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2 Université Paris Descartes, MAP5, CNRS UMR 8145, Paris, France

ABSTRACT

The Fourier phase spectrum of an image is well known to
contain crucial information about the image geometry, in par-
ticular its contours. In this paper, we show that it is also
strongly related to the image quality, in particular its sharp-
ness. We propose a way to define the Global Phase Coherence
(GPC) of an image, by comparing the likelihood of the im-
age to the likelihood of all possible images sharing the same
Fourier power spectrum. The likelihood is measured with the
total variation (Rudin-Osher-Fatemi implicit prior), and the
numerical estimation is realized by a Monte-Carlo simulation.
We show that the obtained GPC measure decreases with blur,
noise, and ringing, and thus provides a new interesting sharp-
ness indicator, that can be used for parametric blind deconvo-
lution, as demonstrated by experiments.

Index Terms— Fourier Transform, phase information,
image quality, sharpness, total variation.

1. INTRODUCTION

The Fourier Transform of an image can be decomposed in
two components, its power spectrum (the square modulus of
each Fourier coefficient), and the phase (the argument of each
Fourier coefficient). While the modulus is pretty well un-
derstood in terms of image filtering (many smoothing filter
have a positive Fourier Transform, so that they only operate
on the modulus component), the phase component seems to
be much more complex. Oppenheim and Lim [1] have no-
ticed that this phase component is responsible for the forma-
tion of geometrical image elements like contours, since these
elements persist when the modulus information is lost (e.g.,
when a constant modulus is imposed, or when the power spec-
trum of another image is used). Morrone and Owens [2] have
shown that edges could be efficiently detected on an image
by looking at points of maximum phase congruency. Later,
Kovesi [3] improved the measure of phase congruency, by
adding noise compensation and multiscale capabilities, yield-
ing a more robust low-level image invariant. More recently,
Wang and Simoncelli [4] defined a notion of local phase co-
herence based on the coarse-to-fine prediction across scales
of the phase of a wavelet transform, and showed its relation
to image blur. Because the translation of an image can be

characterized by the addition of a ramp function in the phase
domain, phase information has also been used for image reg-
istration, in early studies [5] but also more recently, e.g. in [6]
to provide a motion confidence measure. Let us also mention
recent psychophysical studies [7, 8], which suggest that the
phase component plays a specific role in human perception.

Phase coherence is a requirement for contours, because all
sine waves involved in the reconstruction of an image from
its Fourier coefficients have to cooperate locally to produce
a high gradient between two rather “flat” regions. Hence,
measuring the total amount of phase coherence of an image
may provide an indication on the quality of these transitions
between flat regions, that is, more intuitively, on the image
sharpness. In Section 2, we propose a definition of the Global
Phase Coherence (GPC) of an image, by considering the rel-
ative regularity (total variation) of images with all possible
phase functions. In Section 3, we describe a Monte Carlo al-
gorithm to estimate the GPC, and give a solution to prevent
the usual quantization of images and the implicit periodiza-
tion (due to the use of the Discrete Fourier Transform) from
introducing a strong bias. In Section 4, we study the behavior
of GPC with respect to noise an blur and give theoretical and
experimental arguments to demonstrate that the GPC of an
image is related to its sharpness. This leads us to an applica-
tion to parametric blind deconvolution (Section 5), motivated
by the fact that ringing also decreases the GPC, contrary to
many sharpness indicators. In Section 6, we conclude and
mention some possible other applications.

2. A GLOBAL PHASE COHERENCE MEASURE

Let u : Ω → R be a discrete grey-level image, where Ω =
{0, . . . n−1}2 is the discrete image domain (we assume thatΩ
is a square to simplify the notations) and u(x) represents the
intensity of a pixel x ∈ Ω. The Discrete Fourier Transform
(DFT) of u is the complex-valued function

û(ξ) =
∑

x∈Ω

u(x) e−
2iπ

n
<x,ξ>

defined on R = Z
2 ∩ [−n

2 ,
n
2 )
2, and the phase of u is a

function ϕ : R → S1 such that û(ξ) = |û(ξ)| · eiϕ(ξ). Since
u is real-valued, ϕ is odd, that is ϕ(−ξ) = −ϕ(ξ) for all



ξ ∈ R. To understand the nature of the information contained
in ϕ, we can change ϕ into another (odd) phase function ψ
and look at the reconstructed image

uψ(x) =
1

n2

∑

ξ∈R

|û(ξ)| · e
2iπ

n
<x,ξ>+iψ(ξ).

We distorded the phase function ϕ of the classical La-
cornou image (see Fig. 1) by adding to it a random shift εS,
yielding a new phase function ψ = ϕ + εS, where ε is a
fixed number (ε = 0.2 on the experiment) and the S func-
tion is made of i.i.d. random variables uniformly distributed
on (−π, π) (except for half of the variables, which are con-
strained by the fact that S must be an odd function). As we
can see on Fig. 1, when the phase information is deterio-
rated, the first structures to be damaged are flat zones. In the
extreme case (ε = 1), the phase would become completely
random, and we would obtain a microtexture (colored noise).
To measure the amount of “image structure” that is contained
in the phase component ϕ, we propose to use a likelihood
measurement based on total variation: the probability density
function p(u) = Z−1 exp(−αTV (u)), where Z and α are
positive constants, and the (periodic) total variation of u is

TV (u) =
∑

|x−y|=1

|u(x)− u(y)|, (1)

(the difference x−y being understood moduloΩ). This image
prior has been implicitely used for a long time, since it nat-
urally arises when the Rudin-Osher-Fatemi denoising model
[9] is rewritten in a statistical (maximum a posteriori) setting.

Among all possible odd phase functions ψ, some of them
will produce a more likely image (p(uψ) > p(u)), while most
of them will produce a less likely image (p(uψ) < p(u)).
Since p(u) is a decreasing function of TV (u), we can as well
compare TV (uψ) and TV (u), and obtain the following defi-
nition:

Definition 1 We define the global phase coherence (GPC) of
an image u by

GPC(u) = − log10

(
|{ψ ∈ P, TV (uψ) ≤ TV (u)}|

|P|

)
,

where P is the vector space of odd phase functions and |S|
denotes the Lebesgue measure of a set S.

Hence, the global phase coherence of an image is, in -log
scale, the relative volume of phase functions that, combined
with the modulus |û|, produce images that are not less plausi-
ble than u. Notice that for a 100 × 100 image, a precision of
10% on each phase component leads to a relative volume of
about 10−5000, so that we expect the log10 scale to be more
convenient to measure the global phase coherence.

original Lacornou image after phase shift (ε = 0.2)
TV = 19.76 TV = 22.47

Fig. 1. The phase function of the Lacornou image (left) is alterated
by a random phase shift in (−επ, επ) which pollutes flat zones and
increases the total variation (right).

3. NUMERICAL ESTIMATION

A classical way to estimate numerically the relative volume of
a set is to use Monte Carlo sampling. Thus, we could take N
images u1, . . . uN generated by imposing random phases to
u, and count the number k of indices i for which TV (ui) ≤
TV (u). Then we would have GPC(u) ' − log10(k/N).
However, this method cannot be used here, since we expect
GPC(u) to be large (several hundreds or thousands) and in
such cases we would systematically obtain k = 0. To over-
come this difficulty, we numerically define the global phase
coherence of u by

GPCN (u) = − log10 Φ

(
µ− TV (u)

σ

)
,

where µ and σ are the empirical mean and variance of the
samples (TV (ui))1≤i≤N , andΦ is the tail of the Normal Dis-
tribution, that is Φ(x) = (2π)−1/2

∫ +∞
x

e−t
2/2 dt. This ap-

proximation amounts to assume that if U is a random image
with fixed Fourier modulus and i.i.d uniform (odd) random
phases, then the distribution of TV (U) is Gaussian. This as-
sumption can be proven to be asymptotically true (using a
generalization of the Central Limit Theorem), and was always
verified in practice up to a precision of 10−4 or so (maximum
‖ · ‖∞ difference between repartition functions).

Since we compute the phase functions with a Discrete
Fourier Transform, we implicitely assume that all discrete im-
ages are periodic, and this is why we chose to use a periodic
definition of TV (u) (Equation 1). However, it is well known
that the forced periodization of an image creates strong arti-
facts on its Fourier Transform, especially among vertical and
horizontal frequencies. This could bias the GPC measure (and
numerical experiments prove that it actually does), so in or-
der to avoid this we work on the periodic component of u (see
[10]), per(u), whose reduced discontinuities across the frame
border permits to avoid periodization artifacts. Another arti-
fact that could (and actually does) bias the GPC measure is
the fact that numerical images are quantized on a finite num-



ber of grey values, which introduces a small bias on the TV
measure (e.g., quantization may produce artificially constant
zones where TV = 0). In order to avoid this, we apply a de-
quantization operator Q, that simply consists in a (1/2, 1/2)
Fourier-based translation [11]. In the end, we are led to es-
timate the global phase coherence of a numerical image by
GPC ′N (u) = GPCN (Q(per(u))) for N large enough (one
thousand or more).

4. GPC AS A SHARPNESS INDICATOR

Now we have defined the GPC in a natural way and dealt
with numerical artifacts, we can try to understand how the
GPC measure is related to image properties. A first simple
remark is that it is invariant under affine contrast changes,
that is one has GPC(a ·u+ b) = GPC(u) for any real a and
b such that a 6= 0. Another interesting property is that if U
is a colored noise (that is, a white noise convolved with some
given kernel), then one has Prob {GPC(U) ≥ t} ≤ 10−t. In
other words, it is almost impossible for a noise image to have,
by chance, a GPC above 3 or 4.

Previous remarks suggest that the GPC should be related
to the level of blur. On Fig. 2, we estimated the GPC of
several small windows, and it appeared to distinguish very
well foreground (sharp) and background (blurry) zones.

To investigate further the relation between GPC, blur and
noise, we can compute the 2D-function

f(r, σ) = GPC ′N (gr ? u+ σW ),

where gr is the 2-D Gaussian kernel with standart deviation
r and W a white noise image with unit variance. On Fig. 3,
the level-lines of f are represented for the classical Lacornou
image (u): we can see that the GPC rapidly decreases when
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Fig. 2. Estimated GPC on several sub-windows of the parrots image
[12] are 206 (A), 388 (B), 240 (C), 2.56 (D), 0.33 (E). We can see
that the GPCs of all three well-focused details (A,B,C) are very high,
independently of their content or contrast. Background windows are
blurry and hence have very low GPCs.
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Fig. 3. 2D blur-noise GPC diagram for Lacornou image. GPCN is
computed for N = 4000.

the blur and the noise increase, and that, for example, a blur
of r = 1 is, in terms of GPC, equivalent to a noise of σ = 6.

From these observations, the GPC appears to be some
kind of sharpness indicator for natural images. We do not es-
tablish here the precise relation between GPC and perceptual
image sharpness (this would require a rigorous psychovisual
study), but former papers like [13] seem to indicate that the
combination of noise and blur obtained on Fig. 3 is percep-
tually relevant. One can try to explain this in the following
way: a natural image generally presents edges and flat zones.
When its phase is modified, the sine waves that were perfectly
aligned to produce these edges and flat zones are desynchro-
nized, so that wavy patterns appear in flat zones, which in-
creases the total variation. This phenomenon is amplified for
sharp images, that have sharp edges near flat zones, but re-
duced for blurry and/or noisy images, that are more robust to
slight phase distortions.

5. APPLICATION TO BLIND DECONVOLUTION

Contrary to what common sense would suggest, “sharp” is not
the opposite of “blurry”, in the sense that an image which is
not blurry is not necessarily sharp: it can present quantity of
other artifacts like noise, ringing, aliasing, etc., that, like blur,
reduce the amount of true details that can be perceived. Up
to now, we checked that the GPC was decreased by blur and
noise, but is it also decreased by ringing? Ringing is typically
produced on an image when some components of its Fourier
Transform are improperly magnified, which causes oscilla-
tions in the space domain. Intuitively, we can expect ringing
to decrease the GPC, since oscillations are known to have a
high TV cost. This suggests an application of the GPC mea-
sure to blind deconvolution: if an image u has been obtained
by convolving a given image v with some Gaussian kernel gr
for some (unknown) r, we could try to estimate r (and v) by
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Fig. 4. Top: Graphs of r 7→ GPC(hr ? u) and r 7→ TV (hr ? u),
where u is the Lacornou image and hr is a deconvolution kernel
(r < 0) or a blur kernel (r > 0) (see Equation 2). Bottom: same
experiment applied to u′ = g2 ?u+w, where w is a Gaussian white
noise with unit variance. Contrary to a simple TV measurement,
the GPC permits to select the best deconvolution parameter r as the
one producing the image with the most coherent phases. The origi-
nal Lacornou image can be slightly improved (GPC is maximum for
r = −0.6), and the parameter of the blur kernel used to produce the
degrade version is well recovered (GPC is maximum for r = −2.1).

selecting the sharpest image among all deconvolved images
(g−1r ? u)r>0. This experiment is illustrated on Fig. 4 on the
Lacornou image and on a degraded version of it: the GPC of
hr ? u is represented as a function of r, where hr = gr for
r ≥ 0 (convolution) and

ĥr(ξ) =
ĝ−r

∗
(ξ)

|ĝ−r(ξ)|2 + λπ2|ξ|2
(2)

with λ = 0.1 for r < 0 (regularized deconvolution). In each
case, the deconvolution parameter (r) that is found by max-
imizing the GPC of the restored image is near the expected
value: a little less than 0 for the original image (since, like
most images, its quality can be improved with a small decon-
volution), and around −2 for the degraded image (that had
been blurred with r = 2). Notice that classical energy-based
criteria (L2 norm, TV, etc.) lead to (approximately) monotone
graphs and thus offer no such possibility to select r.

6. CONCLUSION

We presented a way to analyze the phase coherence of an im-
age, by using both its Fourier Transform and a spatial mea-
surement, the Total Variation. We showed that the phase co-

herence could be analyzed globally, provided that artifacts
are avoided by using a periodic+smooth decomposition [10]
and a dequantization process [11]. The resulting GPC mea-
surement decreases with blur, noise and ringing, and seems
for these reasons to be an interesting indicator of the quality
(sharpness) of an image. We showed that it could be used
for local blur evaluation and parametric blind deconvolution,
but, among other applications that could be investigated, im-
age quality assessment, the selection of sharp images in large
databases or acquisition campains, and more general image
restoration processes seem to offer interesting perspectives.
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