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Abstract

We address the problem of computing a local orientation map in a digital image. We show that
standard image grey level quantization causes a strong bias in the repartition of orientations, hindering
any accurate geometric analysis of the image. In continuation, a simple dequantization algorithm is
proposed, which maintains all of the image information and transforms the quantization noise in a nearby
Gaussian white noise (we actually prove that only Gaussian noise can maintain isotropy of orientations).
Mathematical arguments are used to show that this results in the restoration of a high quality image
isotropy. In contrast with other classical methods, it turns out that this property can be obtained without
smoothing the image or increasing the SNR. As an application, it is shown in the experimental section
that, thanks to this dequantization of orientations, such geometric algorithms as the detection of nonlocal
alignments can be performed efficiently. We also point out similar improvements of orientation quality

when our dequantization method is applied to aliased images.
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I. INTRODUCTION

Let u(z) be a grey level image, where z denotes the pixel and u(z) is a real value. Most
natural (non synthetic) images are generated in the following way : a source image s is assumed
to be of infinite resolution. A band limited optical smoothing is performed on s, yielding a
smoothed version k * s. By Shannon-Whittaker theory, the band-limited image can be sampled
on a regular and fine enough grid. Let us denote by II the Dirac Comb of this grid. Then w is
roughly obtained as u = (s*k)-II, which yields the discrete, digital image. According to Shannon-
Whittaker Theorem, s * k can be recovered from u by the so called Shannon interpolation, using
a basis of sinc functions. Actually, this model is significantly idealized, since other operations
result in a substantial image degradation, namely a white photonic and/or electronic noise n, a
windowing (II is not infinite, but restricted to a rectangle) and, last but not least, a quantization
Q. Thus, the realistic image model is u = Q[(k * s) - II + n], in which we neglect the windowing
effect as affecting essentially the image boundary. In this paper, we address the problem of
computing accurately and in an unbiased way the orientation of the gradient of u, a number
6 € [0,27] such that exp(if) = Du/|Du|, where Du = (ug,u,) denotes the image gradient.
When we refer to the gradient of u, we wish to refer to the gradient of the smooth subjacent

image, in as much as we consider u to be Shannon interpolable. If we assume, which is realistic
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enough, that k& and n are isotropic, we are led to address the effect of the quantization @ on
the field of orientations. We discovered recently that this effect is strong and leads to a very
biased field of orientations. It can hinder any faithful geometric analysis of the image, unless
some previous restoration is performed. Before explaining how we shall address this restoration,
let us give an example where this restoration is crucial in order to perform a correct geometric
analysis in the image. This is a particular instance, but let it be mentionned that all probabilistic
methods using local pixel interactions (e.g. Markov random field models) would suffer, knowingly
or not, the same effect. We proposed recently a grouping, nonlocal, method for the detection
of alignments in an image. In a few words, the principle of the method is the following ([3]).
We assume that each point in the image has an orientation ©(z) (equal to the orientation of
the gradient plus 7/2). We consider a segment S of aligned points in the image, with length [.
Let ©¢ denote the orientation of this segment. Assume we have observed k points on S (among
the [ points) having their orientation equal, according to a given precision p, to the orientation
of S (i.e. such that |©(z) — Og| < pm). If k is large enough, then we say that the segment S
is meaningful (more details about this method are given in the last section). In Figure 6.b, we
show all segments detected in a natural image by this method at precision p = 1/16. It can be
visually checked that no detected segment seems to be artefactual, i.e. due to image generation.
Let us now choose a precision of orientation p = 1/64. This precision may seem exagerate,
but can be successfully used in an image with strong gradients. Figure 6.c shows the detected
alignments, which are, according to our definition, highly noncasual. Clearly, such detections are
artefactual and the result of image generation. After some inquiry, it turned out that the grey
level quantization is responsible for such artefactual detections. Actually, this does not mean that
the alignment detection is wrong, but only that the detected alignments are image generation
artefacts. In Figure 6.d, we show the result of alignment detection (at precision p = 1/64) on
the same picture, after the dequantization we propose here has been performed.

Let us therefore come back to the problem of computing a reliable orientation. The first good
answer to this problem is known as the dithering method [5] which consists in adding a noise
before quantization and then substracting the same noise from the quantized image. This results
in decreasing the SNR of the image, but turns out to better maintain the image aspect and its
isotropy under strong quantization. Unfortunately, the dithering method has been to the best of

our knowledge fully abandonned in image generation devices. To summarize, image isotropy can
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be restored by dithering to the cost of decreasing the SNR, but this is a degradation and should
anyway be performed in the image generation process itself : this is not generally the case.

A second easy answer, much in use, consists in smoothing the image by some convolution
kernel, and only retaining the orientation at points where the gradient is high and stable across
scales. This is the classical “edge detection” method (see [15], [10], [2] and, for more up to date
methods, [9]). There is nothing to object to this method, since at the end it retains edge points
which are very local, though they are confirmed at larger scales. Now, clearly, many orientations
in the image can be used to detect alignments, which are not computed at edge points : the edge
points simply are a particularly good selection, but sparse. Another way, addressed recently and
successfully by several authors ([12], [14]) consists in defining an orientation scale-space. Also,
the affine scale space ([13], [1]) provides a way to compute a multiscale orientation of level lines.
In all cases, the objective is different and wider than just computing a local orientation : the aim
of these methods is to compute a multiscale orientation map which has to be considered by itself
as a nonlocal analysis of the image. These methods are better than edge maps methods in the
sense that they provide an orientation at all points. They are all the same not appropriate for
image analysis models based on local observations (e.g. most probabilistic methods), as well as
the one we outlined before. Indeed, they do not preserve the independence of points at Nyquist
distance.

The solution we propose in order to dequantize the image should, according to the preceding
discussion, satisfy the following requirements :

« maintain the “independence” of local observations (i.e. no smoothing),
« maintain all of the image information (thus the method must be invertible),
 give an unbiased orientation map, where quantization noise has been made isotropic.

We shall actually prove that a simple and invertible operation, namely a Shannon (3, 3)-
translation of the image, permits to remove the quantization effects on the orientation map.
More precisely, we shall prove experimentally and mathematically that this translation trans-
forms the quantization noise into a nearby Gaussian white noise. We shall also prove that all
reasonable local computations of the gradient, applied to the dequantized image, yield an un-
biased orientation, even at points where the gradient is small. This remains true even when
the quantization step is large. As a consequence, we point out the possibility of performing the

geometric analysis of an image with a very local estimate of the gradient, using therefore the full
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image accuracy.

Our plan is the following. In Section 2, we consider a wide set of classical local computation
methods for the gradient and show that they preserve an excellent isotropy, under the assump-
tion that the image noise is uniform or Gaussian. We also prove a converse statement : the
image orientation will be isotropic if and only if the noise is Gaussian. We analyze the bias
introduced by quantization and show that its effect on orientation can be disastrous. In Section
3, we detail the proposed solution and make an accurate mathematical and practical analysis
of the dequantized noise. We show that it is nearby Gaussian, thererfore permitting the local

computation of orientations. In Section 4, we end with some experiments.

II. Local computation of gradient and orientation

We consider a discrete grey-level image u of size N x M. At each point, we can compute the
gradient on a 2 x 2 neighbourhood (we choose the smallest possible one to preserve locality). It

is defined by
1| Xo+X4—X1—X3
G(n,m) = = 5 ) (1)
Uy X1 +Xo— X3 — X4

where X1 = u(n,m), Xo =u(n+1,m), X3 =u(n,m+1) and X4 = u(n+1,m+1) (see Fig. 1).

X1 X2

X3 X4

Fig. 1. The four pixel values used to compute the discrete gradient.

Aside from a classical finite differences estimate of the gradient of u, (1) can be interpreted
as the exact gradient Vi(n + 1/2,m + 1/2), where @ is the bilinear interpolate of u defined in
[n,n + 1] x [m,m + 1] by

i(z,y) = (y —m) ((:v—n)X4-|— (1 —x+n)X3) F(1—y+m) ((:v—n)Xg (1 —:v+n)X1) .
From (1), we write R = |G| and define the orientation 6 by

ug + tuy = Rexp(i6). (2)

DRAFT



Note that 6 is not defined when R = 0. Our aim will be to study the behaviour of 8 as a function
of the four values X, X5, X3 and X4. The question is to decide whether such a way of computing
the orientation is valid or not (i.e. whether it gives some privilege to particular directions or
not). In this section we prove that if the image u is a Gaussian white noise, then there is no bias
on the orientations (this means that, at each point, all orientations have an equal probability),
and that, if u is a uniform white noise, there is a small bias (orientations multiple of 7/4 are

slightly favoured).

A. Gaussian noise

We first show that if the image u is a Gaussian white noise, then there is no bias on the
orientations.

Proposition 1: Let X1, Xy, X3 and X, be independent identically Gaussian N(0,02) dis-
tributed random variables. Then 6 is uniformly distributed on [0, 27].

Proof : The first point is to notice that if we denote A = X3 — X3 and B = X7 — Xy, then A

and B are independent and u, = A*TB and u, = ‘HTB. Thus, from (2),

A+iB=RvV2-exp [i(e - 7r/4)] . (3)

Now, A is Gaussian with mean 0 and variance 202 because it is the sum of two independent
Gaussian random variables (with mean 0 and variance 02). And B is also Gaussian for the same

reason. Since A and B are independent, the law of the couple (A, B) is given by the density

1 a? + b?
f(a'a b) = WGXP (_W> )

which shows that 0 is almost surely defined. Last, since f is isotropic (it only depends on the

function

squared radius a? + b%), we deduce that the distribution of @ is uniform on [0, 27]. O

Proposition 2 (Converse proposition) Let X7, X5, X3 and X4 be four independent identically
distributed random variables. Assume that their common law is given by a probability density f,
where f is square integrable and even. If the law of € is uniform on [0, 27], then the probability
density f is Gaussian.

Proof : As we did in the proof of Proposition 1, we denote A = Xo — Xgand B=X;—X4. A
and B are independent and identically distributed. They have the same density function g given

by the convolution of z — f(z) with itself, i.e. g(z) = fj’;o f(z —y)f(y)dy. Since f is square
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integrable, the function z +— g(z) is continuous. We also notice that g(0) = [ f2(y)dy # 0
(because f is a density function). Since the law of 6 is uniform on [(),27r], we know that the
law of (A, B), given by the density g(z)g(y), only depends on z? + 2, which can be written
g(2)g(y) = 9(v/22 + y2)g(0). In addition, g is even and never vanishes since it is a continuous
function such that g(0) # 0 and g(x)?2 = g(xv/2)g(0). Hence, we can consider the function §
defined for z > 0 by g(z) = In(g(+/z)/g(0)). Then, we get for all z,y > 0, gz +y) = §(z) + g(y).
Since g is continuous and §(0) = 0, this shows that g is linear. Consequently, there exists o € R
such that for all z in R, g(z) = g(0) exp (—z2/20?) where the constant g(0) is defined by the
property [ g = 1. Thus, the law of A (and also B) is the Gaussian distribution A'(0, 0?). We now
prove that the law of the Xj is also Gaussian. Since g = f * f, considering the Fourier Transform,
we get g(t) = j?(t)2 = Cexp (—t?02/2). Thus, 7 is Gaussian. Since the inverse Fourier transform
of a Gaussian distribution is also Gaussian, it shows that f is the Gaussian distribution with

mean 0 and variance 02/2. O

This result has a strong practical consequence : if we wish to have a non biased orientation map
for digital image, we must process the image in such a way that its noise becomes as Gaussian
as possible. We shall see that it is feasible with quantization noise.

The following proposition is the generalization of Proposition 1, when the gradient is computed
on a larger neighbourhood (the proof of this proposition is given in Appendix).

Proposition 3 (Generalization) Assume that the components (ug,uy) of the gradlent are com-

puted on n neighbouring pixels Xy, Xo, ...X,,, i.e. u, = Z)\ i Xi and uy = ZMZXZ, where \;
=1 =1

and p; are real numbers such that Z Aip; = 0 and Z )\2 Z u2 If the X; are independent

=1 =1
identically Gaussian N(0,0?) distributed, then the angle 6 is umformly distributed on [0, 27].

B. Computation of orientation on nongquantized images

In this section, we address the effect on the orientation histogram of applying the former de-
scribed computation of the gradient. We shall see that the bias introduced by the method is
small. It is not always realistic to assume that the local repartition of the grey levels of an image
is Gaussian. Instead, we can roughly assume that the values at neighbouring points differ by a
uniform random variable. Thus it is licit, or at least very indicative, to compute the orientation
map of a uniform white noise, in order to have an estimate of the bias on orientation provoked

by this gradient computation. Let us therefore perform the computations in the following frame-
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work : consider an image whose values at pixels are independent random variables, identically

uniformly distributed on [—1, 1]. We then get a small bias on the orientation §. More precisely,
we have the following proposition (the proof is given in Appendix).

Proposition 4: Let X1, X2, X3 and X4 be independent random variables, identically uniformly
distributed on [—5, 5]. Then the law of 8 is given by the density function g, 7/2-periodic and

11
2'2
to [—m/4,7/4] is

whose restriction

90) = = (0 + a5~ o)) (2~ tan(§ o))

(see Figure 2).

Fig. 2. Law of § on [—m,n] when the image is a uniform noise, and comparison with the uniform

distribution on [—m, 7] (dotted line).

Proposition 4 shows that if the pixels of the image have independent uniformly distributed
values, then the orientations are not uniformly distributed. The law of the orientation @ is given
by Figure 2. It shows that the orientations multiple of 7/4 are favoured. If we want to measure
the bias, we can compute the relative deviation from the uniform distribution on [—m,7]. We
get : bias = 27 x max |g(6) — 1/27| ~ 0.047. This shows, however, that the bias is small, about
4.7%.

C. Bias of quantization

We saw in the previous section that the way we compute the orientation at a point of the image
from the gradient does not create artefacts. Now, on the contrary, we will see that the histogram
of orientations in the image is very sensitive to a quantization of grey levels. Let us first consider

the simplest case : a binary image. We assume that the grey level at each pixel is 0 (black) or 1
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(white). Then, the orientation 8 of the gradient only takes a finite number of possible values : the
multiples of /4. The binary case is an extreme case. Let us now consider the case of an image
quantized on a finite number n of grey levels : {0,1,2,...,n —1}. Again, we denote A = X2 — X3
and B = X; — X4. Then A and B have discrete values in {—n + 1,..,—1,0,1,...,n — 1}. If
A =B =0, 0 is undefined. If A =0 and B # 0, then § = —7/4 or § = 3w /4. In the other cases,
we have tan(f — w/4) = B/A and consequently 6 only takes a finite number of values.

Let us compute the distribution law of  when the image is a uniform discrete noise (i.e. the
X, are independent and for all k¥ in {0,..,n — 1}, P[X; = k] = 1/n). First, we compute the
probability distribution of A (and B) :

n—1
Vke{-n+1,..,n—1}, P[AZk]ZZP[ngj]-P[XQ:k—i—j]:
=0

n — |kl

n2

Hence with probablility n—12, A = B =0 and 0 is not defined. Let us now compute the probability
distribution of B/A, when A # 0. For each possible discrete value b/a € Q (with a and b
mutually prime) of B/A, we have

P[B/A=bja]= ) P[B=2Xb -P[A=)d]. (4)

AEZ*

In particular, we can compute the probability of the event § = w/4 (it corresponds to the event
B =0 and A > 0). Notice that, thanks to symmetries, this probability also is the probability of
the events § = —n /4, 3n/4 or —3n /4. We get

n—1 n—1 3
n—a n—1
Pl0=r/4 =) P[A=a]-P[B=0]=) — =
a=1 a=1
Moreover, we have
Vo € Z, a#%[g] P9 =a] <P[f=nr/4l.

This shows that the orientations multiple of w/4 are highly favoured. On Figure 3, we plot the
probability distribution of 8 when the number of grey levels is n = 6, n = 9 and n = 257.
These three cases correspond respectively to n — 1 prime, and n — 1 of the form 29. Equation
(4) shows that the probability distribution of B/A is directly related to a known problem of
arithmetic : how many distinct irreductible fractions of the form b/a can you make with the
constraint 0 < b < a < N 7 This problem has already been addressed, in a very similar way, in

some papers of Lopez-krahe et. al (see [7] and [8]) for the detailed study of the effects induced
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10

by lattice quantization on the histogram of the slopes of straight lines joining two points of the
lattice. The main difference with our study is that we have in addition a probability distribution

on the values of a and b.

|
\|\|1.s | J|“i I \\“\h
¥ i 5

‘|||| I“J ||.‘I \‘\\ |||I‘|I L“\
18 -1 0.6 o oE 1

Fig. 3. Probability distribution of 8 for —7/2 < 6 < /2, when the grey levels are respectively uniformly
distributed in {0,1,..,5} (left figure), in {0,1,..,8} (middle figure) and in {0, 1,..,256} (right figure).

Most quantized images are not binary images, but the effect of quantization on the computation
of the gradient orientation is always very significant. The reason for this is that in an image,
there are usually many “flat” regions. In these regions, the grey levels take a small number of

values, and consequently the orientation is very quantized.

III. ORIENTATION DEQUANTIZATION
A. The proposed solution : Fourier translation

We assume that the original signal (before quantization) is a Shannon signal (i.e. we can
reconstruct the whole signal from the samples). We denote this signal by s if it is a one-

dimensional signal and by wu if it is a two-dimensional image :

s(z) = Z s(k)-sinc (7r(z - k)) and u(z,y) = Z u(k,1)-sinc (7r(ac - k)) -sinc <7r(y - l)) .

keZ k,lE€Z

The sinc function is classically defined by sinc(z) = %22 with the convention that sinc(0) = 1.

Now, we do not know the exact values of the s(k) (resp. of the u(k,l)). We only have the
quantized signal S (resp. U). Thus, at each point,

s(k) = S(k) + Xj, or u(k,l) =U(k,l) + Xg,.
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where X}, (resp. X} ;) is the quantization noise. In the following, we assume that the X}, (resp.
X},) are independent, and uniformly distributed on [—1, 2]. This independence assumption is
correct above the Nyquist distance.

The proposed solution for dequantization is the following one. We replace the quantized values

of the signal S(n) by the Shannon interpolates S(n + 1/2) and obtain

1 " sin(m(1/2 — k))
2 %S( +k) 7r(1/2—k)

k
= Zs(n-{—k) 1/2_ ZXan 1/2) 5

kEZ

= ZXﬂ+k ( 1)k

kez (1/2 k)

S(n+

For the quantized image U(n,m), this formula becomes

1 1 1 1 (—1)k (—1)!
- —_ = — X X -

Remark : For a finite image of size N x N, we have

u(z,y) = sz u(k,l) - sincy (ﬂ'(l‘ - k)) - sincy (ﬁ(y — l)) )
k,l=0

=

sin(t)

where sincy is the discrete version of the sinc function, defined by sincy(t) = m
an(%
N

(with the
convention that sincg(nt) = 1 for ¢ = 0 [N]).

B. Study of the dequantized noise

By the dequantization method, we aim at replacing the structured quantization noise by a
noise as Gaussian as possible. We will see that, the Shannon translation being an isometry, we
do not reduce or enlarge the variance of the noise. Thus, we can already claim that the method
is at any rate harmless. We can of course reconstruct the original digital image by the inverse
translation.

Our aim in this subsection will be to study the dequantized noise Y7 (in 1-D) and Y2 (in 2-D)
defined by

= i an = (=D* (-1)!
Yl_éﬂ(l/2_k) Xk d Y2_k,zle:Z7T(1/2_k) (/2 -1 Xk 1, (5)
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where the X}, (resp. the X} ;) can be assumed, in a first approximation, to be independent and
uniformly distributed on [—1, 1].

Let us introduce some notations. For k € Z, we set

(=D*
%= 0T R (6)

We thus have Y1 = ), cx Xy and Yy = Zk,leZ ck Xp. If X is a random variable uniformly
distributed on [—1, 1], then the mean and the variance of X are E(X) =0 and var(X) = 1/12.
Since 3" ¢2 is convergent (it is equal to 1), the random variable series (5) defining ¥; and Y; are
convergent in L2, and we moreover have E(Y1) = E(Y3) = 0 and var(Y;) = var(Ys) = 1/12. The
variance of Y7 (and of Y3) is the same as the variance of X}, (this can also be explained by the
fact that the Fourier 1/2-translation is an isometry of L?) and thus, we do not reduce or enlarge
the variance of the noise.

On Figure 4, we show the distributions of Y; and Y5. On the same figure we plot the Gaussian
distribution which has mean 0 and variance 1/12. These probability distributions seem to be
very close. We shall measure this. We also notice on this figure that the distribution of Y5 looks
“more Gaussian” than the one of Y;. This can be qualitatively explained by the Central limit
Theorem and by the fact that a larger sum of independent random variables is involved in the

definition of Y5.

Q.5 -

Fig. 4. Left : distribution of Y3 and comparison with the Gaussian distribution with mean value 0
and variance 1/12 (dotted curve). Right : distribution of Y2 and comparison with the Gaussian

distribution.
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B.1 Kurtosis Comparison

One way to compare the distribution of Y; and Ys to the Gaussian distribution is to compare
their fourth order moment (notice that they have already same mean 0, same variance 1/12 and
same third order moment 0). More precisely, we will now compare their normalized fourth order
moment (called the kurtosis, see [11]).

Definition 1 (Kurtosis) The kurtosis k of a random variable X with mean E(X) and variance

var(X) is defined by
BI(X — B(X))"
var(X)?
A classical result is that any Gaussian distribution has a kurtosis equal to 3 (it is independent

KR =

of the mean and variance). We will now compute the kurtosis of the distributions of Y7 and Y5.
This is a very useful way to check whether a distribution is Gaussian like.

Proposition 5: Let k1 be the kurtosis of Y7 and k9 be the kurtosis of Y5, then

13 43
K1 = — 3 = 2.6 and KQ—BE2.87.
Proof : One way to compute the fourth order moment of Y7 is to compute its characteristic
function, denoted by ®y, (which is defined as the Fourier transform of the probability distribution

of Y1), and then to compute the fourth order derivative of ®y, at 0. We first compute

®y; (1) = Ble"] = [ [ Ble"***] = [] ®(ext),

kEZ kEZ

where @ is the characteristic function of the uniform distribution on [—%, %], which is given by

®(t) = sinc (%). Consequently, we get

By, (t) = [[ sinc (C t) (7)

kEZ

For z close to 0, we have the Taylor expansion sinc(z) = 1 — ‘g—? + %—? + O(x%). Thus, for ¢ close
to 0, using also the Taylor expansion of the log function, we get
t4 4

i
log By, (t) = ——52 + 15954 = 7554 + Ot %)

where Sy = Y, c7(ck/2)? and Sy = >,z (ck/2)*. Finally, since for z close to 0, we have the
Taylor expansion exp(z) =1+ z + m2/2 + O(x?’), we get

1
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The fourth order moment of Y7 is then,

4 _ 5@ — 94a. i Z_L
B(v) = o) (0) = 24 (7252 18054>.

On the other hand, we can compute Se and Sy using Bernouilli numbers and the zeta function

(see [4] for example), and get Sy = 1/4 and Sy = 1/48. Finally, we obtain

13 13 13
E(Y14) = % and K1 = % - 122 = g.

In the same way, we can compute the fourth order moment of Y5 = > ki ek Xg 1,

2

1 CrCy 2 1 CrCy 4
B(YH =4l. | — (_) . (_ )
(¥) 72 Z 2 180 2

k,l€Z k,l€Z

16 16 43
EY)=24- (=83 ——87) = —.
(¥2) (7252 18054> 2160

The variance of Y3 is also 1/12, and thus the kurtosis k2 of Y is

43 122 = 43 ~ 2.87.

"2 = 5160 15

B.2 Estimating the L' distance to the Gaussian distribution

Let fi (resp. f2) be the probability density of Y; (resp. Y3), and let g be the Gaussian
distribution with mean 0 and variance 1/12. On Figure 4, we noticed that the probability
densities fi; and fo seem, on the average, to be very “close” to the Gaussian distribution g. The

aim of the following proposition is to give upper-bounds for the L' distances || fi — g ||;1=

Jelfi(@) — g(z)ldz and || fo — g [|1= [ |f2(2) — g(z)|dz.

Proposition 6: We have the following estimates :

| fi—9glz:<0.07  and | f2 — g ||z < 0.02.

The proof of Proposition 6 is given in Appendix. It combines exact inequalities and numerical

estimates.
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C. Posterior independence

In our study of the dequantized noise, we made the assumption that the X}, (resp. the X} ;) are
independent and uniformly distributed on [—%, %] Here we address the problem of the posterior
independence of the dequantized noise, i.e. for example if we consider the dequantized noise Y;

at two different points n and m,

Yi(n) = ZCka-k and Yi(m) = chXm+k,
kEZ keZ

we are then interested in the correlation of Y7 (n) and Y;(m). The result, which shows that we do
not increase the correlation, is given by Proposition 7. We recall that the correlation coefficient
of two random variables X and Y is defined by

E(XY) — E(X)E(Y)

PIXY)= var(X)var(Y)

For simplicity, the following proposition is stated and proved for the dequantized noise Y;. The
result for Y, is the exact analogue.

Proposition 7: Let the Xy, for k € 7Z, be random variables uniformly distributed on [—%, %]
Assume that for all § € Z, the correlation coefficient between X and Xjs is the same for all
k € Z, and let us denote it by Cs. Then, the correlation coefficient between Y;(n) and Yi(m)
is p(Y1(n),Y1(m)) = Cpm—pn. In particular, this shows that if the X} are independent, then the
correlation coefficient of Y;(n) and Y;(m) is 0 when n # m.

Proof : Since, for all k, we have F(X}) = 0, this implies that E(Y1(n)) = E(Yi(m)) =0. We
also have, for all k € Z, var(Xy) = 1/12 = var(Yi(n)) = var(Yi(m)). Thus, if we compute the

“posterior” correlation coefficient, we get

p(V1(n),Yi(m)) = 123 Y i B(XpsnXiim)
kez lez

= Z Z ckCk+6Csim—n

0EZ kEZ

For § € Z*, we have ) ;s crcpys = 0. On the other hand, for § = 0, we already saw that
> okez ci = 1. Notice that these properties of the ¢, are explained by the fact that the 1/2

Fourier translation is an isometry of L?. Finally, we obtain the announced result, which is

p(Y1(n), Yi(m)) = Y tez §Cm—n = Cmn. O
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D. The flat regions model : final explanation of the dequantization effect

Let us summarize. We had written the “dequantized” signal as

k
S(n—l—;)—sn—i- ZX’H"“ 1/2) AL (8)
kEZ

where s(n + 1/2) is the original signal computed by Shannon interpolate at point n + 1/2,
S(n+1/2) is the dequantized signal at the same point and Y (n) = ), cx X4 is the so-called
“dequantized noise”. We have proven that Y(n) is nearby Gaussian. Since in Proposition 1 we
also prove that the addition of a Gaussian noise to the signal does not create any bias in the
orientation map, we might be satisfied with this result. Now, we claim that the above explanation
does not give an account of the change in the orientation histogram obtained by dequantization.
Indeed, we prove in Proposition 4 that the addition to the signal of a uniformly distributed noise
on an interval does not create a bias on the orientation larger than 4.7%. Thus something must
be inaccurate in our assumptions. Actually, we notice that when the gradient of s is small at a
given point, then the quantized values of s(n) around this point are a very discrete signal. In
other terms, assuming for simplicity that this point is 0 and that s(0) = 0, we have that S(k) =
s(k)— X € {0,1,—-1,2,—2,..} where the first integer values are very majoritary. This means that
s(k) and Xj are highly correlated when the gradient is small. Thus, our model (8) explaining
the good behaviour of S(n + 1/2) = original signal+ ~ Gaussian noise = s(n + 1) + Y (n)
will make sense only if we can point out that the dequantization process implies : Y (n) and
s(n+ 1/2) decorrelated. Now, using the same proof as in Proposition 7, we can show that this is
not true. In fact, more precisely, by this result we have p(Y (n), s(n+1)) = p(Xy, s(n)) under the
sound assumption of stationarity. Thus, we gain or lose no independence of the signal and the
noise obtained by dequantization. The final explanation will however arise from the technique
developed above. We first point out (see Figures 5.c and 5.d) that all the bias in orientation
histogram is due to low values of the quantized gradient, namely |Vu| < 4. The reason for this
is the following : at a point (z,y) of an image where the gradient is large, the orientation is not
much affected by the quantization. In fact, the angle error between the “true” orientation at
the point and the orientation computed after the quantization of the image is proportional to
1/|Vu|. Let us show this. We denote by u the original image, then Vu = u, +iuy, = |Vu|exp(if),
where 6 is the direction of the gradient. Let @ denote the quantized image, and let ¢ denote the

quantization step. If @ denotes the direction of the gradient of the quantized image, we obtain
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Vi = |Vii| exp (i) = |Vu|exp (i0) + z, where z is a complex number (it represents the gradient
of the difference between the true image and the quantized image) with modulus smaller than q.
Thus, we get |sin(@ — )| < ¢/|Vu|. This shows that the points where the gradient is large are
not much affected by the quantization effect.

The points with small gradient are majoritary (about 60%, see Figure 5.b) in the gradient
norm histogram. Thus, we must focus on the points Where 5 < |Vu| < 4. We notice that in a
neighbourhood of such a point n, the histogram of values of S(k) are a discrete uniform process
centered at S(n). Taking, without lost of generality, S(n) = 0, we can model the values around
these points as discrete independent random values. See Figures 5.e and 5.f for the histogram and
correlations. In flat regions, the gradient is quantized on a small number of values and we will
see that the proposed Fourier translation has a strong dequantization effect. Let S denote the
quantized signal. At a point n, we replace the quantized value S(n), by the Shannon interpolate
S(n + 1/2), and then, we compute the gradient by

S(n+1/2) = S(n—1/2) = > [S(n+k) — S(n+ k — 1)]cy.
kEZ
In flat regions, we can assume that the difference S(n)—S(n—1) takes a small number of discrete
values. For example, if we assume that it only takes the values 0, 1 or —1, then the following
proposition shows in particular that S(n + 1/2) — S(n — 1/2) is no longer quantized.
Proposition 8: Let Z be the random variable defined by
Z = crQs,
kEZ
where the ()i are independent discrete random variables, taking the values 0, 1 or —1, each one

with probability 1/3. Then Z follows the same probability distribution as

Z 3cg Xk,

where the X, are independent, uniformly distributed on [—3, 3]. Thus, foralla < b,Pla < Z < b] =
Pla < T35 < b

In fact, T3 is nearby Gaussian. In particular, we have a nearby perfect dequantization since
the previous proposition implies that for all a < b, then P[a < Z < b] > 0.

The previous proposition can be extended to the case of a 2-D image in the following way. Let

U denote the quantized image. Using the same notations as in Section 2, the gradient of U, before

DRAFT



18

percentage of pixels

0 5 10 15 20 25 30 35 40 45 50

3000 T T T T T T T 1000 T T T T T T T

2500 1

700 - 4
2000 1

2

2

8
T
L

1500 4

number of pixels
number of pixels
@
g
8
:
.

2

5

8
T
L

1000 4

w

8

38
T
L

N

8

8
T
L

H

3

8
T
L

0 . . . . I . 1 0 . . . . . I .
-4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3 4
orientation of the gradient orientation of the gradient

correlation coefficient

distance

Fig. 5. Empirical observations on histograms and correlation. First row : left, the original image; right,
histogram of the norm of the gradient. Second row : left, histogram of the gradient orientation for all
points of the image; right, histogram of the gradient orientation for points with gradient nornDRART
than 5. Third row : left, local histogram (window of size 3 x 3) of u(z) —u(zo) for points xg such that
|Vu(zg)| < 3; right, correlation coefficient of u(zg + d) — u(xy) and u(zg — d) — u(zg) as a function of

the distance d, for points zg such that |Vu(zg)| < 3.



19

the 1/2-translation, has components A and B (in the referential defined by the (z, y)-axes rotated
by 7/4), where A(n,m) =U(n+1,m+1) —U(n,m) and B(n,m) =U(n,m+1) —U(n+1,m).

After 1/2-Shannon translation, we obtain

1 1
Aln+5,m+5) = Y aalUm+k+1m+1+1)—Uln+km+1),
k,l€z
1 1
B(n + g mt 5) = Z ckaUmn+km+1l+1)—Un+k+1,m+1).
k,lEZ

Now, if we define for all k,] € Z, QkA,l =Umn+k+1m+1+1)—Un+km+1) and
Qf’l =Um+km+1+1) —U(n+k+1,m+1)], we may assume that in flat regions all
these variables are independent. Then, we can prove an analogous result as the one given by
Proposition 8. More precisely, we can prove that A and B after translation have both the same

nearby Gaussian distribution, which is the one of the random variable T3 defined by

Ty = Z 3cpei X1,
k,1#2]3]

where the X} ; are independent, uniformly distributed on [—3, 3].

IV. EXPERIMENTS AND APPLICATION TO THE DETECTION OF ALIGNMENTS

In this section, we present some applications of the proposed solution for dequantization. The
first application is the detection of alignments in an image. In [3], we proposed a statistical cri-
terion for the detection of meaningful alignments in an image. At each point of the image (with
size N x N), we compute an orientation ©(z) which is orthogonal to the gradient at the consid-
ered point. Then, we consider a segment S in the image made of [ points at distance 2 (thus,
the gradients are computed on neighbourhoods that do not intersect, and we therefore make the
assumption that they are independent). Let k& be the number of points (among the /) which have
their orientation aligned with the direction of the considered segment, at a given precision p (i.e.
such that |©(x) — ©g| < pmr, where ©¢ denotes the orientation of the segment S). The probability
of observing at least k such points on a length [ segment is P(k,l) = Zé: K (;) p(1—p)'=7 (because
of the assumption that the orientations are independent and uniformly distributed on [0, 27]).
When this probability is very small, the event is highly non-casual and therefore meaningful.
Generally, we compute meaningful alignments with the precision p = 1/16. But, sometimes,

we are interested in alignments at a better precision, say for example p = 1/64. In Figure 6,
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we first present the original image (upleft) : this is a result of the scan of Uccello’s painting :
“Presentazione della Vergine al tempio” (from the book L’opera completa di Paolo Uccello, Clas-
sici dell’arte, Rizzoli). This image is quantized on 32 grey levels. We first compute (upright)
the meaningful alignments at precision p = 1/16. Then, we compute (downleft) the meaningful
alignments at precision p = 1/64 : it shows many diagonal alignments. These alignments are
artefacts, their explanation is the quantization effect on the computation of orientations : direc-
tions multiple of 7 /4 are highly favoured. Last, we show the detection of meaningful alignments
at precision p = 1/64 (downright), after the proposed solution for dequantization : (1/2,1/2)
Fourier translation. The result shows that artefactual diagonal alignments are no longer detected.

We also noticed (but we have no theoretical argument to justify it) that the same method
yields a significant improvement in orientation map of aliased images : see Figure 7. This is
particulary true for aliasing due to direct undersampling, a barbaric but usual zoom-out method

in many image processing softwares.

APPENDIX

Proof of Proposition 3 : Every linear combination of u, and u, is Gaussian because it
is also a linear combination of the X;, which are independent and Gaussian distributed. Thus
(ug,uy) is a Gaussian vector. Since ) A\ju; = 0, this implies that the correlation between u,
and uy is 0. Since (ug,u,) is a Gaussian vector, this shows (see [6] for example) that u, and u,
are independent. Moreover, the property )\12 =) ,u? shows that u, and u, are Gaussian with
same mean and same variance. Finally, as in the proof of Proposition 1, the law of the couple
(ug,uy) is given by a density function f(z,y) which depends only on the radius z? + y? and not
on the angle 6. Thus, € is almost surely defined and uniformly distributed on [0, 27].

O

Proof of Proposition 4 : We use the same notations as in the proof of Proposition 1.
The random variables A = X9 — X3 and B = X; — X4 are independent and have the same
density h, given by the convolution of the characteristic function of the interval [—%, %] with
itself, that is h(xz) = 1 — |z| for |z| < 1, and h(x) = 0 otherwise. Now we compute the law of
a =6 — w/4, knowing from (3) that B = Atan(a). Thanks to symmetries, we first consider the

case 0 < a < 7/4. The distribution function of a is F(a) =P [0 < B < Atana/l, that is

Fla) = /::O (/yjanau _ y)dy) (1 - 2)dz.
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Fig. 6. The effect of quantization on the detection of alignments. First row : left, the original painting

image, quantized on 32 grey levels, right, the meaningful alignments for precision p = 1/16. Second

row : left, the meaningful alignments for precision p = 1/64; right, the meaningful alignments for

precision p = 1/64, after (1/2,1/2)-translation.
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Fig. 7. The effect of the Fourier translation on an aliased image. First row : left, the aliased image;
right, the image after (1/2,1/2) Fourier translation. Second row : left, the histogram of the gradient

orientation in the aliased image; right, the histogram of the gradient orientation after translation.
Hence, the law of «a € [0,7/4] is given by the density function
! 1
f(a) = F'(a) = / z(1 + tan® o) (1 — ztana)(1 — z) dz = E(l + tan® @) (2 — tan a).
0

Finally, since @ = @ — 7/4 and by symmetries, we obtain the announced law for 6.
O

Proof of Proposition 6 : The ¢, are symmetric around 1/2, i.e. ¢;_; = ¢,. Thus, we can

write Y =), ck(Xk + X1-k). Let us denote

n
Zn =Y Xk + X1 ),
k=1

and let f,, be the probability density of Z,. We then have f, = f,_1 * hp, where h,, is the
probability density of ¢, (X, + X1_). We first prove the following proposition
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Proposition 9: For all n > 1, we have

I f=gllp <l fa—glw + 5 1g" Il >

k>n+1

Proof : Forn > 2, we have f,, = fp_1%hy,, where h,, is the probability density of ¢, (X, +X1-p)-
We notice that hy, is a positive even function, with compact support [—|cy|, |cp|] and satisfying

J hn, = 1. Thus,

H fn_gHLl < H a1 *%hy —g*hy ||L1 +||g*hn_g||L1

< =gl +11g*hn =gl

We now compute || g * hy, — g ||z1. For z € R, using the definition of g x h,, and the integral
Taylor formula, we get, yh,(y) being odd,
len| 9 1
g tnle) @) = [ 52 ([ 009"+ w)t) Bty
“len

Then, we can estimate the L! distance, and obtain

1
lg*hn—gl< 19" 1 e’

We add these inequalities and thus obtain the announced result. O

Using the previous Proposition, in order to have a numerical estimate of | f — g ||, we can
use a computational software to compute numerically the first terms fi, fo,...f10,... and on
the other hand compute an upper-bound for the tail || ¢" || > 45 x4 cz. We first compute
| ¢" ||l1- For z € R, we have ¢"(z) = (z%/0* — 1/0?)g(z), where 02 = 1/12 is the variance of

g. Thus, using an integration by parts and the properties [ g =1 and [; z%g(z) = o2,

we get
| ¢" ||=4g(c)/o < 12. Then, we compute the rest of the sum - ¢, using a comparison with an
integral, and get > ;o v ¢ < 1/7?N. Thus, we obtain
She'l 3 @< g0
E>N-+1
We can now compute an upper-bound for the L' distance between the density function of YV
and the Gaussian distribution. We can also do this in a similar way for the random variable Y5

(dequantized noise in dimension 2). The numerical estimates given in Proposition 6 are obtained

using Proposition 9 for n = 25, and the numerical computation of || fos — g ||1- O
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Proof of Proposition 8 : Let é(z) denote the dirac function. Then, the probability
distribution of the Qy is d(z) = 1/3: (6(z — 1) + é(z) + é(z + 1)). The main point is to notice
that the result of the convolution of d(z) with the uniform distribution on [—3, 1], is the uniform
distribution on [—% §] This means that @y + X has the same probability distribution as 3 X}.
And consequently, >, c¢x(Qr + Xj) has the same probability distribution as », 3X;. We now
consider the Fourier transform of the previous distributions (it will convert the convolution into

a product). Let Fy(t) denote the Fourier transform of ), ¢; Xj. From (7), we know that
kl;[Zn( - Hsmc( )
We denote by F3(t) the Fourier transform of ), 3¢, X;. We then have F3(t) = F1(3t). On the
other hand, the Fourier transform of d(z) is (142 cos t)/3. Thus, if we denote by G(t) the Fourier
transform of the law of ), cxQy, we have

G(t) = H (1 + 2c;)s(ckt)) ’

kEZ

where in both cases the convergence of products is uniform on every compact subset of R. Since
>k ¢k(Qr + Xi) has the same probability distribution as ), 3X}, this shows that G(¢)F(t) =
F3(t) for any real t. We now show that there exists a continuous function H; such that for all
t, F3(t) = F1(t)H(t). In fact, we have F3(t) = ],z sinc (%), and we decompose this
product into two products : the first one is the product over all k£ such that k& # 2[3], and the
second is for all k£ such that k& = 2[3]. Now, for k¥ = 2[3], we can write k¥ = 3k’ — 1, and thus
3/(2k — 1) =1/(2k' — 1). This shows that

H smc( 2k—1)> Fi(t),

and it may be shown that H; is continuous on R. Thus, we have for all ¢, G(t)F; (t) = H1(t)Fi(t).

Since the zeros of F} are discrete, and G and H; are continuous, this shows that

VteR,  G(t)=Hi(t)= [] sinc (m)
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And thus, Z = ), cxQx has the same probability distribution as Zk¢2[3] 3¢k Xi. Moreover,
thanks to Levy Theorem, we have a convergence in law of the partial sums E| kl<n cxQr to Ts.

a
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