
Meaningful AlignmentsAgn�es Desolneux�, Lionel Moisan�, Jean-Mi
hel Morel�Abstra
tWe propose a method for dete
ting geometri
 stru
tures in an image, without any a prioriinformation. Roughly speaking, we say that an observed geometri
 event is \meaningful" ifthe expe
tation of its o

uren
es would be very small in a random image. We dis
uss theapories of this de�nition, solve several of them by introdu
ing \maximal meaningful events"and analyzing their stru
ture. This methodology is applied to the dete
tion of alignments inimages.1 Introdu
tionMost theories of image analysis tend to �nd in a given image geometri
 stru
tures (regions, 
on-tours, lines, 
onvex sets, jun
tions, et
.). These theories generally assume that the images 
ontainsu
h stru
tures and then try to 
ompute their best des
ription. The variational framework is quitewell adapted to su
h a viewpoint (for a 
omplete review, see e.g. [12℄). The general idea is tominimize a fun
tional of the kind F (u; u0) + R(u) ;where u0 is the given image de�ned on a domain 
 � R2 , F (u; u0) is a �delity term and R(u) is aregularity term. F and R de�ne an a priori model. Let us give two examples:� The Mumford-Shah model (see [12℄), where the energy fun
tional to be minimized isE(u;K) = �2 Z
�K jruj2 dx + ��2length(K) + Z
�K (u� u0)2 dx; (1)where u is the estimated image, K its dis
ontinuity set, and the result (u;K) is 
alled a \segmen-tation" of u0, i.e. a pie
ewise smooth fun
tion u with a set of 
ontours K.� The Bayesian model (see [5℄ and [6℄): let us denote by ~y = (ys)s2S the observation (thedegraded image). The aim is to �nd the \real" image ~x = (xs)s2S knowing that the degradationmodel is given by a 
onditional probability �(~yj~x), and that the a priori law of ~x is given bya Gibbs distribution �(~x) = Z�1 exp(�U(~x)) (for binary images, the main example is the Isingmodel). We then have to �nd the M.A.P. (Maximum A Posteriori) of�(~xj~y) = �(~yj~x)�(~x)�(~y) : (2)Assume that �(~yj~x) = C exp(�V (~x; ~y)). For example, in the 
ase of a Gaussian noise,�(~yj~x) = ( 12��2 ) jSj2 exp(� 12�2 Xs2S(ys � xs)2);�nding the MAP is equivalent to seeking for the minimum of the fun
tionalV (~x; ~y) + U(~x) : (3)�CMLA, ENS Ca
han, 61 avenue du pr�esident Wilson 94235 Ca
han 
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A main drawba
k of all the variational methods is that they introdu
e normalization 
onstants(�, �, ...) and the resulting segmentation depends a lot upon the value of these 
onstants. Theother point is that they will always deliver a minimum for their fun
tional and so they assumethat any image may be segmented (even a white noise). Indeed, they do not yield any 
riterion tode
ide whether segmentation is relevant or not. Of 
ourse, the probabilisti
 framework leading tovariational methods should in prin
iple give a way to estimate the parameters of the segmentationfun
tional. In the deterministi
 framework, these parameters 
an sometimes be estimated asLagrange multipliers when (e.g.) a noise model is at hand, like in the Rudin-Osher-Fatemi method(see [14℄). It is nonetheless easy to 
he
k that, �rst, most variational methods propose a veryrough and ina

urate model for the image, se
ond, their parameters are generally not 
orre
tlyestimated anyway, yielding to supervised methods. A
tually, we should not be fair if we 
laimedthat what we propose immediately yields a more reliable segmentation method. In fa
t, we onlyintend to point out the possibility of 
he
king any proposed segmentation, by any segmentationmethod, from the point of view of meaningfulness. So far, this 
he
k will only be analysed indetail for straight boundaries : given a segmentation performed by any other method, we 
an,with the method proposed here, a posteriori de
ide about the meaninfulness of straight parts ofthe proposed boundaries.Another drawba
k of most segmentation methods is their lo
ality. Despite the Gestaltiststheories, they look rather for lo
al stru
ture. Let us mention some nonlo
al theories of imageanalysis : the Hough Transform (see [11℄), the dete
tion of globally salient stru
tures by Sha'Ashuaand Ullman (see [15℄), the Extension Field of Guy and Medioni (see [7℄) and the Parent and Zu
ker
urve dete
tor (see [13℄). These methods have the same drawba
k as the variational models ofsegmentation des
ribed above. The main point is that they a priori suppose that what they wantto �nd (lines, 
ir
les, 
urves...) is in the image. They may �nd too many or too little su
h stru
turesin the image and do not yield an existen
e proof for the found stru
tures. As a main example,let us des
ribe the Hough transform. We assume that the image under analysis is made of dotswhi
h may 
reate aligned patterns or not. We then 
ompute for ea
h straight line in the image,the number of dots lying on the line. In fa
t, the Hough transform des
ribes a fast algorithm todo so. The result of the Hough transform is then a map asso
iating with ea
h line a number ofdots. Then, \peaks" of the Hough transform may be 
omputed : they indi
ate the lines whi
hhave more dots. Whi
h peaks are signi�
ant ? Clearly, a threshold must be used. For the todayte
hnology, this threshold generally is given by a user or learned. The Hough transform is nothingbut a parti
ular kind of \grouping".A

ording to Gestalt theory, \grouping" is the law of visual per
eption (see [9℄). Its main ideais that whenever points (or previously formed visual obje
ts) have a 
hara
teristi
 in 
ommon,they get grouped and form a new, larger visual obje
t, a \Gestalt". Some of the main grouping
hara
teristi
s are 
olour 
onstan
y, \good 
ontinuation", alignment, parallelism, 
ommon orienta-tion, 
onvexity and 
losedness (for a 
urve), ... In addition, the grouping prin
iple is re
ursive. Forexample, if points have been grouped into lines, then these lines may again be grouped a

ording(e.g.) to parallelism.Our purpose is not to propose a new segmentation method. We rather propose a 
omputationalmethod to de
ide whether a given Gestalt (obtained by any segmentation or grouping method) issure or not. Although most of what we write here 
an be generalized to other geometri
 stru
tures,we shall fo
us on alignments, one of the most basi
 Gestalt (see [16℄).In this paper, we push the study to the end for the dete
tion of alignments, but we will �rst givea general de�nition of what we will 
all \a meaningful event". Many of our statements will applyto other Gestalt as well. Our main idea is that a meaningful event is an event that, a

ordingto probabilisti
 estimates, should not happen in an image and therefore is signi�
ant. In thatsense, we shall say that it is a \proven event". The above informal de�nition immediately raisesan obje
tion : if we do probabilisti
 estimates in an image, this means that we have an a priorimodel. We are therefore losing any generality in the approa
h, unless the probabilisti
 model 
ouldbe proven to be \the right one" for any image. In fa
t, we shall do statisti
al estimates, but relatednot to a model of the images but to a general model of per
eption. We shall apply the so 
alled2



Helmholtz prin
iple. This prin
iple attempts to des
ribe when per
eption de
ides to group obje
tsa

ording to some quality (
olour, alignment, et
.). It 
an be stated in the following way. Assumethat obje
ts O1, O2,...,On are present in an image. Assume that k of them, say O1,...,Ok have a
ommon feature, say, same 
olour, same orientation, et
. We are then fa
ing the dilemna : is this
ommon feature happening by 
han
e or is it signi�
ant ? In order to answer this question, wemake the following mental experiment : we assume that the 
onsidered quality has been randomlyand uniformly distributed on all obje
ts, i.e. O1, ...On. Noti
e that this quality may be spatial(like position, orientation); then we (mentally) assume that the observed position of obje
ts in theimage is a random realization of this uniform pro
ess. Then, we may ask the question : is theobserved repartition probable or not?The Helmholtz prin
iple states that if the expe
tation in the image of the observed 
on�gurationO1, ...,Ok is very small, then the grouping of these obje
t makes sense, is a Gestalt.De�nition 1 ("-meaningful event) We say that an event of type \su
h 
on�guration of pointshas su
h property" is "-meaningful, if the expe
tation in a image of the number of o

uren
es ofthis event is less than ".When " << 1, we talk about meaningful events. This seems to 
ontradi
t our notion of aparameter-less theory. Now, it does not, sin
e the "-dependen
y of meaningfulness will be low (itwill be in fa
t a log "-dependen
y). The probability that a meaningful event is observed by a

identwill be very small. In su
h a 
ase, our per
eption is liable to see the event, no matter whether itis \true" or not. Our term "-meaningful is related to the 
lassi
al p-signi�
an
e in statisti
s ; aswe shall see further on, we must use expe
tations in our estimates and not probabilities.The program we state here has been proposed several times in Computer Vision. We knowof at least two instan
es: David Lowe [10℄ and Witkin-Tenenbaum [17℄. Let us quote extensivelyDavid Lowe's program, whose mathemati
al 
onsequen
es we shall try to develop in this paper:\we need to determine the probability that ea
h relation in the image 
ould have arisen by a

ident,P (a). Naturally, the smaller that this value is, the more likely the relation is to have a 
ausalinterpretation. If we had 
ompletely a

urate image measurements, the probability of a

identalo

uren
e 
ould be
ome vanishingly small. For example, the probability of two image lines beingexa
tly parallel by a

ident of viewpoint and position is zero. However, in real images there aremany fa
tors 
ontributing to limit the a

ura
y of measurements. Even more important is the fa
tthat we do not want to limit ourselves to perfe
t instan
es of ea
h relation in the s
ene - we wantto be able to use the information available from even approximate instan
es of a relation. Givenan image relation that holds within some degree of a

ura
y, we wish to 
al
ulate the probabilitythat it 
ould have arisen by a

ident to within that level of a

ura
y. This 
an only be done inthe 
ontext of some assumption regarding the surrounding distribution of obje
ts, whi
h servesas the null hypothesis against whi
h we judge signi�
an
e. One of the most general and obviousassumptions we 
an make is to assume that a ba
kground of independently positioned obje
ts inthree-spa
e, whi
h in turn implies independently positioned proje
tions of the obje
ts in the image.This null hypothesis has mu
h to re
ommend it. (...) Given the assumption of independen
e inthree-spa
e position and orientation, it is easy to 
al
ulate the probability that a relation wouldhave arisen to within a given degree of a

ura
y by a

ident. For example if two straight lines areparallel to within 5 degrees, we 
an 
al
ulate that the 
han
e is only 5=180 = 1=36 that the relationwould have arisen by a

ident from two independent obje
ts." Some main points of the program weshall mathemati
ally develop are 
ontained in the pre
eding quotation : parti
ularly the idea thatsigni�
ant geometri
 obje
ts are the ones with small probability and the idea that this probabilityis anyway never zero be
ause of the ne
essary la
k of a

ura
y of observations in an image. Now,the pre
eding program is not a

urate enough to give the right prin
iples for 
omputing Gestalt.The above mentionned example is e.g. not 
omplete enough to be 
onvin
ing. Indeed, we simply
annot �x a priori an event su
h as \these two lines are parallel" without merging it into the setof all events of the same kind, that is, all parallelisms. The spa
e of straight lines in an imagedepends on the a

ura
y of the observations, but also on the size of the image itself. The fa
tthat the mentionned probability be \low" (1=36) does not imply that few su
h events will o

ur3



in the image : we have to look for the number of possible pairs of parallel lines. If this number islarge, then we will in fa
t dete
t many nonsigni�
ant pairs of parallel lines. Only if the expe
tednumber of su
h pairs is mu
h below 1, 
an we de
ide that the observed parallelism makes sense.Before pro
eeding to the mathemati
al theory, let us give some other toy example and dis
uss ourde�nition of \"-meaningfulness".Example and Dis
ussion : Let us 
onsider an image of size 100 � 100 pixels. We assumethat the grey-level at ea
h pixel is 0 or 1, whi
h means that we work on a binary image. Ourmain asumption is that if two points do not belong to the same obje
t, then their grey-levels areindependent (and equally distributed if the image is equalized). Now, imagine that we observe thefollowing event: a bla
k 10� 10 square. The expe
tation of the number of 10� 10 bla
k squaresin the image is simply the number of 10� 10 squares in the 100� 100 image times the probabilitythat ea
h pixel of a 10� 10 square is bla
k. And so the expe
tation is90 � 90 � �12�100 ;whi
h is mu
h less than 1. We 
on
lude that this event is meaningful.Remarks :1) Subsquares (large enough) are also meaningful, and so are also 
andidates to be\Gestalt".2) Intera
tion of Gestalts : if we take into a

ount that we observe a 10�10 bla
k square on a 30�30white ba
kground, then the expe
tation of the number of o

uren
es of this square-on-ba
kgroundevent is 70 � 70 � �12�100 ��12�800 ;and so we get a \mu
h more meaningful" event. This is rather a toy example, but it showsimmediatly whi
h kind of diÆ
ulties and apories are asso
iated with \meaningfulness" :1. Too many meaningful events : by the same argument as above, all large enough parts of thebla
k square are meaningful. If (e.g.) we take all parts of this square with 
ardinality largerthan 50, they are all meaningful and their number is larger than 250 ! We will see how tosolve the problem of having too many meaningful events by de�ning the notion of \maximalmeaningful event".2. Problem of the a priori/a posteriori de�nition of the event : if we take an arbitrary 10� 10pattern in a 100�100 random binary image, then the expe
tation of the number of o

uren
esof this event is 90 � 90 � � 12�100 whi
h is mu
h less than 1. The answer is that we need an apriori geometri
 de�nition of the event, as done in Gestaltism. The event 
annot be de�nedfrom the observed image itself !3. Moreover, we 
an remark that the de�nition of the geometri
 event 
hanges its \meaningful-ness". For example if we 
onsider our 10 � 10 bla
k square as a 
onvex set with area 100,then the expe
tation be
omes � 12�100 times the number of 
onvex sets with area 100. Andso the event may loose its meaningfulness.4. Abstra
t geometri
al 
hara
ter of the information, la
k of lo
alization.ex.1: if we observe a meaningful bla
k pat
h, all what we 
an say is: \there is a bla
k pat
hand the indi
ated dots may belong to it". We do not know whi
h points belong \for sure"to the event.ex.2: if we observe a meaningful alignment of points, then we 
an say \on that line, thereare aligned points" but we are not able to de�ne the endpoints.5. How many Gestalt ? If we make a list of \pregnant" Gestalt, following Gestalt theory, thelonger the list, the higher the expe
tation of �nding \false gestalt". Thus, per
eption, andalso 
omputer vision will at some time meet the following problem : to �nd the best tradeo� between number of Gestalt (whi
h might be a priori as high as possible) and the false4



dete
tion rate. For the time being, we shall not adress this problem; it will be adressed onlywhen we are in a position to do a 
orre
t theory for many Gestalt !Our plan is as follows. In Se
tion 2, we explain our de�nition of meaningful alignments. Se
tion3 is devoted to the stru
ture properties of the \number of false alarms". In Se
tion 4, we giveasymptoti
 (as l ! 1) and non-asymptoti
 estimates about the meaningfulness of the followingobservation : \k well-aligned points in a segment of length l". Se
tion 5 introdu
es maximalmeaningfulness as a mean to redu
e the number of events and lo
alize them. Se
tion 6 gives strongarguments in favour of our main 
onje
ture : two maximal meaningful segments on the same lineare disjoints. In the experimental Se
tion 7, we 
ompute meaningful and maximal meaningfulalignments in several images.2 De�nition of meaningful segments2.1 Very lo
al 
omputation of the dire
tion of the level linesLet us 
onsider a gray image of size N (that is N2 pixels). At ea
h point, we 
ompute a dire
tion,whi
h is the dire
tion of the level line passing by the point 
al
ulated on a q�q pixels neighbourhood(generally q = 2). No previous smoothing on the image will be performed and no restoration: su
hpro
esses would loose the a priori independen
e of dire
tions whi
h is required for the dete
tionmethod.The 
omputation of the gradient dire
tion is based on an interpolation (we have q = 2). We de�nethe dire
tion at pixel (i; j) by rotating by �2 the dire
tion of the gradient of the order 2 interpolationat the 
enter of the 2� 2 window made of pixels (i; j), (i+1; j), (i; j+1) and (i+1; j+1). We getdir(i; j) = 1jj ~Djj ~D where ~D = � �[u(i; j + 1) + u(i+ 1; j + 1)℄ + [u(i; j) + u(i+ 1; j)℄[u(i+ 1; j) + u(i+ 1; j + 1)℄� [u(i; j) + u(i; j + 1)℄ � :Then we say that two points X and Y have the same dire
tion with pre
ision 1n ifAngle(dir(X); dir(Y )) 6 2�n : (4)In agreement with psy
hopysi
s and numeri
al experimentation, we 
onsider that n should notex
eed 16.2.2 Probabilisti
 modelA

ording to the Helmholtz prin
iple, our main assumption is following: we assume that thedire
tion at all points in an image is a uniformly distributed random variable. In the following, weassume that n > 2 and we set p = 1n < 12 ; p is the a

ura
y of the dire
tion. We interpret p as theprobability that two independent points have the \same" dire
tion with the given a

ura
y p. Ina stru
tureless image, when two pixels are su
h that their distan
e is more than 2, the dire
tions
omputed at the two 
onsidered pixels should be independent random variables. We assume thatevery deviation from this randomness assumption will lead to the dete
tion of a stru
ture (Gestalt)in the image. Alignments provide a more 
on
rete way to understand Helmholtz prin
iple. Weknow (by experien
e) that images have 
ontours and therefore meaningful alignments. This ismainly due to the smoothness of 
ontours of solid obje
ts and the generation of geometri
 stru
tureby most physi
al and biologi
al laws. Now, it 
an be assumed that in a �rst approximation, therelative positions of obje
ts are independent. This means that whenever two points x and y belongto the same 
ontour, their dire
tions are likely to be highly 
orrelated, while if they belong to twodi�erent obje
ts, their dire
tions should be independent (see the above quoted Lowe's program).From now on, the 
omputations will be performed on any image presenting at ea
h pixela dire
tion whi
h is uniformly distributed, two points at a distan
e larger than q = 2 having5



independent dire
tions. Let A be a segment in the image made of l independent pixels (it meansthat the distan
e between two 
onse
utive points of A is 2 and so, the real length of A is 2l).We are interested in the number of points of A whi
h have the property of having their dire
tionaligned with the dire
tion of A. Su
h points of A will simply be 
alled aligned points of A.The question is to know what is the minimal number k(l) of aligned points that we must observeon a length l segment so that this event be
omes meaningful when it is observed in a real image.2.3 De�nition of meaningLet A be a straight segment with length l and x1, x2, ... , xl be the l (independent) points of A.Let Xi be the random variable whose value is 1 when the dire
tion at pixel xi is aligned with thedire
tion of A, and 0 otherwise. We then have the following distribution for Xi :P [Xi = 1℄ = p and P [Xi = 0℄ = 1� p : (5)The random variable representing the number of xi having the \good" dire
tion isSl = X1 + X2 + : : : +Xl : (6)Be
ause of the independen
e of the Xi, the law of Sl is given by the binomial distributionP [Sl = k℄ = � lk�pk(1� p)l�k : (7)When we 
onsider a length l segment, we want to know whether it is "-meaningful or not amongall the segments of the image (and not only among the segments having the same length l). Letm(l) be the number of oriented segments of length l in a N�N image. We de�ne the total numberof oriented segments in a N � N image as the number of pairs (x; y) of points in the image (anoriented segment is given by its starting point and its ending point) and so we havelmaxXl=1 m(l) = N2(N2 � 1) ' N4 : (8)The estimate N4 is a

urate enough, taking into a

ount that what matters here will be its loga-rithm.De�nition 2 ("-meaningful segment) A length l segment is "-meaningful in a N � N imageif it 
ontains at least k(l) points having their dire
tion aligned with the one of the segment, wherek(l) is given by k(l) = minnk 2 N; P [Sl > k℄ 6 "N4o : (9)Let us develop and explain this de�nition. For 1 6 i 6 N4, let ei be the following event: \thei-th segment is "-meaningful" and �ei denote the 
hara
teristi
 fun
tion of the event ei. We haveP [�ei = 1℄ = P [Sli > k(li)℄where li is the length of the i-th segment. Noti
e that if li is small we may have P [Sli > k(li)℄ = 0.Let R be the random variable representing the exa
t number of ei o

uring simultaneously in atrial. Sin
e R = �e1 + �e2 + : : : + �eN4 , the expe
tation of R isE(R) = E(�e1) +E(�e2) + : : : +E(�eN4 ) = lmaxXl=0 m(l)P [Sl > k(l)℄ : (10)6



We 
ompute here the expe
tation of R but not its law be
ause it depends a lot upon the relationsof dependen
e between the ei. The main point is that segments may interse
t and overlap, so thatthe ei events are not independent, and may even be strongly dependent.By de�nition we haveP [Sl > k(l)℄ 6 "N4 ; so that E(R) 6 "N4 �N4 6 ":This means that the expe
tation of the number of "-meaningful segments in an image is less than".This notion of "-meaningful segments has to be related to the 
lassi
al \�-signi�
an
e" in statisti
s,where � is simply "=N4. The di�eren
e whi
h leads us to have a slightly di�erent terminologyis following: we are not in a position to assume that the segment dete
ted as "-meaningful areindependent in anyway. Indeed, if (e.g.) a segment is meaningful it may be 
ontained in manylarger segments, whi
h also are "-meaningful. Thus, it will be 
onvenient to 
ompare the numberof dete
ted segments to the expe
tation of this number. This is not exa
tly the same situation asin failure dete
tion, where the failures are somehow disjoint events. See remark (*) below. Thismeans that � is an absolute parameter, not depending upon the size of the image, but only onthe number of false dete
tions whi
h the user allows. Of 
ourse, if the image is larger, it maybe expe
ted that an in
reasing number of false dete
tions should be allowed. However, by �xing� always smaller than one, we de
ided not to take this opportunity. Our proposed de�nition ofmeaningfulness is also related to the statisti
al analysis of fun
tional medi
al images (fMRI, PET)by Statisti
al Parameter Map (SPM), with two main di�eren
es, however. The �rst one is this :in the re
ent work of Stuart Clare (FMRIB 
enter, Oxford, see [1℄), and in the works of Fristonet al. [3℄ and Forman et al. [4℄, an hypothesis testing method against white noise is performed intime series. As in the present work, the binomial law appears and a 
areful a

ount of the e�e
tof �ltering on the number of e�e
tive degrees of freedom : this leads e.g. S.Clare to divide thisnumber by three after a small gaussian �ltering and is related to our de
ision of 
onsidering onlynets of points at a distan
e larger than 2. S.Clare does as we do ; he p-tests against the white noiseassumption and admits a p-value of 0.005 by patient. Here is the main di�eren
e : the numberof patients, and the length of the data are not taken into a

ount in the test. In parti
ular, thetime length of the test is of 
ourse just enough to perform a signi�
ant test and the p-value is athreshold "per patient". In our 
ase, we have two fa
tors : the �rst one is that the number of"patients" is huge. Thus, with a p-test, the expe
tation of false dete
tions would be mu
h above 1,whi
h is what we avoid by imposing � mu
h smaller than 1 and by entering into the 
omputationthe number of segments N4. This is why we 
ompute an expe
tation and not a probability : wehave too many and not independent trials. The reason for introdu
ing expe
tation here is the nonindependen
e (
ontrarily to patients) and the huge number of trials, in
reasing with the imagesize.Remark : We 
ould have de�ned a "-meaningful length l segment as a segment "-meaningfulonly among the set of the length l segments. It would have been a segment with at least k0(l)points having the \good" dire
tion where k0(l) is de�ned by m(l) � P [Sl > k0(l)℄ 6 " : Noti
e thatm(l) ' N3 be
ause there are approximately N2 possible dis
rete straight lines in a N �N imageand on ea
h dis
rete line, about N 
hoi
es for the starting point of the segment. But we did notkeep this de�nition be
ause when looking for alignments we 
annot a priori know the length ofthe segment we look for. In the same way, we never 
onsider events like : \a segment has exa
tlyk aligned points", but rather \a segment has at least k aligned points", and k must be given, aswe do, by a dete
tability 
riterion and not a priori �xed.
7



3 Number of false alarms3.1 De�nitionDe�nition 3 (Number of false alarms) let A be a segment of length l0 with at least k0 pointshaving their dire
tion aligned with the dire
tion of A. We de�ne the number of false alarms of Aas NF (k0; l0) = N4 � P [Sl0 > k0℄ = N4 � l0Xk=k0 �l0k�pk(1� p)l0�k : (11)Interpretation of this de�nition : the number NF (k0; l0) of false alarms of the segment A representsan upper-bound of the expe
tation in an image of the number of segments of probability less thanthe one of the 
onsidered segment.Remark (*) : (relative notion) Let A be a segment and NF (k0; l0) its number of false alarms.Then A is "-meaningful if and only if NF (k0; l0) 6 ", but it is worth noti
ing that we 
ould have
ompared NF (k0; l0) not to " but to the real number of segments with probability less than theone of A, observed in the image. For example, if we observe 100 segments of probability less than�, and if the expe
ted value R of the number of segments of probability less than � was 10, weare able to say that this 100-segments event 
ould happen with probability less than 1/10, sin
e10 = E(R) > 100 � P [R = 100℄. Now, ea
h of these 100 segments only is 10-meaningful !3.2 Properties of the number of false alarmsProposition 1 The number of false alarms NF (k0; l0) has the following properties :1. NF (0; l0) = N4, whi
h proves that the event for a segment to have more than zero alignedpoints is never meaningful !2. NF (l0; l0) = N4 � pl0 , whi
h shows that a segment su
h that all of its points have the \good"dire
tion is "-meaningful if its length is larger than (�4 lnN + ln ")= ln p.3. NF (k0+1; l0) < NF (k0; l0). This 
an be interpreted by saying that if two segments have thesame length l0, the \more meaningful" is the one whi
h has the more \aligned" points.4. NF (k0; l0) < NF (k0; l0 + 1). This property 
an be illustrated by the following �gure of asegment (where a � represents a misaligned point, and a ! represents an aligned point) :!! � !! �� !!!!! �If we remove the last point (on the right), whi
h is misaligned, the new segment is less probableand therefore more meaningful than the 
onsidered one.5. NF (k0 + 1; l0 + 1) < NF (k0; l0). Again, we 
an illustrate this property :!! � !! �� !!!!!!If we remove the last point (on the right), whi
h is aligned, the new segment is more probableand therefore less meaningful than the 
onsidered one.This proposition is a 
onsequen
e of the de�nition and properties of the binomial distribution(see [2℄).If we 
onsider a length l segment (made of l independent pixels), then the expe
tation of thenumber of points of the segment having the same dire
tion as the one of the segment is simply theexpe
tation of the random variable Sl, that isE(Sl) = lXi=1 E(Xi) = lXi=1 P [Xi = 1℄ = p � l : (12)8



We are interested in "-meaningful segments, whi
h are the segments su
h that their number offalse alarms is less than ". These segments have a small probability (less than "=N4), and sin
ethey represent alignments (deviation from randomness), they should 
ontain more aligned pointsthan the expe
ted number 
omputed above. That is the main point of the following proposition.Proposition 2 Let A be a segment of length l0 > 1, 
ontaining at least k0 points having the samedire
tion as the one of A. If NF (k0; l0) 6 p �N4, (whi
h is the 
ase when A is meaningful), thenk0 > pl0 + (1� p) : (13)This is a \sanity 
he
k" for the model.4 ThresholdsIn the following, " and p are �xed numbers smaller than 1, and we use the notationP (k; l) = P [Sl > k℄ = lXi=k �li�pi(1� p)l�i : (14)We re
all that a segment of length l is "-meaningful as soon as it 
ontains at least k(l) pointshaving the \right" dire
tion, where k(l) is de�ned byk(l) = minnk 2 N; P [Sl > k℄ 6 "N4o : (15)The �rst simple ne
essary 
ondition we 
an get is a threshold on the length l. For an "-meaningful segment, we have pl 6 P [Sl > k(l)℄ 6 "N4 ; (16)so that l > �4 lnN + ln "ln p : (17)Let us give a numeri
al example : if the size of the image is N = 512, and if p = 1=16 (whi
h
orresponds to 16 possible dire
tions), the minimal length of a 1-meaningful segment is lmin = 9.We 
an also give estimates of the thresholds k(l). The mathemati
al theorems are given in theAppendix. They roughly say that k(l) ' pl+rC � l � ln N4" ; (18)where 2p(1 � p) 6 C 6 1=2. Some of these results are illustrated by Figure 1. These estimatesare not ne
essary for the algorithm (be
ause P [Sl > k℄ is easy to 
ompute) but they provide aninteresting order of magnitude for k(l).5 Maximal meaningful segments5.1 De�nitionSuppose that on a straight line we have found a meaningful segment S with a very small number offalse alarms (i.e. NF (S) << 1). Then if we add some \spurious" points at the end of the segment9
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Figure 1: Estimates for the threshold of meaningfulness k(l)The middle (step
ase) 
urve represents the exa
t value of the minimal number of aligned pointsk(l) to be observed on a 1-meaningful segment of length l in an image of size 512, for a dire
tionpre
ision of 1=16. The upper and lower 
urves represent estimates of this threshold obtained byProposition 5 and Proposition 7 (see Appendix).we obtain another segment with probability higher than the one of S and having still a number offalse alarms less than 1, whi
h means that this new segment is still meaningful (see �gure).!!!!!!!!!!!!!!!!!! � � � �In the same way, it is likely to happen in general that many subsegments of S having a probabilityhigher than the one of S will still be meaningful (see experimental Se
tion, where this problemobviously o

urs for the DNA image). These remarks justify the introdu
tion of the followingnotion of \maximal segment".De�nition 4 (Maximal segment) A segment A is maximal if1. it does not 
ontain a stri
tly more meaningful segment : 8B � A; NF (B) > NF (A),2. it is not 
ontained in a more meaningful segment : 8B � A; NF (B) > NF (A),Then we say that a segment is maximal meaningful if it is both maximal and meaningful.This notion of \maximal meaningful segment" is linked to what Gestaltists 
alled the \maskingphenomenon". A

ording to this phenomenon, most parts of an obje
t are \masked" by the obje
titself ex
ept the parts whi
h are signi�
ant from the point of view of the 
onstru
tion of the wholeobje
t. For example, if one 
onsiders a square, the only signi�
ant segments of this square are thefour sides, and not large parts of the sides. With our de�nition, long enough parts of a side maybe meaningful segments, but only the whole side itself will be a maximal meaningful segment.Proposition 3 (Properties of maximal segments) Let A be a maximal segment, then1. the two endpoints of A have their dire
tion aligned with the dire
tion of A,10



2. the two points next to A (one on ea
h side) do not have their dire
tion aligned with thedire
tion of A.These elementary properties are simple 
onsequen
es of Proposition 1.5.2 Density of maximal segmentsIn general, it is not easy to 
ompare P (k; l) and P (k0; l0) by performing simple 
omputations on k,k0, l and l0. However, a simple 
ase is solved by the followingProposition 4 Let A = (k; l) and B = (k0; l0) be two 1-meaningful segments of a N �N image(with N > 3) su
h that k0l0 > kl and l0 > l:Then, B is more meaningful than A, that is NF (B) < NF (A).An interesting appli
ation of this proposition is the 
on
atenation of meaningful segments. LetA = (k; l) and B = (k0; l0) be two meaningful segments lying on the same line. Moreover we assumethat A and B are 
onse
utive, so that A [ B is simply the segment (k + k0; l + l0). Then, sin
ek + k0l + l0 > min�kl ; k0l0 � ;we dedu
e, thanks to the above proposition, thatNF (A [ B) < max(NF (A); NF (B)): (19)This shows that the 
on
atenation of two meaningful segment is a meaningful segment.6 A 
onje
ture about maximalityUp to now, we have established some properties that permit to 
hara
terize or 
ompare meaningfulsegments. We now study the stru
ture of maximal segments, and give some eviden
e that twodistin
t maximal segments on a same straight line have no 
ommon point.Conje
ture 1 If for i = 1; 2; 3, ki and li are integers su
h that li 6= 0 and ki 6 li, thenmin�p; P (k1; l1); P (k1 + k2 + k3; l1 + l2 + l3)� < maxi2f2;3gP (k1 + ki; l1 + li) (20)This 
onje
ture 
an be dedu
ed from a stronger (but simpler) 
onje
ture : the 
on
avity in aparti
ular domain of the level lines of a natural 
ontinuous extension of P involving the in
ompleteBeta fun
tion.Corollary 1 (Union and Interse
tion) Suppose that Conje
ture 1 is true. Then, if A and Bare two segments on the same straight line su
h that A * B and B * A, one hasmin�pN4; NF (A \ B); NF (A [ B)� < max�NF (A); NF (B)� : (21)
11



This is a dire
t 
onsequen
e of Conje
ture 1. Numeri
ally, we 
he
ked this property for allsegments A and B su
h that jA [ Bj 6 256. For p = 1=16, we obtainedminjA[Bj6256 max�(NF (A); NF (B)��min�pN4; NF (A \ B); NF (A [B)�max�(NF (A); NF (B)�+min�pN4; NF (A \ B); NF (A [B)� ' 0:000754697::: > 0;this minimum (independent of N) being obtained for A = (23; 243), B = (23; 243) and A \ B =(22; 230) (as before, the 
ouple (k; l) we atta
h to ea
h segment represents the number of alignedpoints (k) and the segment length (l)).Noti
e also that Conje
ture 1 
an be proven when P (k; l) is repla
ed by its approximation bythe Gaussian law (asymptoti
 estimate when k ' pl)G(k; l) = 1p2� Z +1�(k;l) e�x22 dx where �(k; l) = k � plplp(1� p) (22)or by its Large Deviation estimate (asymptoti
 estimate when l ! +1 and kl > r > p),H(k; l) = exp�k ln p+ (l � k) ln(1� p)� k ln kl � (l � k) ln l � kl � : (23)Theorem 1 (maximal segments are disjoint) Suppose that Conje
ture 1 is true. Then, anytwo maximal segments lying on the same straight line have no interse
tion.Remark : The numeri
al 
he
king of Corollary 1 ensures that for p = 1=16 (but we 
ould have
he
ked for another value of p), two maximal meaningful segments with total length smaller than256 are disjoint, whi
h is enough for most pra
ti
al appli
ations.7 ExperimentsIn all the following experiments, the dire
tion at a pixel in an image is 
omputed on a 2� 2 neigh-borhood with the method des
ribed in se
tion 2.1 (q = 2) and the pre
ision is p = 1=16.The dire
tion is 
omputed at all pixels, unless the gradient is stri
tly equal to zero (up to ma-
hine pre
ision). Let N denote the size of the 
onsidered image. The algorithm used to �nd themeaningful segments is the following. For ea
h one of the four sides of the image, we 
onsider forea
h pixel of the side the lines starting at this pixel, and having an orientation multiple of �=48.And then on ea
h line, we 
ompute the meaningful segments. For ea
h segment, let l be its length
ounted in independant pixels (whi
h means that the real length of the segment is 2l), then amongthe l points we 
ount the number k of points having their dire
tion aligned with the dire
tion ofthe segment (with the pre
ision p), and �nally we 
ompute P (k; l): if it is less than 148N3 � 110 , wesay that the segment is meaningful. The value 48N3 is an estimate of the number of 
onsideredsegments and we took " = 1=10. Be
ause of the angle pre
ision 2�=16 (to be 
ompared with�=48), the sampling of dire
tions is enough to 
over all possible alignments in a 512�512 image.Moti
e that P (k; l) 
an be simply tabulated at the begining of the algorithm using Newton's lawP (k + 1; l + 1) = pP (k; l) + (1� p)P (k + 1; l).It must be made 
lear that we applied exa
tly the same algorithm to all presented images,whi
h have very di�erent origins. The only parameter of the algorithm is pre
ision. We �xed itequal to 1=16 in all experiments ; this value 
orresponds to the very rough a

ura
y of 22.5 degrees ;this means that (e.g.) two points 
an be 
onsidered as aligned with, say the 0 dire
tion if their12



angles with this dire
tion are up to �22:5 degrees ! It is 
lear that these bounds are very rough,but in agreement with the more pessimisti
 estimates for the vision a

ura
y in psy
hophysi
sand the numeri
al experien
e as well. Moreover, in all experiments, we only keep the meaningfulsegments having in addition the property that their endpoints have their dire
tion aligned withthe one of the segment: bla
k points represent points on a meaningful segment whi
h have thesame dire
tion as the one of the segment (with the pre
ision p), and gray points represent pointson a meaningful segment whi
h do not have the same dire
tion as the segment.For ea
h one of the following images, we 
omput1. all the meaningful segments.2. the maximal meaningful segments.3. for some of them: meaningful segments with length less than 30 or 20. These segments havea small length (
lose to the minimal length lmin = �4 lnN= ln p), and 
onsequently a densityof aligned points 
lose to 1.Typi
al CPU time for a 512� 512 image is ten se
onds, and one se
ond for a 256� 256 image.As a general 
omment to all experiments, we shall see that the (non maximal) meaningful eventsare too long : indeed, if we �nd a very meaningful segment (and this happens very systemati
allyin the experiments), then mu
h larger segments 
ontaining this very meaningful one will still bemeaningful. We display, for a sake of 
ompleteness, several images with all meaningful alignments.In 
ontinuation, we display the maximal meaningful alignments, as a way to 
he
k by 
omparisonthat these maintain the whole alignment information, and are by far more a

urate. We thinkthe experiments 
learly demonstrate the ne
essity of maximality. We also diplay in several imagesthe only alignments whose length is smaller than a given threshold (20 or 30). This is a way to
he
k that, in \natural" images, most alignments 
an be lo
ally dete
ted. Indeed, we see that mostmaximal dete
ted alignements are a 
on
atenation of small, still meaningful, alignments.Image 1 : Pen
il strokes. This digital image was �rst drawn with a ruler and a pen
il ona standard A4 white sheet of paper, and then s
anned into a 478�598 digital image (image 1a);the s
anner's apparent blurring kernel is about two pixels wide and some aliasing is per
eptible,making the lines somewhat blurry and dashed. Two pairs of pen
il strokes are aligned on purpose.We display in the �rst experiment all meaningful segments (image 1b). Four phenomena o

ur,whi
h are very apparent in this simple example, but will be per
eptible in all further experiments.1. Too long meaningful alignments : we 
ommented this above ; 
learly, the pen
il strokesboundaries are very meaningful, thus generating larger meaningful segments whi
h 
ontainthem.2. Multipli
ity of dete
ted segments. On both sides of the strokes, we �nd several parallel lines(reminder : the orientation of lines is modulo 2�). These parallel lines are due to the blurringe�e
t of the s
anner's opti
al 
onvolution. Classi
al edge dete
tion theory would typi
allysele
t the best, in terms of 
ontrast, of these parallel lines.3. La
k of a

ura
y of the dete
ted dire
tions : We do not 
he
k that the dire
tions along ameaningful segment be distributed on both sides of the lines dire
tion. Thus, it is to beexpe
ted that we dete
t lines whi
h are a
tually slanted with respe
t to the edge's \true"dire
tion. Typi
ally, a blurry edge will generate several parallel and more or less slantedalignements. It is not the aim of the a
tual algorithm to �lter out this redundant information ;indeed, we do not know at this point whether the dete
ted parallel or slanted alignments aredue to an edge or not : this must be the obje
t of a more 
omplex algorithm. Everythingindi
ates that an edge is no way an elementary phenomenon in Gestalt.We display in the se
ond experiment for this image all maximal meaningful segments (image 1
),whi
h show for ea
h stroke two bundles of parallel lines on ea
h side of the stroke. In the third one,we display all meaningful segments whose length is less than 60 pixels (image 1d). This a
hieves13



a kind of lo
alization of the segments. Now, a visual 
omparison between this experiment and theformer one (1
) shows that maximality a
hieves a better, more a

urate lo
alization. Thus, wewill not show the \small segments" in all experiments to follow.Image 2 : White noise blurred images. Image 2a is a white noise, all pixels values beingindependent and identi
ally distributed with a gaussian law. Image 2b is Image 2a 
onvolved witha gaussian kernel with standard deviation 4 pixels and Image 2
 is Image 2a 
onvolved with agaussian kernel with standard deviation 16 pixels. We apply the same algorithm as before to allof these images. The out
ome was for all of three : no alignement dete
ted ! This experiment wasdevised to show that the lo
al independen
e of pixels 
an be widely violated without a�e
ting the�nal out
ome. Indeed, a blurring 
reates lo
al alignments but not global ones.Image 3 : U

ello's painting. This image (3a) is a result of the s
an of an U

ello's painting:\Presentazione della Vergine al tempio" (from the book \L'opera 
ompleta di Paolo U

ello",Classi
i dell'arte, Rizzoli). In image 3b we display all maximal meaningful segments and in image3
 all meaningful segments with length less than 60. Noti
e how maximal segments are dete
tedon the stair
ase in spite of the o

lusion by the going up 
hild. Compare with the small meaningfulsegments. All remarks made in Image 1 apply here (parallelisms due to the blur, et
.)Image 4 : Airport image. This digital image also has a noti
eable aliasing whi
h 
reateshorizontal and verti
al dashes along the edges. We display in image 4b all maximal dete
tablesegments, always for " = 1=10. We 
ompare in image 4
 and 4d with the same image with" = 1=100 and " = 1=1000.Image 5 : A road (
ourtesy of INRETS). We display all maximal meaningful segments (image5b) and all meaningful segments with length less than 60 (image 1
). Noti
e the dete
ted horizontallines in 5b: they 
orrespond to \horizon lines", that is, lines parallel to the horizon. They tend toa

umulate towards the horizon of the image. Su
h lines 
orrespond to nonlo
al alignments (theyare not present in Image 5
). They are due to a perspe
tive e�e
t : all visual obje
ts on the road(shadows, spots, et
.) are seen in very slanted view. Thus, their 
ontours are mostly parallel tothe horizon, thus generating what we should 
all \perspe
tive alignements".8 Con
lusionThis preliminary study about Gestalt has tried to build the 
orre
t mathemati
al framework forthe widespread idea that signi�
ant geometri
 stru
tures in an image 
orrespond to very lowprobability events. They are two ways to interpret this statement : the wellspread one is to de�nea probabilisti
 fun
tional whi
h is minimized, thus yielding the most likely geometri
 stru
tures.Now, we emphasized the fa
t that the dete
tion of stru
ture has an intermediate stage, 
learlymissed in the variational framework : before we look for the most likely stru
tures, we have tomake a list of all proven stru
tures. Experiments show well the di�eren
e between both approa
hes :where edge dete
tion algorithm (whi
h always look for the best position for an edge) dire
tly yielda single edge, we �nd multiple alignments. In many 
ases, it is plain from the experiments thatedge dete
tion 
ould be interpreted as a sele
tion pro
edure among the alignments. To summarize,we have two di�erent qualities whi
h are mixed in the variational framework : the feasibilityand the optimality. By looking for optimality only, we forget to prove that the found, optimalstru
tures indeed exist. Next, we proposed an alternative to global variational prin
iples : thenotion of maximal event. In some extent, maximal alignments are lo
al minimizers of a probabilityfun
tional. The main di�eren
e is �rst that we do a minimization among feasible stru
tures only;se
ond, that we get aditional stru
ture properties from maximality, as the fa
t that maximalalignments do not interse
t. It may well be asked at that point what we 
an further do. We have
onsidered one Gestalt quality only : the alignment. A �rst question is : to whi
h other qualitiesthe notions developped here apply ? We do not intend to give here a detailed answer. We willdevelop this general viewpoint in a further work. A se
ond question whi
h was raised by Lowe isthe 
ombination of several Gestalt qualities to generate more elaborate geometri
 stru
tures. Edgedete
tion is su
h an elaborate geometri
 stru
ture : it is a 
ombination of alignment (or 
urviness),of 
ontrast along the edge 
urve, of homogeneity on both sides, of maximality of the slope and14



(a) Image 1a (b) Image 1b

(
) Image 1
 (d) Image 1dFigure 2: Pen
il strokes15



(a) Image 2a

(b) Image 2b (
) Image 2
Figure 3: White noise blurred images
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(a) Image 3a

(b) Image 3b (
) Image 3
Figure 4: U

ello's painting
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(a) Image 4a (b) Image 4b

(
) Image 4
 (d) Image 4dFigure 5: Airport image
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(a) Image 5a

(b) Image 5b (
) Image 5
Figure 6: A road
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�nally of stability a

ross s
ales ! (see the s
ale spa
e theory). All of these 
riteria 
ontribute tomore and more sophisti
ated edge dete
tors. In this paper, we have shown that one of the qualitiesinvolved, the alignment, 
an be proved separately. The other qualities 
an re
eive an analogous,if not sometimes identi
al theory of meaningfulness. Now, the question of how we should let su
hqualities 
ollaborate seems open.A AppendixIn the following, " and p are �xed numbers smaller than 1. We re
all the notationP (k; l) = P [Sl > k℄ = lXi=k �li�pi(1� p)l�i :We also re
all that a segment of length l is "-meaningful as soon as it 
ontains at least k(l) pointshaving the \right" dire
tion, where k(l) is de�ned byk(l) = minnk 2 N; P (k; l) 6 "N4o : (24)A.1 SuÆ
ient 
ondition of meaningfulnessIn this appendix, we will see how the theory of large deviations and other inequalities 
on
erningthe tail of the binomial distribution 
an provide us a suÆ
ient 
ondition of meaningfulness. Thekey point is the following result due to Hoe�ding (see [8℄).Theorem 2 (Hoe�ding's inequality) If k, l are positive integers with k 6 l, and if p is a realnumber su
h that 0 < p < 1.Then if r = k=l > p, we have the inequalitiesP (k; l) 6 exp�lr ln pr + l(1� r) ln 1� p1� r� 6 exp(�l(r � p)2h(p)) 6 exp(�2l(r � p)2) ; (25)where h is the fun
tion de�ned on ℄0; 1[ byh(p) = 11� 2p ln 1� pp for 0 < p < 12 ;h(p) = 12p(1� p) for 12 6 p < 1 :Using this theorem, we dedu
e a suÆ
ient 
ondition for a segment to be meaningful. The sizeN of the image, and the probability p < 1=2 of a given dire
tion are �xed.Proposition 5 (suÆ
ient 
ondition of "-meaningfulness) Let A be a length l segment, 
on-taining at least k aligned points. Ifk > pl + s4 lnN � ln "h(p) pl ; (26)then A is "-meaningful.Noti
e that Proposition 5 is interesting only whenl > pl + s lh(p) (4 lnN � ln ") ;that is when l > 4 lnN � ln "(1� p)2h(p) :Numeri
al example: for " = 1, N = 512 and p = 1=16, we obtain l > 10.20



A.2 Ne
essary 
onditions for meaningfulnessWe use a 
omparison between the Binomial and the Gaussian laws given by the followingTheorem 3 (Slud 1977) If 0 < p 6 1=4 and pl 6 k 6 l, thenP [Sl > k℄ > 1p2� Z +1�(k;l) e�x2=2 dx where �(k; l) = k � plplp(1� p) : (27)Proposition 6 (ne
essary 
ondition of meaningfulness) We assume that 0 < p 6 1=4 andN are �xed. If a segment S = (k; l) is "-meaningful thenk > pl+ �(N)plp(1� p) ; (28)where �(N) is uniquely de�ned by 1p2� Z +1�(N) e�x2=2 dx = "N4 : (29)This proposition is a dire
t 
onsequen
e of Slud's Theorem. The assumption 0 < p 6 1=4 is nota strong 
ondition sin
e it is equivalent to 
onsider that the number of possible oriented dire
tionsis larger than 4.A.3 Asymptoti
s for the meaningfulness threshold k(l)In this se
tion, we still 
onsider that " and p are �xed. We will work on asymptoti
 estimations ofP (k; l) when l is \large". We �rst re
all a version of the Central limit theorem in the parti
ular
ase of the binomial distribution (see [2℄).Theorem 4 (De Moivre-Lapla
e limit theorem) If � is a �xed positive number, then as ltends to +1, P hSl > pl + �pl � p(1� p) i �! 1p2� Z +1� e�x2=2 dx : (30)Our aim is to get the asymptoti
 behaviour when l is large of the threshold k(l) de�ned by(15). The problem is that if l gets to in�nity, we also have to 
onsider that N tends to in�nity(be
ause, sin
e l is the length of a segment in a N �N image, ne
essarily l 6 p2N). And so the� used in the De Moivre-Lapla
e theorem will depend on N . This is the reason why we use thefollowing stronger version of the previous theorem (see [2℄).Theorem 5 (Feller) If �(l)! +1 and �(l)6=l! 0 as l! +1, thenP hSl > pl + �(l)pl � p(1� p) i � 1p2� Z +1�(l) e�x2=2 dx : (31)Proposition 7 (asymptoti
 behaviour of k(l)) When N ! +1 and l ! +1 in su
h a waythat l=(lnN)3 ! +1, one hask(l) = pl +s2p(1� p) � l � �ln N4" +O(ln lnN)�: (32)21



This proposition shows that the lower estimate given in Proposition 6 in fa
t gives the rightasymptoti
 estimate. The 
ondition l=(lnN)3 does not make mu
h sense for the 
onsidered valuesof N (about 1000). Nonetheless, Proposition 7 
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