊂ DS,R}. (1)

The Spread-Ringing curve associated toϕ is the boundary
ofD(ϕ).

If (S,R) ∈ D(ϕ), so does(S + p,R + q). So the
boundary ofD(ϕ) is obtained by taking the minimal pos-
sible value ofR for any fixedS, or the minimal value ofS
for a fixedR. The Spread-Ringing curve can be described
by the graph of a function

rϕ(S) = min{R ∈ (0,+∞); (S,R) ∈ D(ϕ)}.

This definition of ringing has the drawback that no unique
value ofS andR are associated to a given filter since, as we
mentioned before, it is difficult to distinguish the edge from
the ringing near the transition. However, this construction
has the advantage to remain very general, since it does not
rely on any arbitrary threshold. Moreover, Definition 3 can
be generalized to afamily of filtersϕα (α being in general
a real parameter) and still yields a singleSpread-Ringing
curve, as specified in

Definition 4 The Spread-Ringing domain associated to a
family of filters(ϕα)α∈A is

D ((ϕα)α∈A) =
⋃
α∈A

D(ϕα). (2)

Its Spread-Ringing curve is the associated boundary.

3. SR FILTERS

We now build a family of bandlimited filters(ϕS), called
SR filters, having the best possibleSpread-ringing curve.
These filters have minimal ringingR for a fixed spreadS,
or equivalently, minimal spreadS for a fixed ringingR. For
convexity reasons, this family exists and is unique. For each
S,ϕS can be computed by the following iterative algorithm:

setϕ = δ0 (Dirac)
assign a large value toR
repeat

setϕS = ϕ
setN = 1
repeat

forceΓϕ∗H ⊂ DS,R by thresholding
forceϕ ∈ BW , that isϕ̂(ξ) = 0 for ξ 6∈ [−W,W ]
setN = N + 1

until convergence testorN > Nmax
reduceR

until N > Nmax

The convergence testis satisfied when the two forcing
steps have small enough effects onϕ, that is, when the first
forcing step changesϕ by less thanε1 (according toL∞

norm) and the second forcing step changesϕ by less than
ε2 (according to theL2 norm). In practice, we checked that
convergence was undoubtedly attained withNmax = 10000
andε1 = ε2 = 0.001.

Note that the value ofW is arbitrary since different val-
ues ofW simply mean different scales. Numerically, we
used 1024 samples to representϕ and chose a frequency
cutoff corresponding to a reduction by a factor 16.

When looking at SR filters (obtained with this algorithm),
we noticed that their Fourier transform was real symmetric
(as expected), but not unimodal (that is, not both increasing
onR− and decreasing onR+), due to large weights on the
frequencies nearW (and−W ). This phenomenon, due to
the fact that the ringing is controlled through aL∞ norm,
can be undesired in some applications (since for example,
natural images generally have unimodal spectra). It can
be avoided by buildingunimodal SR filters(see Fig. 2),
obtained by adding a third forcing step in the algorithm
(between theDS,R forcing step and theBW one) which
changeŝϕ into itsL2 unimodal regression.

Remark:We chose to control the ringing with theL∞

norm (instead ofL1 or L2 norms) because our perception
of images is more sensitive to large local overshoots than
to small oscillations (hidden by image noise or textures)
spread on a large domain. In that sense, the characteriza-
tion of ringing we proposed is specific to images and may
not be adequate in a general signal processing framework.
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Fig. 2. Some unimodal SR filters in Fourier domain

4. COMPARISON WITH CLASSICAL FILTERS

We compare the results of the SR filters with the following
classical filters:

• sincfilter: ∀ξ ∈ R, ŝinc(ξ) = 1[−W,W ](ξ).

• Frequency truncated triangle (α ∈ [0, 1]):

T̂α(ξ) =
(

1 +
α− 1
W
|ξ|
)
· 1[−W,W ](ξ)

• Cosine filter (α ∈ R):

Ĉα(ξ) =
1 + cos(αξ)

2
· 1[−W,W ](ξ)

• Prolate [3] and bandlimited Gaussian filters.

As expected, SR filters (Fig. 5) show better results than
other tested filters. They introduce less ringing for any given
edge spread. The unimodal constraint reduces the perfor-
mance of the filter, as theSpread-Ringing curveof the uni-
modal filter (a) is on the right hand side of theSpread-
Ringing curveof the non unimodal filter (b). This diver-
gence gets magnified for small spread values.

Among other filters, we observe two groups. The first
group (c,d,e) contains filters that give relatively good results
in comparison with the SR filter. For a spread value smaller
than 2 pixels (which is a common level of sharpness), they
give very similar results, especially the prolate (c) and the
cosine filter (d). The filters of the second group (f,g) per-
form poorly as they produce a high level of ringing.

5. EXPERIMENTS

We now apply SR filters to a natural image. We generalize
the 1D filter to 2D by using a separable convolution along
both coordinates. Fig. 3 shows results obtained on a sub-
part (512 × 512) of a natural image. In this experiment,

Line 130

Fig. 3. The reference high-resolution (not bandlimited) town im-
ageI (bottom row) is prefiltered with the prolate filter (yielding
the top left image:IP ) and with the SR filter (top right image:
ISR). One can see that the white roof is better preserved with the
SR filter (transitions look sharper).

we chose the SR filter corresponding toR = 0.012, allow-
ing 1.2% of overshoot with respect to the transition value,
which approximately corresponds to the level of noise of the
image. The convolution of the original high resolution im-
age (bottom of Fig. 3) was made with this SR filter and with
a prolate filter (with same value ofR) as a comparison. As
predicted by the SR curves, the prolate filter yields a more
blurry image, as shown on Fig. 3 and 4.
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Fig. 4. Line 130 from the images of Fig. 3 near the white
roof. The amplitude of the transitions are better preserved with
the SR filter than with the prolate. The difference betweenI and
both IP andISR confirms the improvement:||I − IP ||1 = 90,
||I − ISR||1 = 83, ||I − IP ||2 = 150, ||I − ISR||2 = 137.
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Fig. 5. Spread-Ringing curvesof some bandlimited low-pass filters. These curves display the trade-off between ringing and
blur artifacts for each filter. This representation incidentally shows that bandlimited Gaussian filters perform slightly better
than prolate filters for small spreads (S < 2.5 pixels), which are the most useful values in practice. As expected, SR filters
achieve the best compromise (more than20% better than the others forS = 1.5 pixels).

6. CONCLUSION

We introduced a joint measure of blur and ringing artifacts
for bandlimiting filters, and built SR filters minimizing these
artifacts. Compared to classical filters, SR filters yield per-
ceptible improvements when bandlimiting an image before
sampling, which could be interesting for applications re-
quiring high quality image reduction. This approach also
pushes back the frontier of attainable aliasing/blur/ringing
compromises in image formation processes. In this paper,
2D filters are built in a separable way, but generalization to
non-separable filters (radially symmetric or not) could be
investigated as well.
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