Affine plane curve evolution :
a fully consistent scheme

Lionel Moisan

Abstract— We present an accurate numerical scheme for the
affine plane curve evolution and its morphological extension to
grey-level images. This scheme is based on the iteration of
non-local, fully affine invariant and numerically stable opera-
tor, which can be exactly computed on polygons. The properties
of this operator ensure that a few iterations are sufficient to
achieve a very good accuracy, unlike classical finite difference
schemes which generally require a lot of iterations. Conver-
gence results are provided, as well as theoretical examples and
experiments.
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I. INTRODUCTION

HE affine scale space has been discovered simultane-
ously a few years ago in its geometrical and image
formulation. If we represent a grey-level image as a func-
tion up : R? — IR, the affine morphological scale space
of ug (shortly written AMSS) is the collection of images
(2 — u(az,t))t>0 defined by
3u 1
O — |Duli(ay*, (1)
with initial condition u(-,0) = up. Here, Du means the gra-
dient of u with respect to # and the second order operator
k(u) = div(g—zl) can be interpreted when |Du| # 0 as the
curvature of the level curve {y; u(y) = u(x)} at point .
Equation (1) makes sense for continuous images according
to the theory of viscosity solutions (see [7]) ; its geometrical
interpretation is that all level curves of u evolve according
to the equation
%—f(p,t) = k(p, 1) N(p,1), (2)
where £(p,t) and N(p,t) are respectively the curvature and
the normal vector of the curve C'(-,t) in C(p,t). As shown
G. Sapiro and A. Tannenbaum in [14], using the affine
arclength parameterization s reduces Equation (2) to the
nonlinear heat equation 9C/dt = §*C/ds>.
The AMSS has been characterized in [1] as the only regu-
lar semigroup 73 : ug — u(-, t) which satisfies the following
invariance properties :

u<v = Ti(u) < Ti(v)

For any monotone scalar function g,
Ti(gou) =goTi(u)
[Affine invariance] : For any affine map ¢,
Ti(uo ¢) = (Tijaerg)(u) © ¢-

Here, det ¢ means the determinant of the linear part of
¢, 1.e. det¢ = det A where ¢(2) = Ax+ b and (A4,b) €
GL(R?) x R

[Monotonicity] :
[Morphology] :
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Several algorithms have been proposed to implement nu-
merically Equations (1) or (2), but none of them manages
to satisfy numerically the previous properties. In 1993, L.
Alvarez and F. Guichard proposed a quasilinear scheme
where a 3x3 neighbourhood is used in each point of the
image to compute its evolution (see [10]). Of course, such
a local scheme cannot be affine invariant for the neighbour-
hood size is fixed in advance.

An inf-sup operator was also proposed in [11] to imple-
ment the affine morphological scale space. Inspired by
mathematical morphology operators, this inf-sup scheme
uses an affine invariant basis of structuring elements. Its
Euclidean analog had been treated by F. Catté and F. Di-
bos in [5]. However, the full morphological invariance (no
new grey-level is created on the image) and the grid dis-
cretization create difficulties. Indeed, a level curve is con-
strained to move by entire speeds : either it does not move,
or it jumps over at least one pixel (see [6]).

For the affine scale space of curves, all geometrical
schemes that have been proposed suffer from the space
discretization of the curves (see [10]), which prevents the
monotonicity property. The main difficulty comes from the
fact that there is no a priori relation between the number
of vertices of a polygon and the number of the vertices of a
discretization of its affine shortening (this number should
increase drastically for a triangle, but decrease as much for
a very irregular curve). Thus, an algorithm based on a lo-
cal point-by-point evolution cannot implement successfully
the affine scale space.

A numerical scheme for the affine scale space becomes a
scheme for the AMSS when applied to the level curves of
an image. Conversely, S. Osher and J. Sethian (see [13],
[16]) computed the affine scale space of the boundary of a
set S by applying the AMSS to its distance image u(#) =
g(@)dist(x, 0S), where e(x) = —1 if # € S, 1 otherwise.
This approach permits complicated curve evolutions, but
inherits the drawbacks of numerical schemes on images.

In this paper, we first define a geometrical operator —
called affine erosion—, whose tangent operator spans the
positive affine scale space. Then, we extend it to grey level
images using the level set decomposition, and prove its con-
sistency using the Matheron’s characterization theorem of
morphological operators and a general consistency theorem
for inf-sup operators from [11]. We also prove that the iter-
ated alternated operator converges towards the affine scale
space. Last, an exact algorithm is described and experi-
ments are given. We skiped some of the technical proofs
(which can be found in [12]), but tried to maintain most
relevant arguments.



II. AFFINE EROSION OF SETS

We are going to define a geometrical operator E, (o is
a nonnegative scale parameter), called affine erosion, and
acting on subsets of the plane. Since the geometrical defi-
nition of E,(U) requires some regularity on the boundary
of U, we first restrain our definition to a certain kind of
sets /. We shall see further how to extend E, to other
sets.

First, we need some geometrical definitions on curves.
We choose to call a simple curve any subset of ]R? homeo-
morphic to the circle ST = R /2.7 (closed curve) or to an
open interval of R (non closed curve). We shall often refer
to a simple curve using the notation C'(I), which means
implicitely that C': I — C(I) is a parameterization of the
curve. We also define a semi-closed curve as an oriented
simple curve € such that R? —C has exactly two connected
components (e.g. a parabola). A semi-closed curve can
also be viewed as a simple oriented closed curve defined on
the Alexandroff compactification of the plane R? U {co}.
Last, we say that a simple curve C'(I) is piecewise convex
if there exists a finite subdivision (s, sa,...s,) of I such
that each sub-curve C(]s;, s;41[) is a convex curve.

Let C'(I) be a simple curve. We say that (s,t) € I? is a
chord of C'if and only if the piece of curve C(]s,t[) and the
open segment |C(s)C(¢)[ are either disjoint, or equal. The
connected closed set enclosed by C(]s,t[) and the chord
segment |C(s)C(t)[ is a chord set of C, written C, ;. This
definition is naturally extended to infinite segments when
s or t belong to the boundary of I. If area (C ;) = o, then
(s,1) is called a o-chord and C;; a o-chord set of C.

(o)

C(s)

Fig. 1. A chord set of a simple curve. Notice that the chord segment
[C(s)C(t)] can intersect C — C([s, t]).

If C is oriented and area (C;:) # 0, the orientation in-
duced by C on the boundary of Cf ; tells whether (s,¢) is a
positive or a negative chord. We take the convention that
a O-chord set is both positive and negative. Last, since
the previous definition of chord does no depend on the pa-
rameterization of the curve, it makes sense to call (4, B) a
chord of C = C(I) when A = C(s), B = C(t), and (s,?) is
a chord of C.

Definition 1: A open subset S of the plane R?is a C-set
if
(i) it has a finite number of connected components
(ii) the boundary of any connected component is a finite
disjoint union of semi-closed piecewise convex curves.

Fig. 2. Affine erosion of a C-set with 2 components

These oriented curves enclosing the connected components
of S are called the components of 05.

Remark : The components of 0S are not necessarily dis-
joint : if S is the inside part of two tangent disks, 9.5 is
connected but has two components.

This definition of C-sets is a compromise between reg-
ularity (the boundary of a C-set admits a tangent almost
everywhere) and genericity (any finite union of convex sets
is a C-set).

A. Affine erosion of a C-set

Definition 2: The o-affine erosion of a C-set S is the set
of the points of S which do not belong to any positive chord
set —with area less than o— of a component of 05.

E,(S)=8 - UJ K.
o <o

K € K} (0S)

Here, K, (8S) means the collection of all positive o’
chord sets of all components of 05.

Proposition 1: The affine erosion of a C-set is a C-set.

The main argument is that if S is a C-set, the boundary
of E5(S) is made of concave pieces of 45 and a finite num-
ber of new convex pieces. A complete proof is given in [12].
A consequence of Proposition 1 is that we can define the
affine erosion of a piecewise convex semi-closed curve as a
collection of such curves, using the natural correspondance
between a C-set and its boundary.

A.1 Example : affine erosion of a corner

Proposition 2: The o-affine erosion of a “corner” W =
{z vy +yvy, >0,y >0} is the inside convex part of the
(half) hyperbola defined by

{ry = , & >0,y>0}.

_T
2 [Ul, Uz]
in the affine basis (O, vy, v2).

The notation [v1, v2] means the determinant of the two
plane vectors v; and wvs, that is, the algebraic area of the
parallelogram (0, vy, va, v1 + va).



Fig. 3. The affine erosion of a “corner” is a hyperbola

Proof:  First, we notice that only the o-chord sets are
significant to define the affine erosion of W because W is
convex (a chord set with area less than o can be enclosed in
a o-chord set). Secondly, the lines supporting the o-chord
segments of W have equation z/a + y/b = 1 (see Fig. 3)
and are submitted to the area constraint 2¢ = ab[vy, vs].
Consequently, the boundary of E,(W) is obtained by the
envelope of these lines, given by the system

r  alv,vs]y

Dai - R |
a+ 20
-z [, 0]y
D — 4 == —.
47 a2 20

Then, eliminating a yields

(22
Yy = —F/———=.
Y 2[111,1}2]

B. Basic properties of the affine erosion

Proposition 3: E,(S) is nonincreasing with respect with
o, and nondecreasing with respect with S, i.e.

oc1<0y = FE.(S) C FEs(S), and

S1CSy = Eg(Sl) C EU(SQ).

Proof: (second assertion) Let Sy and S3 be two C-sets
such that S; C S5, and consider M a point of S5. If M
does not belong to F,(S3), there exists a ¢’-chord segment
D of a component of §S5 such that ¢’ < ¢ and M belongs
to the associated chord set.

1. If M & Sy, then E,(S1) C Sy yields M & FE,(S1).

2. If M € Sy, consider the connected component A of
S1 containing M :

2.a. If AND = 0, then the external boundary of A
encloses a subset of area less than ¢/, so that F,(A) = §
and M & E,(S1).

2.b. If AN D # §, then a subset of D defines a ¢’’-chord
set of S containing M and S; C Sy implies ¢ < ¢/, so
that M ¢ Eo‘(Sl).

Fig. 4. The middle point property

Thus, M ¢ FE,(S2) = M & E,(S1), which means that
Eo‘(Sl) C EO-(SZ). |

The second part of Proposition 3 establishes the mono-
tonicity of E,, which guarantees the numerical stability of
this operator. The first part, easy to prove, justifies a pos-
teriori the name “erosion” in a geometrical sense. Notice
that E, is not an erosion on a lattice as defined by Serra

(see [15]), because E, (AN B) # E;(A) N Ey(B) in general.

Proposition 4: The affine erosion is covariant with re-
spect to the affine transformations of the plane, i.e for any
affine map ¢ and any C-set S,

¢ (EU(S)) = Ea~|det¢| (¢(S)) :
C. Affine erosion of convexr C-sets

So far, the definition of the affine erosion is not very
practical, especially for curves, since we must consider the
associated sets. In fact, for most convex curves C, E,(C)
is generated directly by the middle points of the o-chords
of C. The reason is roughly explained on Fig. 4 : given
a o-chord segment [C'(s)C(t)], another o-chord segment
intersects [C'(s)C(¢)] in I(0), and as @ — 0, the equi-area
constraint forces

%r%(@) 0= %r%(@) -0+ o(f),
so that r1(f) — r2(d) — 0 and I(0) converges towards the
middle of [C'(s)C(%)].

If a convex semi-closed curve C is non trivial (that is to
say, different from a straight line), the affine erosion of C
1s included in the set of the middle points of the o-chords
of C. However, the reverse inclusion only happens up to
a limiting scale (which can be either finite, infinite or zero
according to C). More precisely, we say that a chord (4, B)
of C is regular if a measure a of the angle made by the left
tangent in A and the right tangent in B satisfies 0 < o <
(see Fig. 5). Then, we say that the scale o > 0 is regular
for C if any o-chord of C is regular, and we note ¢,.(C) the
supremum of the regular scales of C.

Theorem 1 (middle point property) Let C be a non-
trivial convex semi-closed curve. For any 0 < ¢ < o,(C),
E+(C) is exactly the set of the middle points of the o-chord
segments of C, and this defines a natural homeomorphism

between € and F,(C).



c

Fig. 5. (A4,B)is aregularchordiff 0 < o < 7

Obviously, this theorem is interesting only when o, (C) >
0, which is not always the case, even for simple convex
curves as polygons. However, one can see that
1. If C is a convex semi-closed curve of class C!, then
a-(C) > 0.

2. If C is a convex polygon with vertices Py, Py, ... Py_1,
then o,(C) > 0 if and only if [P; P41, Pit2Pits] > 0
for all ¢ (the indices being taken modulo n).

What happens for non-regular scales 7 In general, the
curve described by the middles of the o-chord segments
has “ghost parts” which must be removed to obtain the
desired affine erosion. For instance, these “ghost parts”
appear at any scale in the erosion of a triangle, for which
or = 0 (see Fig. 6). This phenomenon is very similar to
the crossing of fronts for a flame propagation : the “ghosts
parts” must then be removed according to the Huygens
principle ; roughly speaking, once a particle is burnt it stays
burnt and cannot burn any more (see [13]).

Fig. 6. “ghost parts” (dashed) always appear for triangles

D. Consistency

Theorem 2: let C be a semi-closed convex curve of class
C"™ with n > 1. Then for any ¢ < ¢,(C), E,(C) is a semi-
closed convex curve of class C". Moreover, if n > 3, the
infinitesimal evolution as ¢ — 0 of a point M € C where
the curvature x is nonzero is given by

2 1 4 1 3
My,=M+w-0%5 -5 N+ O(c%) with w:§<%) ,

where NN is the normal vector to C in M.

C(s-d

C(9)

C(s+d

Fig. 7. Affine erosion of a convex semi-closed curve

Proof:  Consider s — C(s) an Euclidean length pa-
rameterization of C (i.e. |C'(s)| = 1 everywhere). Since
C is convex, we know from Theorem 1 that E,(C) is ex-
actly made of the middle of the o-chords of C as soon as
0 < ¢ < 0,(C) (which makes sense because we know that
or(C) > 0). Let (s —d,5+d) be a o-chord of C' and C,(s)
the middle of the associated segment (see Fig. 7). Since C'
is of class C', we can use the Green formula to compute
the area

where

o= %F(s,é(s, 7)),

s+t
Fs,t) = / [C(u), C"(u)] dt

—t

b [CG+0.Cls—t) —Cls+0]. (3)
Then, differentiating Equation (3) yields

O (s.1) = [C(s +1) = Cls = 1), C(s + ) — C'(s —1)].

C being convex, we have, for any distincts points C'(a) and
C'(b) of C, the inequality

[C"(a), C(b) = C(a)] 2 0,

and the equality holds iff the piece of curve C([a,?b])
is a segment. Hence, [C(s+1t) — C(s —1),C’(s +1)] and
[C(s+1t)— C(s —t),—C"(s —t)] are positive numbers and
their sum cannot be zero unless ¢ = 0, which is not the
case, or unless C'(s +t) = C(s —t), which is impossi-
ble as soon as 0 < t < §. As a consequence, %(5,5)
never vanishes and the global inversion theorem allows us
to claim that the map s — (s, o) is of class C™ as well as
(s, 1) — F(s,1).

We just proved that the function

5 Cols) = 5 [Cls = 8(s,0)) + Cls +3(5.0))]

N | —

is of class C™. Moreover, since the vectors C’'(s — (s, o))
and C'(s + (s, o)) cannot be colinear for o < ¢,.(C), the
derivative

200 (5) = (1= 90105 = )+ (14 )/ (s +9)



never vanishes. As a consequence, the curve C, is of class
C™ in the geometrical sense (that is, C, is a regular pa-
rameterization).

Let us now suppose that C' is of class C?, so that the
curvature £(s) = [C'(s), C"(s)] is well defined in C(s). A

simple expansion near ¢t = 0 gives
OF / 2 " 2
E(s,t) = [2tC'(s) + O(?),2tC"(s) + O(?)]
= 4t%k(s) + O(t?),
which can be integrated to obtain

20 = %535(5) + 0(54).

Thus, whenever k(s) # 0 we have

8(s,0) = (22%) ' +0(c%),

and finally
1
Cy(s) = 2 [C(s=08)+C(s+9)]
62
= C(s)+ ?C’”(s) +0(8%)
1/3 5 2 1 4
= C(s)+ 3 (5) o3 - £3(s) N(s) + O(o3),
where N(s) is the normal vector to C in C(s). [ |

Notice that the O(O'%) makes the affine erosion an in-
finitesimal approximation of the affine shortening of order
2, so that we can expect the iterated affine erosion to con-
verge quickly towards the affine scale space.

The consistency is also satisfied for non convex curves :
precisely, the class of semi-closed piecewise convex curves
of class piecewise C” is stable under affine erosion, and the
asymptotic estimation of Theorem 2 remains true when
n > 3, provided that we replace the curvature x by its
positive part £t = max(0, ).

D.1 Example : Affine erosion and scale space of an ellipse

Proposition 5: The o-affine erosion of an ellipse with
area Ag 1s an ellipse with same axes and excentricity and
with area 4

A(o) = Ag cos® —(;) ,
where (o) is defined by

_ 2ro

f(c) —sinf(c) = o

In particular, for an infinitesimal erosion, we have the
canonical expansion

2 3 2 3 2 2
AS(t3) = A — %t—i—O(tz),

Fig. 8. Affine erosion of a circle

whereas the affine scale space (Equation 2) yields

AR(13) = Ad _Zﬂ% ‘

Proof: Consider the parametrization of the ellipse

[ A
M(@) = ?O(cost vy +sint va)

satisfying [v1, v2] = 1. We can find a linear map ¢ with de-
terminant 1 which transforms the affine basis (w1, v2) into
an orthogonal basis, in which ¢(M (2)) is the parameteriza-
tion of a circle with same area Ag. Then, because the affine
erosion commutes with the rotations, the affine erosion of
a circle of radius Ry necessarily is a circle with same center
and with radius R(¢) < Rg. On Fig. 8 we can see that

R(o) o 0(o) and oo g_smﬁ .
Ro 2 R \2 2

= COS

Hence, as ¢ commutes with the affine erosion and with
the homotheties, we deduce that on the ellipse as well as
on the circle, the affine erosion acts as a homothety with

ratio cos 22

5=, which proves the first part of Proposition 5.

2 8(9)

5 when o tends

Let us now evaluate A(o) = Ag cos

towards 0. From
. 2ro
f —sinf = —

Ao

we deduce easily that

0(c) = (11247;")% +0(0).

This way, we obtain

A(o) = Ao (1 — sin? 9(2—")) = Ag— AF (3”—") +0(o%),

2

and the “canonical” expansion of A(s) is

2,3 2 2 % 5/2 2
A3 (t7) = Af —Oz~t+0(t2)’ with o = 3 (3771-) = %



As expected, & = %71'2/3 (w is the constant of Theorem 2).
|

Fig. 9 shows the canonical representation of A, i.e. the
graph of A% function of o3 up to normalization constants.
For this representation, the action of the affine scale space
on the ellipse is linear (dotted straight line on Fig. 9). As
we can see, the action of the affine erosion on ellipses is very
close to the one of its tangent operator, the (normalized)
affine scale space, even for large scales. This suggests that
we can build a fast scheme for the affine scale space by
iterating the affine erosion with arbitrarily large time steps.

2

— affine erosion

- affine scale space (normalized)

213
0 ﬁ — (&)
™

Fig. 9. Canonical area evolution for the affine erosion of an ellipse

III. AFFINE EROSION OF GREY-LEVEL IMAGES
A. From sets to images

In terms of human vision, it is commonly accepted that
an image (let us say a map u : R? — R) carries more or
less the same information as any image of the kind g(u),
where ¢ is an arbitrary contrast change, that is to say an
increasing scalar function. This principle is the basis of
flat grey-scale kernels in mathematical morphology. From
this point of view, an image u reduces to the decreasing
collection of its level sets'

a(u) = {2 € R? u(z) > A}

Conversely, any image u can be recovered up to a contrast
change from the family of its level sets by the relation

u(z) = sup{A; = € xa(uw)}.

Let us consider an nondecreasing operator 7' acting on
open sets, and suppose that T is -continuous, which
means that for any nondecreasing sequence of open sets
(X)) we have

U Eo(X0) = E, (U Xn) .

neN neN

LFor our study, it is more convenient to consider the “open” level
sets rather than the “closed” classical ones defined by

xa(u) = {z € R? u(z) > A}

Then, applying 7' to the level sets of a l.s.c (read lower
semicontinuous) image « defines a new image 7T'(u) which
satisfies

A (Tw) = T (uw),

and this way we “extend” T to grey-level images. Notice
that the monotonicity and the -continuity of 7" are re-
quired due to the topological properties of a collection of
level sets (see [12]).

B. Definition and basic properties

We would like to extend the affine erosion to grey-level
images through the morphological level set decomposition.
For that purpose, we first need to define the affine erosion
of any subset of the plane. But the geometrical definition
of the affine erosion (Definition 2) does not make sense for
any subset of the plane, since in general its boundary is
not a curve in a reasonable sense. This is the reason why
we define the affine erosion of any set by completion with
respect with the monotonicity property.

Definition 3: The c-affine erosion of a set U/ C R? is the
open set

EU)= |J

S C—set, SCU

This definition makes sense because if U is a C-set, we

know that for any C-set S subset of U we have E,(S) C

Es(U). Moreover, the extended operator E, is clearly

monotone, and one can check that it is also -continuous.

Hence, we can extend the affine erosion to grey-level images
according to the level set decomposition.

E,(S).

Definition 4: The co-affine erosion of a l.s.c image u :
R? — R is the l.s.c image

Eo(u) : 2 = sup{A € R; x € Es(xa(u))},

where x(u) = {; u(x) > A} is the A-level set of u.

Proposition 6: E, defined on images is a monotone, mor-
phological, and affine invariant operator, which means

[Monotonicity] : u<v = FE,(u) < Fs(v)

[Morphology] : For any increasing real function g,
Es(gou)=go FEs(u)

[Affine invariance] : For any affine map ¢,

Ea(u © ¢) = <E0~|det ¢>|(u)) 0 ¢.

Therefore, the affine erosion satisfies the same strong
properties as the affine scale space, excepted, naturally,
the semi-group property

TioTy = Thqyr,

which is not satisfied by the affine erosion even for any
scale normalization of the kind 7; = Fy). This is the
reason why we need to iterate the affine erosion in order to
approximate the affine scale space.



C. Asymptotic behaviour

There 1s a simple way to establish the consistency of
the affine erosion. Indeed, the operator E, being transla-
tion invariant, monotone and morphological, the Matheron
characterization theorem applies (see [11]) and we can write

Er(0)e) = g Jaf, vlot V7o)

where B, = {X Cc R?% 0 € F1(X)}. Thus, E, belong to
the class of affine invariant inf-sup operators which have

been studied in [11]. In particular, we have the following
consistency theorem.

Theorem 3 (F. Guichard, J.M. Morel) Let B be a local-
1zable set of plane closed nonempty bounded sets which 1s
invariant by the special linear group SL(IR?). Then, there
exists two constants ¢t and ¢~ depending on B such that,
for any image u C* in a neighbourhood of =,

inf sup u(et+/sy) = u(az)—|—52/3|Du|g (k(u)) (az)+0(52/3),

BeB. YyeB
+

W=

where g(r) = ¢ if

r r>0
= ¢ (—r)5 if

W=

r < 0.

The only requirement we have to check is that the basis B,
is localizable in the following sense :

Proposition 7 (Localizability) The basis B associated

with the affine erosion operator is localizable, i1.e. there
exists a constant ¢ > 0 such that

Yr > /¢, VB € B, 3B’ € B.,
B’ C D(0,r) and §(B',B) <=
-
Here, D(0,r) means the open disk of radius r centered
at the origin, and d(B’, B) denotes the Hausdorff semi-
distance between B’ and B, given by

§(B’', B) = sup dist(«', B) = sup inf |z— &'|.
xr'cB! xr'eB’ rebB

Proof: 1. Given r > 1 and a set B element of B, we
have 0 € F1(B) and from Definition of F1(B) we can find
a C-set A included in B such that 0 € F1(A) (i.e. A € Be).
We consider the %—Euclidean dilation of A restrained to the
disk D(0, ), i.e.

B’ ={z e D(0,r); dist(z, A) <

=S| =

}.

B’ is a C-set containing A N D(0, r), contained in D(0,r),
and

§(B',B) <4(B',A)+ (A, B) < l+ 0.
r

Now we are going to prove that B’ € B, that is to say that
0€ E(B).

Suppose that 0 belongs to D, a chord segment of B’
associated to a chord set K of area o (see Fig. 10). Two
cases can be distinguished.

Fig. 10. Area of K is greater than 1

l.a. f AN K C D(0,r), then a subset of K defines a
chord set of A containing 0 and of area no more than .
But since A € B,, we necessarily have o > 1.

1.b. If AN K is no a subset of D(0, r), which means that
K NaD(0,r) is not empty, then we can easily inscribe in
K a triangle of base larger than r and height % (see Fig.
10), so that we get o = area (K) > 1.

In both cases, 0 belongs to no 1-chord set of B’, so that
B’ € B.. Consequently, we proved that B, is localizable
with a constant ¢ = 1. |

Hence, Theorem 3 applies to B, and we have, for any
image C°® near x,

Fo(u)(2) = u(@)+w | Du(@)] [~ (u)(@)]F o3 +o(c?), (4)

where w = %(%)2/3 as in Theorem 2, and (Kj_)% means
—(max(0, —k)) 3. If we want the exact consistency with the
AMSS (i.e. & instead of £7), we can consider the alternate

operator D, o F,, the affine dilation D, being defined by
Do(u) = —FEy(—u).

The consistency of E, (and of the associated operators
Dy and D, 0 E,) can also be deduced from the geometrical
consistency proven in Theorem 2 (see [12]).

D. Convergence

As we know that the affine erosion of images is consis-
tent with the AMSS| it is natural to wonder whether the
iterated infinitesimal affine erosion spans exactly the affine
morphological scale space. The answer is yes, and the proof

is classical (see [3], [5] and [11]). We first define the step of

a subdivision s = (sg, $1,...8,) as
|5| = 11%1;2%(82 — 5i—1)~

Theorem 4: Let ug be a Lipschitz image, for any subdi-
vision s of [0,¢] we define

ug(2,0) = uo(x) and  ug(x, sip1) = o4y —s, (us(, 50)) ().



Then, as |s| = 0, us(-,t) converges uniformly on every
compact subset of the plane towards a function  — u(z,1),
the unique viscosity solution of

D4 - 1Dul ()3,

ot

subject to initial condition u(#, 0) = ug(@), where

1/73\¢®
Th = Dh3/2 [} Eha/z and w = 5 (5) .

IV. NUMERICAL SCHEME

Many reasons lead to choose the polygonal representa-
tion to implement the affine erosion on curves, but the ma-
jor advantage of this choice in our case 1s, as we shall see
further, that we can compute exactly the affine erosion of a
polygon. The lack of regularity of polygons (not C! every-
where) shall not be a problem, since most of the previous
analyses apply to piecewise C'! curves.

Obviously, neither the affine erosion nor the affine scale
space of a polygon is a polygon. But since no simple dense
set of parameterized curves satisfies this property (as far as
we know), an approximation is always required to iterate
the affine erosion. The main advantage of being able to
compute exactly the affine erosion of a polygon is that we
can dissociate completely the two approrimations required
to compute the affine scale space : the scale quantization
(we have to iterate the affine erosion several times) and the
space quantization, which 1s necessary to work on discrete
data. Processing these two steps successively and indepen-
dently, we avoid a classical trap of the implementation of
scale space on curves which prevents algorithms from satis-
fying [Monotonicity] and [Affine invariance]. In particular,
with our method there is no a priori relation between the
number of vertices of a polygon and the number of vertices
of the polygons resulting on the approximation of its affine
scale space : as noticed in the introduction, this number
can drastically increase (case of a polygon with very acute
angles) or decrease as well (case of a very “noisy” curve). In
other words, our algorithm processes a polygon as a curve
and not as a set of points, and for that reason it is not a
point evolution scheme.

A. Affine erosion of a conver polygon

Proposition 8: Let P = P; P>...P, be a convex polygon,
and 0 < o < ¢(P). The o-affine erosion of P is a C' curve
made of the concatenation of the pieces of hyperbolae H; j
defined by Equations 6 to 12, the couples (4, k) satisfying
Equation 5 and being sorted in lexical order?.

Proof: Tf P = PyP5...P, is a (positively oriented)
convex polygon and 0 < ¢ < ¢,(P), we know from The-
orem 1 that F,(P) is made exactly of the middle of the
o-chord segments of P. Consider two non-parallel edges
[P;—1P;] and [Py Pgy1], then there exists o-chords whose

2with the convention that Pyipn = Py and ¢ < k < ¢+ n for each
couple (7, k).

| AN Rt

Fig. 11. Piece of hyperbola resulting from two edges.

extremities lie on [P;_1 P;] and [Py Pg41] if and only if
1 1
§[IP;€,[PZ']<O'—|—O'Z'7;€< §[ka+1,fpi_1], (5)

where T is defined (see Fig. 11) by
I:=(Pi-1P) N (PyPyyr) and oy := area (IP;...Fy). (6)

In this case, we know from Proposition 2 that the mid-
dle points of the o-chord segments whose endpoints lie on
[P;—1P;] and [Py Pi11] span a piece of hyperbola

Hig: M@)=T+XNe'TPy+e ' IR), 1<t <ty (7)
whose apparent area is

o+aoi, =2\ [P, IP],

so that

0+ 0k

A=y . 8

2[IPg, 1P (8)
As concerns the limit values £ and 5, one checks easily

that

1P _ .
t7, = —In 2/\.1;2' it area(IPi—1...Px) >0+ 05k, (9)
= —1In(2X) otherwise, (10)
1P
ta = In 2/\?;11@ it area(IP;...Py41) >0+ o5, (11)
= In(2A) otherwise. (12)

Last, we have to check that the admissible hyperbolae
H; ;, are encountered on E,(P) in lexical order, that is,

Hz’,k <Hi/7kl & i<i or (i:i/ andk’<k”).
The reason is very simple : as we know that F,(P) is
convex, we must consider the o-chord segments of P in
such an order that the angles of their directions increase
continuously on S'. Thus, the previous assertion simply
results from

i<j<k = o(PP;, PiP) < alPiP;, PiPy),



where a(v1,v2) measures on [0, 27[ the angle between v;
and vs. [ |

Due to Theorem 1, the previous study only applies for
o < or(P). When ¢ > o.(P) (this case cannot be avoided
since o,.(P) = 0 for some polygons), we still have the in-
clusion

E,(P) C | Hiy,
i,k

but the reverse inclusion can be false so that we have to
remove the “ghost parts” of UH, i to obtain E,(P). We
explain how to do it in the next section (step B).

B. Affine erosion of any polygon

When the polygon P is possibly non-convex, we proceed
in two steps.

step A : we collect all the pieces of curves which can
possibly be part of F,(P). These pieces are of three
kinds :

1. The valid pieces of hyperbola H;; described previ-
ously, completed with their two half chord segments
at their endpoints (see Fig. 12). The interval [t1, 5]
defining each piece of hyperbola (Equation 7) may
have to be shortened because of internal occlusions ;
however, the resulting admissible piece of hyperbola
remains connected (that is, [t1,%2] remains an inter-
val).

2. The two limit o-chord segments of each non-regular
piece of hyperbola, i.e. resulting from non-regular
chords (see Fig. 12).

3. The ¢’-chord segments defined by two “inside” ver-
tices, with 0 < ¢’ < o (see Fig. 12).

Fig. 12. The three kind of curves encountered in the computation of
the affine erosion of a polygon

Fig. 13 shows what we obtain after step A for a rea-
sonable polygon.

step B : we compute the intersections between the re-
maining pieces of curves (sorted with respect with
their start number @). At this stage, we may have
to compute intersections between two segments, be-
tween a segment and an hyperbola, or between two
hyperbolae. The first two cases reduce to equations of
degree 1 and 2 respectively. The last case (intersection
of two hyperbolae) can be more difficult. If the two

Fig. 13. Curves obtained after step A (the affine erosion is the
envelope of these curves).

hyperbolae have a common axis, then the equation of
the intersection is quadratic and can be solved easily.
However, in more general cases (which happen), we
can have two solve an algebraic equation of degree 4 ;
if so, we use Newton’s method, which converges in a
few iterations.

Now, for each intersection, we remove from each of
the two curves the part enclosed in the chord sets de-
fined by the other one. We have to maintain —at least,
formally— two data structures to process this step cor-
rectly : one is the original set of curves obtained from
step A, the other is a copy of these curves, updated
iteratively as we just explained.

Finally, we obtain the affine erosion of the polygon as the
concatenation (in the natural order) of the pieces of curves
obtained from step B. This algorithm is a bit heavy (1600
lines of C source code), but not too slow for reasonable
quantizations (a polygon with 100 vertices is processed in
one second or s0). Notice that the whole algorithm is much
faster than classical ones for which the only way to guar-
antee numerical stability is to process numerous iterations
with a very small value of the scale step dt. We must be
careful when computing the intersections, because of the fi-
nite numerical precision of the computer (this can be done
by considering point equalities modulo a relative error, for
instance).

Another way to implement the affine erosion is to con-
sider the polygon as a concatenation of convex curves (a
C-set), and to process separately the convex pieces. The
major advantage is that the affine erosion of convex curves
does not involve intersections in general, unless non-regular
chords arise, which is rare in practice. Hence, this simpli-
fied algorithm is even faster than the exact one we just
described (it allows to process a complicated curve in less
than one second, see [12]). However, some theoretical prob-
lems still are to be investigated, and it is not the aim of
this paper to discuss them.

C. Iterating the affine erosion

So far, we know how to compute exactly the affine ero-
sion of a polygon. To iterate this process, we require to
quantize the resulting curve (which is, as we shown, the
concatenation of hyperbola pieces and segments) in order
to get a new polygon. Fortunately, there is a simple way



to sample a piece of hyperbola in an affine-invariant way.

Considering the parameterization
H @ M(t) = Ae'vy + e Fo), t <t <t

then one can prove easily that (¢,¢+ z) is an e-chord set of

H if and only if ¢ = A?(sh z—x), sh meaning the hyperbolic
sine. Hence, the polygon PyP;...F, defined by

k k
Po=M ((1 — )ty + —tz)
n n

is a discrete affine invariant quantization of H of “area

step”
1 1
e(n) = X (sh — — ).
(n) = X2(sh ~ — )
Given € > 0, we can quantize the affine erosion of a polygon
up to the area step € by choosing, for each piece of hyper-

bola, the minimum entire value of n such that e(n) < e.

Not surprisingly, this quantization step is a kind of dis-
crete affine erosion of scale £. Thus, as we want to min-
imize its influence on the computation, we must choose
€ &« o, where ¢ is the scale of the computed affine ero-
sion. This condition will force the second iteration of £,
to be non-local in the sense that the o-chord sets of the re-
sulting approximate polygon will contain many edges (i.e.
k — i > 1 for the valid H; ). In that sense, our algo-
rithm is quite different from a point evolution scheme, for
which the scale quantization step is supposed to be small
compared to the space quantization step. Here, the inverse
phenomenon happens : the scale quantization step (o) is
much larger than the space quantization step (¢). The im-
portant consequence is that we can effectively iterate only
a few times (i.e. with large scale steps) the affine erosion
to compute the affine scale space. Indeed, we do not loose
accuracy since € can remain small and the affine erosion
is a good approximation of the affine scale space even for
rather large scales, as we noticed previously in §2.4.

V. EXPERIMENTS

On Figure 14 is computed the affine scale space of a non-
convex polygon. Each curve corresponds to one iteration of
the affine erosion plus dilation, computed using the exact
algorithm described in the previous section. As predicted
by the theory, the curve collapse in a “elliptically shaped”
point (see [14]). Computing the 29 iterations displayed on
Fig. 14 takes 6 minutes (CPU time) on a HP 735/125 sta-
tion. The number of sampled points reaches 700 for some
iterations and the number of computed curves (hyperbolae
and segments) attains 1600.

CONCLUSION

We presented in this paper the first purely geometrical
and fully consistent scheme for the affine scale space of
curves, based on the iteration of a non-local operator called
affine erosion. This operator appears to be fully consistent
in the sense that 1t satisfies most the properties of the affine
scale space, in particular the monotonicity and the affine

invariance. It permits to define an algorithm which com-
putes accurately and rather quickly the affine scale space
of a polygonal curve, as illustrated by the experiments.

This scheme should be useful, for instance, to shape
recognition tasks (e.g. [6] in the case of partially occluded
shapes), since in any method based on the computation
of characteristic points, the regularization process must be
accurate, reliable and strongly invariant in order to create
no artifacts.
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Fig. 14. Affine scale space of a weird polygon



