
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. ??, NO. ?, MARCH 1998 1A�ne plane curve evolution :a fully consistent schemeLionel MoisanAbstract|We present an accurate numerical scheme for thea�ne plane curve evolution and its morphological extension togrey-level images. This scheme is based on the iteration ofnon-local, fully a�ne invariant and numerically stable opera-tor, which can be exactly computed on polygons. The propertiesof this operator ensure that a few iterations are su�cient toachieve a very good accuracy, unlike classical �nite di�erenceschemes which generally require a lot of iterations. Conver-gence results are provided, as well as theoretical examples andexperiments.Keywords| curve evolution, a�ne invariance, scale space,numerical scheme. I. IntroductionTHE a�ne scale space has been discovered simultane-ously a few years ago in its geometrical and imageformulation. If we represent a grey-level image as a func-tion u0 : R2 ! R, the a�ne morphological scale spaceof u0 (shortly written AMSS) is the collection of images(x 7! u(x; t))t>0 de�ned by@u@t = jDuj�(u) 13 : (1)with initial condition u(�; 0) = u0. Here, Dumeans the gra-dient of u with respect to x and the second order operator�(u) = div( DujDuj) can be interpreted when jDuj 6= 0 as thecurvature of the level curve fy; u(y) = u(x)g at point x.Equation (1) makes sense for continuous images accordingto the theory of viscosity solutions (see [7]) ; its geometricalinterpretation is that all level curves of u evolve accordingto the equation @C@t (p; t) = �(p; t) 13N(p; t); (2)where �(p; t) andN(p; t) are respectively the curvature andthe normal vector of the curve C(�; t) in C(p; t). As shownG. Sapiro and A. Tannenbaum in [14], using the a�nearclength parameterization s reduces Equation (2) to thenonlinear heat equation @C=@t = @2C=@s2.The AMSS has been characterized in [1] as the only regu-lar semigroup Tt : u0 7! u(�; t) which satis�es the followinginvariance properties :[Monotonicity] : u 6 v ) Tt(u) 6 Tt(v)[Morphology] : For any monotone scalar function g,Tt(g � u) = g � Tt(u)[A�ne invariance] : For any a�ne map �,Tt(u � �) = �Tt:jdet�j(u)� � �.Here, det� means the determinant of the linear part of�, i.e. det� = detA where �(x) = Ax + b and (A; b) 2GL(R2)�R2.CMLA, Ecole Normale Sup�erieure de Cachan, France.E-mail: moisan@cmla.ens-cachan.fr

Several algorithms have been proposed to implement nu-merically Equations (1) or (2), but none of them managesto satisfy numerically the previous properties. In 1993, L.Alvarez and F. Guichard proposed a quasilinear schemewhere a 3x3 neighbourhood is used in each point of theimage to compute its evolution (see [10]). Of course, sucha local scheme cannot be a�ne invariant for the neighbour-hood size is �xed in advance.An inf-sup operator was also proposed in [11] to imple-ment the a�ne morphological scale space. Inspired bymathematical morphology operators, this inf-sup schemeuses an a�ne invariant basis of structuring elements. ItsEuclidean analog had been treated by F. Catt�e and F. Di-bos in [5]. However, the full morphological invariance (nonew grey-level is created on the image) and the grid dis-cretization create di�culties. Indeed, a level curve is con-strained to move by entire speeds : either it does not move,or it jumps over at least one pixel (see [6]).For the a�ne scale space of curves, all geometricalschemes that have been proposed su�er from the spacediscretization of the curves (see [10]), which prevents themonotonicity property. The main di�culty comes from thefact that there is no a priori relation between the numberof vertices of a polygon and the number of the vertices of adiscretization of its a�ne shortening (this number shouldincrease drastically for a triangle, but decrease as much fora very irregular curve). Thus, an algorithm based on a lo-cal point-by-point evolution cannot implement successfullythe a�ne scale space.A numerical scheme for the a�ne scale space becomes ascheme for the AMSS when applied to the level curves ofan image. Conversely, S. Osher and J. Sethian (see [13],[16]) computed the a�ne scale space of the boundary of aset S by applying the AMSS to its distance image u(x) ="(x)dist(x; @S), where "(x) = �1 if x 2 S, 1 otherwise.This approach permits complicated curve evolutions, butinherits the drawbacks of numerical schemes on images.In this paper, we �rst de�ne a geometrical operator |called a�ne erosion|, whose tangent operator spans thepositive a�ne scale space. Then, we extend it to grey levelimages using the level set decomposition, and prove its con-sistency using the Matheron's characterization theorem ofmorphological operators and a general consistency theoremfor inf-sup operators from [11]. We also prove that the iter-ated alternated operator converges towards the a�ne scalespace. Last, an exact algorithm is described and experi-ments are given. We skiped some of the technical proofs(which can be found in [12]), but tried to maintain mostrelevant arguments.



2 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. ??, NO. ?, MARCH 1998II. Affine erosion of setsWe are going to de�ne a geometrical operator E� (� isa nonnegative scale parameter), called a�ne erosion, andacting on subsets of the plane. Since the geometrical de�-nition of E�(U ) requires some regularity on the boundaryof U , we �rst restrain our de�nition to a certain kind ofsets U . We shall see further how to extend E� to othersets.First, we need some geometrical de�nitions on curves.We choose to call a simple curve any subset of R2 homeo-morphic to the circle S1 = R=2�Z(closed curve) or to anopen interval of R (non closed curve). We shall often referto a simple curve using the notation C(I), which meansimplicitely that C : I ! C(I) is a parameterization of thecurve. We also de�ne a semi-closed curve as an orientedsimple curve C such that R2�C has exactly two connectedcomponents (e.g. a parabola). A semi-closed curve canalso be viewed as a simple oriented closed curve de�ned onthe Alexandro� compacti�cation of the plane R2 [ f1g.Last, we say that a simple curve C(I) is piecewise convexif there exists a �nite subdivision (s1; s2; : : : sn) of I suchthat each sub-curve C(]si; si+1[) is a convex curve.Let C(I) be a simple curve. We say that (s; t) 2 I2 is achord of C if and only if the piece of curve C(]s; t[) and theopen segment ]C(s)C(t)[ are either disjoint, or equal. Theconnected closed set enclosed by C(]s; t[) and the chordsegment ]C(s)C(t)[ is a chord set of C, written Cs;t. Thisde�nition is naturally extended to in�nite segments whens or t belong to the boundary of I. If area (Cs;t) = �, then(s; t) is called a �-chord and Cs;t a �-chord set of C.
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CFig. 1. A chord set of a simple curve. Notice that the chord segment[C(s)C(t)] can intersect C � C([s; t]).If C is oriented and area (Cs;t) 6= 0, the orientation in-duced by C on the boundary of Cs;t tells whether (s; t) is apositive or a negative chord. We take the convention thata 0-chord set is both positive and negative. Last, sincethe previous de�nition of chord does no depend on the pa-rameterization of the curve, it makes sense to call (A;B) achord of C = C(I) when A = C(s), B = C(t), and (s; t) isa chord of C.De�nition 1: A open subset S of the plane R2 is a C-setif (i) it has a �nite number of connected components(ii) the boundary of any connected component is a �nitedisjoint union of semi-closed piecewise convex curves.

S

E   (S)σσFig. 2. A�ne erosion of a C-set with 2 componentsThese oriented curves enclosing the connected componentsof S are called the components of @S.Remark : The components of @S are not necessarily dis-joint : if S is the inside part of two tangent disks, @S isconnected but has two components.This de�nition of C-sets is a compromise between reg-ularity (the boundary of a C-set admits a tangent almosteverywhere) and genericity (any �nite union of convex setsis a C-set).A. A�ne erosion of a C-setDe�nition 2: The �-a�ne erosion of a C-set S is the setof the points of S which do not belong to any positive chordset |with area less than �| of a component of @S.E�(S) = S � [�0 6 �K 2 K+�0(@S) K:Here, K+�0(@S) means the collection of all positive �'-chord sets of all components of @S.Proposition 1: The a�ne erosion of a C-set is a C-set.The main argument is that if S is a C-set, the boundaryof E�(S) is made of concave pieces of @S and a �nite num-ber of new convex pieces. A complete proof is given in [12].A consequence of Proposition 1 is that we can de�ne thea�ne erosion of a piecewise convex semi-closed curve as acollection of such curves, using the natural correspondancebetween a C-set and its boundary.A.1 Example : a�ne erosion of a cornerProposition 2: The �-a�ne erosion of a \corner" W =fx v1+ y v2; x > 0; y > 0g is the inside convex part of the(half) hyperbola de�ned byfxy = �2 [v1; v2] ; x > 0; y > 0g:in the a�ne basis (O; v1; v2).The notation [v1; v2] means the determinant of the twoplane vectors v1 and v2, that is, the algebraic area of theparallelogram (0; v1; v2; v1 + v2).
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vFig. 3. The a�ne erosion of a \corner" is a hyperbolaProof: First, we notice that only the �-chord sets aresigni�cant to de�ne the a�ne erosion of W because W isconvex (a chord set with area less than � can be enclosed ina �-chord set). Secondly, the lines supporting the �-chordsegments of W have equation x=a + y=b = 1 (see Fig. 3)and are submitted to the area constraint 2� = ab [v1; v2].Consequently, the boundary of E�(W ) is obtained by theenvelope of these lines, given by the system8>>><>>>: Da : xa + a [v1; v2] y2� = 1D0a : �xa2 + [v1; v2]y2� = 0:Then, eliminating a yieldsxy = �2 [v1; v2] :B. Basic properties of the a�ne erosionProposition 3: E�(S) is nonincreasing with respect with�, and nondecreasing with respect with S, i.e.�1 6 �2 ) E�2(S) � E�1(S); andS1 � S2 ) E�(S1) � E�(S2):Proof: (second assertion) Let S1 and S2 be two C-setssuch that S1 � S2, and consider M a point of S2. If Mdoes not belong to E�(S2), there exists a �0-chord segmentD of a component of @S2 such that �0 6 � and M belongsto the associated chord set.1. If M 62 S1, then E�(S1) � S1 yields M 62 E�(S1).2. If M 2 S1, consider the connected component A ofS1 containing M :2.a. If A \ D = ;, then the external boundary of Aencloses a subset of area less than �0, so that E�(A) = ;and M 62 E�(S1).2.b. If A\D 6= ;, then a subset of D de�nes a �00-chordset of S1 containing M and S1 � S2 implies �00 6 �0, sothat M 62 E�(S1):

θ

C(s)

C(t)θ
θ

I(  )θ

C

r  (  )θ1

r  (  )2Fig. 4. The middle point propertyThus, M 62 E�(S2) ) M 62 E�(S1), which means thatE�(S1) � E�(S2).The second part of Proposition 3 establishes the mono-tonicity of E�, which guarantees the numerical stability ofthis operator. The �rst part, easy to prove, justi�es a pos-teriori the name \erosion" in a geometrical sense. Noticethat E� is not an erosion on a lattice as de�ned by Serra(see [15]), because E�(A\B) 6= E�(A)\E�(B) in general.Proposition 4: The a�ne erosion is covariant with re-spect to the a�ne transformations of the plane, i.e for anya�ne map � and any C-set S,� (E�(S)) = E��j det�j (�(S)) :C. A�ne erosion of convex C-setsSo far, the de�nition of the a�ne erosion is not verypractical, especially for curves, since we must consider theassociated sets. In fact, for most convex curves C, E�(C)is generated directly by the middle points of the �-chordsof C. The reason is roughly explained on Fig. 4 : givena �-chord segment [C(s)C(t)], another �-chord segmentintersects [C(s)C(t)] in I(�), and as � ! 0, the equi-areaconstraint forces12r21(�) � � = 12r22(�) � � + o(�);so that r1(�) � r2(�) ! 0 and I(�) converges towards themiddle of [C(s)C(t)].If a convex semi-closed curve C is non trivial (that is tosay, di�erent from a straight line), the a�ne erosion of Cis included in the set of the middle points of the �-chordsof C. However, the reverse inclusion only happens up toa limiting scale (which can be either �nite, in�nite or zeroaccording to C). More precisely, we say that a chord (A;B)of C is regular if a measure � of the angle made by the lefttangent in A and the right tangent in B satis�es 0 6 � < �(see Fig. 5). Then, we say that the scale � > 0 is regularfor C if any �-chord of C is regular, and we note �r(C) thesupremum of the regular scales of C.Theorem 1 (middle point property) Let C be a non-trivial convex semi-closed curve. For any 0 < � < �r(C),E�(C) is exactly the set of the middle points of the �-chordsegments of C, and this de�nes a natural homeomorphismbetween C and E�(C).
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CFig. 5. (A;B) is a regular chord i� 0 6 � < �Obviously, this theorem is interesting only when �r(C) >0, which is not always the case, even for simple convexcurves as polygons. However, one can see that1. If C is a convex semi-closed curve of class C1, then�r(C) > 0.2. If C is a convex polygon with vertices P0; P1; :::Pn�1,then �r(C) > 0 if and only if [PiPi+1; Pi+2Pi+3] > 0for all i (the indices being taken modulo n).What happens for non-regular scales ? In general, thecurve described by the middles of the �-chord segmentshas \ghost parts" which must be removed to obtain thedesired a�ne erosion. For instance, these \ghost parts"appear at any scale in the erosion of a triangle, for which�r = 0 (see Fig. 6). This phenomenon is very similar tothe crossing of fronts for a 
ame propagation : the \ghostsparts" must then be removed according to the Huygensprinciple ; roughly speaking, once a particle is burnt it staysburnt and cannot burn any more (see [13]).
Fig. 6. \ghost parts" (dashed) always appear for trianglesD. ConsistencyTheorem 2: let C be a semi-closed convex curve of classCn with n > 1. Then for any � < �r(C), E�(C) is a semi-closed convex curve of class Cn. Moreover, if n > 3, thein�nitesimal evolution as � ! 0 of a point M 2 C wherethe curvature � is nonzero is given byM� = M + ! � � 23 � � 13 N +O(� 43 ) with ! = 12 �32� 23 ;where N is the normal vector to C in M .
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σFig. 7. A�ne erosion of a convex semi-closed curveProof: Consider s 7! C(s) an Euclidean length pa-rameterization of C (i.e. jC 0(s)j = 1 everywhere). SinceC is convex, we know from Theorem 1 that E�(C) is ex-actly made of the middle of the �-chords of C as soon as0 < � < �r(C) (which makes sense because we know that�r(C) > 0). Let (s� �; s + �) be a �-chord of C and C�(s)the middle of the associated segment (see Fig. 7). Since Cis of class C1, we can use the Green formula to computethe area � = 12F (s; �(s; �)); whereF (s; t) = Z s+ts�t [C(u); C 0(u)] dt+ [C(s+ t); C(s� t) �C(s + t)] : (3)Then, di�erentiating Equation (3) yields@F@t (s; t) = [C(s+ t)� C(s� t); C 0(s+ t)� C 0(s � t)] :C being convex, we have, for any distincts points C(a) andC(b) of C, the inequality[C 0(a); C(b)�C(a)] > 0;and the equality holds i� the piece of curve C([a; b])is a segment. Hence, [C(s + t) �C(s � t); C 0(s + t)] and[C(s+ t)�C(s � t);�C 0(s� t)] are positive numbers andtheir sum cannot be zero unless � = 0, which is not thecase, or unless C(s + t) = C(s � t), which is impossi-ble as soon as 0 < t 6 �. As a consequence, @F@t (s; �)never vanishes and the global inversion theorem allows usto claim that the map s 7! �(s; �) is of class Cn as well as(s; t) 7! F (s; t).We just proved that the functions 7! C�(s) = 12 [C(s� �(s; �)) + C(s+ �(s; �))]is of class Cn. Moreover, since the vectors C 0(s � �(s; �))and C 0(s + �(s; �)) cannot be colinear for � < �r(C), thederivative2 @@sC�(s) = (1� @�@s )C 0(s � �) + (1 + @�@s )C 0(s + �)



L. MOISAN | AFFINE PLANE CURVE EVOLUTION : A FULLY CONSISTENT SCHEME 5never vanishes. As a consequence, the curve C� is of classCn in the geometrical sense (that is, C� is a regular pa-rameterization).Let us now suppose that C is of class C3, so that thecurvature �(s) = [C 0(s); C 00(s)] is well de�ned in C(s). Asimple expansion near t = 0 gives@F@t (s; t) = �2tC0(s) + O(t2); 2tC 00(s) +O(t2)�= 4t2�(s) + O(t3);which can be integrated to obtain2� = 43�3�(s) +O(�4):Thus, whenever �(s) 6= 0 we have�(s; �) = � 3�2�(s)� 13 + O(� 23 );and �nallyC�(s) = 12 [C(s � �) +C(s + �)]= C(s) + �22 C00(s) +O(�3)= C(s) + 12 �32� 23 � 23 � � 13 (s)N(s) + O(� 43 );where N(s) is the normal vector to C in C(s).Notice that the O(� 43 ) makes the a�ne erosion an in-�nitesimal approximation of the a�ne shortening of order2, so that we can expect the iterated a�ne erosion to con-verge quickly towards the a�ne scale space.The consistency is also satis�ed for non convex curves :precisely, the class of semi-closed piecewise convex curvesof class piecewise Cn is stable under a�ne erosion, and theasymptotic estimation of Theorem 2 remains true whenn > 3, provided that we replace the curvature � by itspositive part �+ = max(0; �).D.1 Example : A�ne erosion and scale space of an ellipseProposition 5: The �-a�ne erosion of an ellipse witharea A0 is an ellipse with same axes and excentricity andwith area A(�) = A0 cos2 �(�)2 ;where �(�) is de�ned by�(�) � sin �(�) = 2��A0 :In particular, for an in�nitesimal erosion, we have thecanonical expansionA 23 (t 32 ) = A 230 � 3r2�23 t+O(t2);
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θ(σ)Fig. 8. A�ne erosion of a circlewhereas the a�ne scale space (Equation 2) yieldsA 23 (t 32 ) = A 230 � 34� 23 t:Proof: Consider the parametrization of the ellipseM (t) =rA0� (cos t v1 + sin t v2)satisfying [v1; v2] = 1. We can �nd a linear map � with de-terminant 1 which transforms the a�ne basis (v1; v2) intoan orthogonal basis, in which �(M (t)) is the parameteriza-tion of a circle with same area A0. Then, because the a�neerosion commutes with the rotations, the a�ne erosion ofa circle of radius R0 necessarily is a circle with same centerand with radius R(�) < R0. On Fig. 8 we can see thatR(�)R0 = cos �(�)2 and �R20 = ��2 � sin �2 � :Hence, as � commutes with the a�ne erosion and withthe homotheties, we deduce that on the ellipse as well ason the circle, the a�ne erosion acts as a homothety withratio cos �(�)2 , which proves the �rst part of Proposition 5.Let us now evaluate A(�) = A0 cos2 �(�)2 when � tendstowards 0. From � � sin � = 2��A0we deduce easily that�(�) = �12��A0 �13 + O(�):This way, we obtainA(�) = A0�1� sin2 �(�)2 � = A0�A 130 �3��2 � 23 +O(� 43 );and the \canonical" expansion of A(�) isA 23 (t 32 ) = A 230 �� �t+O(t2); with � = 23 �3�2 � 23 = 3r2�23 :



6 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. ??, NO. ?, MARCH 1998As expected, �! = 34�2=3 (! is the constant of Theorem 2).Fig. 9 shows the canonical representation of A, i.e. thegraph of A 23 function of � 23 up to normalization constants.For this representation, the action of the a�ne scale spaceon the ellipse is linear (dotted straight line on Fig. 9). Aswe can see, the action of the a�ne erosion on ellipses is veryclose to the one of its tangent operator, the (normalized)a�ne scale space, even for large scales. This suggests thatwe can build a fast scheme for the a�ne scale space byiterating the a�ne erosion with arbitrarily large time steps.
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affine scale space (normalized)Fig. 9. Canonical area evolution for the a�ne erosion of an ellipseIII. Affine erosion of grey-level imagesA. From sets to imagesIn terms of human vision, it is commonly accepted thatan image (let us say a map u : R2 ! R) carries more orless the same information as any image of the kind g(u),where g is an arbitrary contrast change, that is to say anincreasing scalar function. This principle is the basis of
at grey-scale kernels in mathematical morphology. Fromthis point of view, an image u reduces to the decreasingcollection of its level sets1��(u) = fx 2 R2; u(x) > �g:Conversely, any image u can be recovered up to a contrastchange from the family of its level sets by the relationu(x) = supf�; x 2 ��(u)g:Let us consider an nondecreasing operator T acting onopen sets, and suppose that T is %-continuous, whichmeans that for any nondecreasing sequence of open sets(Xn) we have [n2NE�(Xn) = E�  [n2NXn! :1For our study, it is more convenient to consider the \open" levelsets rather than the \closed" classical ones de�ned by��(u) = fx 2R2; u(x)> �g:

Then, applying T to the level sets of a l.s.c (read lowersemicontinuous) image u de�nes a new image ~T (u) whichsatis�es 8�; �� � ~T (u)� = T (��(u)) ;and this way we \extend" T to grey-level images. Noticethat the monotonicity and the %-continuity of T are re-quired due to the topological properties of a collection oflevel sets (see [12]).B. De�nition and basic propertiesWe would like to extend the a�ne erosion to grey-levelimages through the morphological level set decomposition.For that purpose, we �rst need to de�ne the a�ne erosionof any subset of the plane. But the geometrical de�nitionof the a�ne erosion (De�nition 2) does not make sense forany subset of the plane, since in general its boundary isnot a curve in a reasonable sense. This is the reason whywe de�ne the a�ne erosion of any set by completion withrespect with the monotonicity property.De�nition 3: The �-a�ne erosion of a set U � R2 is theopen set E�(U ) = [S C�set; S�UE�(S):This de�nition makes sense because if U is a C-set, weknow that for any C-set S subset of U we have E�(S) �E�(U ). Moreover, the extended operator E� is clearlymonotone, and one can check that it is also %-continuous.Hence, we can extend the a�ne erosion to grey-level imagesaccording to the level set decomposition.De�nition 4: The �-a�ne erosion of a l.s.c image u :R2! R is the l.s.c imageE�(u) : x 7! supf� 2 R; x 2 E�(��(u))g;where ��(u) = fx; u(x) > �g is the �-level set of u.Proposition 6: E� de�ned on images is a monotone, mor-phological, and a�ne invariant operator, which means[Monotonicity] : u 6 v ) E�(u) 6 E�(v)[Morphology] : For any increasing real function g,E�(g � u) = g �E�(u)[A�ne invariance] : For any a�ne map �,E�(u � �) = �E��jdet�j(u)� � �:Therefore, the a�ne erosion satis�es the same strongproperties as the a�ne scale space, excepted, naturally,the semi-group propertyTt � Tt0 = Tt+t0 ;which is not satis�ed by the a�ne erosion even for anyscale normalization of the kind Tt = Ef(t). This is thereason why we need to iterate the a�ne erosion in order toapproximate the a�ne scale space.



L. MOISAN | AFFINE PLANE CURVE EVOLUTION : A FULLY CONSISTENT SCHEME 7C. Asymptotic behaviourThere is a simple way to establish the consistency ofthe a�ne erosion. Indeed, the operator E� being transla-tion invariant, monotone and morphological, the Matheroncharacterization theorem applies (see [11]) and we can writeE�(u)(x) = supB2Be infy2B u(x+p� � y);where Be = fX � R2; 0 2 E1(X)g. Thus, E� belong tothe class of a�ne invariant inf-sup operators which havebeen studied in [11]. In particular, we have the followingconsistency theorem.Theorem 3 (F. Guichard, J.M. Morel) Let B be a local-izable set of plane closed nonempty bounded sets which isinvariant by the special linear group SL(R2). Then, thereexists two constants c+ and c� depending on B such that,for any image u C3 in a neighbourhood of x,infB2Be supy2B u(x+ps�y) = u(x)+s2=3jDujg (�(u)) (x)+o(s2=3);where g(r) = c+ r 13 if r > 0= c� (�r) 13 if r < 0:The only requirement we have to check is that the basis Beis localizable in the following sense :Proposition 7 (Localizability) The basis Be associatedwith the a�ne erosion operator is localizable, i.e. thereexists a constant c > 0 such that8r > pc; 8B 2 Be; 9B0 2 Be;B0 � D(0; r) and �(B0; B) 6 cr :Here, D(0; r) means the open disk of radius r centeredat the origin, and �(B0; B) denotes the Hausdor� semi-distance between B0 and B, given by�(B0; B) = supx02B0 dist(x0; B) = supx02B0 infx2B jx� x0j:Proof: 1. Given r > 1 and a set B element of Be, wehave 0 2 E1(B) and from De�nition of E1(B) we can �nda C-set A included in B such that 0 2 E1(A) (i.e. A 2 Be).We consider the 1r -Euclidean dilation of A restrained to thedisk D(0; r), i.e.B0 = fx 2 D(0; r); dist(x; A) 6 1rg:B0 is a C-set containing A \D(0; r), contained in D(0; r),and �(B0; B) 6 �(B0; A) + �(A;B) 6 1r + 0:Now we are going to prove that B0 2 Be, that is to say that0 2 E1(B0).Suppose that 0 belongs to D, a chord segment of B0associated to a chord set K of area � (see Fig. 10). Twocases can be distinguished.

D(0,r)

0 D

K

1

A
r

rFig. 10. Area of K is greater than 11.a. If A \ K � D(0; r), then a subset of K de�nes achord set of A containing 0 and of area no more than �.But since A 2 Be, we necessarily have � > 1.1.b. If A\K is no a subset of D(0; r), which means thatK \ @D(0; r) is not empty, then we can easily inscribe inK a triangle of base larger than r and height 1r (see Fig.10), so that we get � = area (K) > 1.In both cases, 0 belongs to no 1-chord set of B0, so thatB0 2 Be. Consequently, we proved that Be is localizablewith a constant c = 1.Hence, Theorem 3 applies to Be and we have, for anyimage C3 near x,E�(u)(x) = u(x)+!�jDu(x)j ���(u)(x)� 13 � 23+o(� 23 ); (4)where ! = 12 �32�2=3 as in Theorem 2, and (��) 13 means�(max(0;��)) 13 . If we want the exact consistency with theAMSS (i.e. � instead of ��), we can consider the alternateoperator D� �E�, the a�ne dilation D� being de�ned byD�(u) = �E�(�u):The consistency of E� (and of the associated operatorsD� and D� �E�) can also be deduced from the geometricalconsistency proven in Theorem 2 (see [12]).D. ConvergenceAs we know that the a�ne erosion of images is consis-tent with the AMSS, it is natural to wonder whether theiterated in�nitesimal a�ne erosion spans exactly the a�nemorphological scale space. The answer is yes, and the proofis classical (see [3], [5] and [11]). We �rst de�ne the step ofa subdivision s = (s0; s1; : : : sn) asjsj = max16i6n(si � si�1):Theorem 4: Let u0 be a Lipschitz image, for any subdi-vision s of [0; t] we de�neus(x; 0) = u0(x) and us(x; si+1) = Tsi+1�si (us(�; si))(x):



8 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. ??, NO. ?, MARCH 1998Then, as jsj ! 0, us(�; t) converges uniformly on everycompact subset of the plane towards a function x 7! u(x; t),the unique viscosity solution of@u@t = ! � jDuj�(u) 13 ;subject to initial condition u(x; 0) = u0(x), whereTh = Dh3=2 �Eh3=2 and ! = 12 �32� 23 :IV. Numerical SchemeMany reasons lead to choose the polygonal representa-tion to implement the a�ne erosion on curves, but the ma-jor advantage of this choice in our case is, as we shall seefurther, that we can compute exactly the a�ne erosion of apolygon. The lack of regularity of polygons (not C1 every-where) shall not be a problem, since most of the previousanalyses apply to piecewise C1 curves.Obviously, neither the a�ne erosion nor the a�ne scalespace of a polygon is a polygon. But since no simple denseset of parameterized curves satis�es this property (as far aswe know), an approximation is always required to iteratethe a�ne erosion. The main advantage of being able tocompute exactly the a�ne erosion of a polygon is that wecan dissociate completely the two approximations requiredto compute the a�ne scale space : the scale quantization(we have to iterate the a�ne erosion several times) and thespace quantization, which is necessary to work on discretedata. Processing these two steps successively and indepen-dently, we avoid a classical trap of the implementation ofscale space on curves which prevents algorithms from satis-fying [Monotonicity] and [A�ne invariance]. In particular,with our method there is no a priori relation between thenumber of vertices of a polygon and the number of verticesof the polygons resulting on the approximation of its a�nescale space : as noticed in the introduction, this numbercan drastically increase (case of a polygon with very acuteangles) or decrease as well (case of a very \noisy" curve). Inother words, our algorithm processes a polygon as a curveand not as a set of points, and for that reason it is not apoint evolution scheme.A. A�ne erosion of a convex polygonProposition 8: Let P = P1P2:::Pn be a convex polygon,and 0 < � < �r(P). The �-a�ne erosion of P is a C1 curvemade of the concatenation of the pieces of hyperbolae Hi;kde�ned by Equations 6 to 12, the couples (i; k) satisfyingEquation 5 and being sorted in lexical order2.Proof: If P = P1P2:::Pn is a (positively oriented)convex polygon and 0 < � < �r(P), we know from The-orem 1 that E�(P) is made exactly of the middle of the�-chord segments of P. Consider two non-parallel edges[Pi�1Pi] and [PkPk+1], then there exists �-chords whose2with the convention that Pk+n = Pk and i 6 k < i+ n for eachcouple (i; k).
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I J k+1Fig. 11. Piece of hyperbola resulting from two edges.extremities lie on [Pi�1Pi] and [PkPk+1] if and only if12 [IPk; IPi] 6 � + �i;k 6 12 [IPk+1; IPi�1] ; (5)where I is de�ned (see Fig. 11) byI := (Pi�1Pi) \ (PkPk+1) and �i;k := area (IPi:::Pk): (6)In this case, we know from Proposition 2 that the mid-dle points of the �-chord segments whose endpoints lie on[Pi�1Pi] and [PkPk+1] span a piece of hyperbolaHi;k : M (t) = I + �(etIPk + e�tIPi); t1 6 t 6 t2 (7)whose apparent area is� + �i;k = 2�2 [IPk; IPi] ;so that � =r � + �i;k2 [IPk; IPi] : (8)As concerns the limit values t1 and t2, one checks easilythatt1 = � ln IPi�12�:IPi if area (IPi�1:::Pk) > � + �i;k; (9)= � ln(2�) otherwise; (10)t2 = ln IPk+12�:IPk if area (IPi:::Pk+1) > � + �i;k; (11)= ln(2�) otherwise: (12)Last, we have to check that the admissible hyperbolaeHi;k are encountered on E�(P) in lexical order, that is,Hi;k < Hi0;k0 , i < i0 or (i = i0 and k < k0):The reason is very simple : as we know that E�(P) isconvex, we must consider the �-chord segments of P insuch an order that the angles of their directions increasecontinuously on S1. Thus, the previous assertion simplyresults fromi 6 j 6 k ) �(PiPj; PiPk) 6 �(PiPj; PjPk);



L. MOISAN | AFFINE PLANE CURVE EVOLUTION : A FULLY CONSISTENT SCHEME 9where �(v1; v2) measures on [0; 2�[ the angle between v1and v2.Due to Theorem 1, the previous study only applies for� < �r(P). When � > �r(P) (this case cannot be avoidedsince �r(P) = 0 for some polygons), we still have the in-clusion E�(P) �[i;kHi;k;but the reverse inclusion can be false so that we have toremove the \ghost parts" of [Hi;k to obtain E�(P). Weexplain how to do it in the next section (step B).B. A�ne erosion of any polygonWhen the polygon P is possibly non-convex, we proceedin two steps.step A : we collect all the pieces of curves which canpossibly be part of E�(P). These pieces are of threekinds :1. The valid pieces of hyperbola Hi;k described previ-ously, completed with their two half chord segmentsat their endpoints (see Fig. 12). The interval [t1; t2]de�ning each piece of hyperbola (Equation 7) mayhave to be shortened because of internal occlusions ;however, the resulting admissible piece of hyperbolaremains connected (that is, [t1; t2] remains an inter-val).2. The two limit �-chord segments of each non-regularpiece of hyperbola, i.e. resulting from non-regularchords (see Fig. 12).3. The �0-chord segments de�ned by two \inside" ver-tices, with 0 6 �0 6 � (see Fig. 12).
2

1

1

3

3

2Fig. 12. The three kind of curves encountered in the computation ofthe a�ne erosion of a polygonFig. 13 shows what we obtain after step A for a rea-sonable polygon.step B : we compute the intersections between the re-maining pieces of curves (sorted with respect withtheir start number a). At this stage, we may haveto compute intersections between two segments, be-tween a segment and an hyperbola, or between twohyperbolae. The �rst two cases reduce to equations ofdegree 1 and 2 respectively. The last case (intersectionof two hyperbolae) can be more di�cult. If the two

Fig. 13. Curves obtained after step A (the a�ne erosion is theenvelope of these curves).hyperbolae have a common axis, then the equation ofthe intersection is quadratic and can be solved easily.However, in more general cases (which happen), wecan have two solve an algebraic equation of degree 4 ;if so, we use Newton's method, which converges in afew iterations.Now, for each intersection, we remove from each ofthe two curves the part enclosed in the chord sets de-�ned by the other one. We have to maintain|at least,formally|two data structures to process this step cor-rectly : one is the original set of curves obtained fromstep A, the other is a copy of these curves, updatediteratively as we just explained.Finally, we obtain the a�ne erosion of the polygon as theconcatenation (in the natural order) of the pieces of curvesobtained from step B. This algorithm is a bit heavy (1600lines of C source code), but not too slow for reasonablequantizations (a polygon with 100 vertices is processed inone second or so). Notice that the whole algorithm is muchfaster than classical ones for which the only way to guar-antee numerical stability is to process numerous iterationswith a very small value of the scale step �t. We must becareful when computing the intersections, because of the �-nite numerical precision of the computer (this can be doneby considering point equalities modulo a relative error, forinstance).Another way to implement the a�ne erosion is to con-sider the polygon as a concatenation of convex curves (aC-set), and to process separately the convex pieces. Themajor advantage is that the a�ne erosion of convex curvesdoes not involve intersections in general, unless non-regularchords arise, which is rare in practice. Hence, this simpli-�ed algorithm is even faster than the exact one we justdescribed (it allows to process a complicated curve in lessthan one second, see [12]). However, some theoretical prob-lems still are to be investigated, and it is not the aim ofthis paper to discuss them.C. Iterating the a�ne erosionSo far, we know how to compute exactly the a�ne ero-sion of a polygon. To iterate this process, we require toquantize the resulting curve (which is, as we shown, theconcatenation of hyperbola pieces and segments) in orderto get a new polygon. Fortunately, there is a simple way



10 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. ??, NO. ?, MARCH 1998to sample a piece of hyperbola in an a�ne-invariant way.Considering the parameterizationH : M (t) = �(etv1 + e�tv2); t1 6 t 6 t2;then one can prove easily that (t; t+x) is an "-chord set ofH if and only if " = �2(shx�x), sh meaning the hyperbolicsine. Hence, the polygon P0P1:::Pn de�ned byPk =M �(1� kn )t1 + knt2�is a discrete a�ne invariant quantization of H of \areastep" "(n) = �2(sh 1n � 1n ):Given " > 0, we can quantize the a�ne erosion of a polygonup to the area step " by choosing, for each piece of hyper-bola, the minimum entire value of n such that "(n) 6 ".Not surprisingly, this quantization step is a kind of dis-crete a�ne erosion of scale ". Thus, as we want to min-imize its in
uence on the computation, we must choose" � �, where � is the scale of the computed a�ne ero-sion. This condition will force the second iteration of E�to be non-local in the sense that the �-chord sets of the re-sulting approximate polygon will contain many edges (i.e.k � i � 1 for the valid Hi;k). In that sense, our algo-rithm is quite di�erent from a point evolution scheme, forwhich the scale quantization step is supposed to be smallcompared to the space quantization step. Here, the inversephenomenon happens : the scale quantization step (�) ismuch larger than the space quantization step ("). The im-portant consequence is that we can e�ectively iterate onlya few times (i.e. with large scale steps) the a�ne erosionto compute the a�ne scale space. Indeed, we do not looseaccuracy since " can remain small and the a�ne erosionis a good approximation of the a�ne scale space even forrather large scales, as we noticed previously in x2.4.V. ExperimentsOn Figure 14 is computed the a�ne scale space of a non-convex polygon. Each curve corresponds to one iteration ofthe a�ne erosion plus dilation, computed using the exactalgorithm described in the previous section. As predictedby the theory, the curve collapse in a \elliptically shaped"point (see [14]). Computing the 29 iterations displayed onFig. 14 takes 6 minutes (CPU time) on a HP 735/125 sta-tion. The number of sampled points reaches 700 for someiterations and the number of computed curves (hyperbolaeand segments) attains 1600.ConclusionWe presented in this paper the �rst purely geometricaland fully consistent scheme for the a�ne scale space ofcurves, based on the iteration of a non-local operator calleda�ne erosion. This operator appears to be fully consistentin the sense that it satis�es most the properties of the a�nescale space, in particular the monotonicity and the a�ne
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Fig. 14. A�ne scale space of a weird polygon


