
Meaningful AlignmentsAgn�es Desolneux�, Lionel Moisan�, Jean-Mihel Morel�AbstratWe propose a method for deteting geometri strutures in an image, without any a prioriinformation. Roughly speaking, we say that an observed geometri event is \meaningful" ifthe expetation of its ourenes would be very small in a random image. We disuss theapories of this de�nition, solve several of them by introduing \maximal meaningful events"and analyzing their struture. This methodology is applied to the detetion of alignments inimages.1 IntrodutionMost theories of image analysis tend to �nd in a given image geometri strutures (regions, on-tours, lines, onvex sets, juntions, et.). These theories generally assume that the images ontainsuh strutures and then try to ompute their best desription. The variational framework is quitewell adapted to suh a viewpoint (for a omplete review, see e.g. [12℄). The general idea is tominimize a funtional of the kind F (u; u0) + R(u) ;where u0 is the given image de�ned on a domain 
 � R2 , F (u; u0) is a �delity term and R(u) is aregularity term. F and R de�ne an a priori model. Let us give two examples:� The Mumford-Shah model (see [12℄), where the energy funtional to be minimized isE(u;K) = �2 Z
�K jruj2 dx + ��2length(K) + Z
�K (u� u0)2 dx; (1)where u is the estimated image, K its disontinuity set, and the result (u;K) is alled a \segmen-tation" of u0, i.e. a pieewise smooth funtion u with a set of ontours K.� The Bayesian model (see [5℄ and [6℄): let us denote by ~y = (ys)s2S the observation (thedegraded image). The aim is to �nd the \real" image ~x = (xs)s2S knowing that the degradationmodel is given by a onditional probability �(~yj~x), and that the a priori law of ~x is given bya Gibbs distribution �(~x) = Z�1 exp(�U(~x)) (for binary images, the main example is the Isingmodel). We then have to �nd the M.A.P. (Maximum A Posteriori) of�(~xj~y) = �(~yj~x)�(~x)�(~y) : (2)Assume that �(~yj~x) = C exp(�V (~x; ~y)). For example, in the ase of a Gaussian noise,�(~yj~x) = ( 12��2 ) jSj2 exp(� 12�2 Xs2S(ys � xs)2);�nding the MAP is equivalent to seeking for the minimum of the funtionalV (~x; ~y) + U(~x) : (3)�CMLA, ENS Cahan, 61 avenue du pr�esident Wilson 94235 Cahan edex - Frane1



A main drawbak of all the variational methods is that they introdue normalization onstants(�, �, ...) and the resulting segmentation depends a lot upon the value of these onstants. Theother point is that they will always deliver a minimum for their funtional and so they assumethat any image may be segmented (even a white noise). Indeed, they do not yield any riterion todeide whether segmentation is relevant or not. Of ourse, the probabilisti framework leading tovariational methods should in priniple give a way to estimate the parameters of the segmentationfuntional. In the deterministi framework, these parameters an sometimes be estimated asLagrange multipliers when (e.g.) a noise model is at hand, like in the Rudin-Osher-Fatemi method(see [14℄). It is nonetheless easy to hek that, �rst, most variational methods propose a veryrough and inaurate model for the image, seond, their parameters are generally not orretlyestimated anyway, yielding to supervised methods. Atually, we should not be fair if we laimedthat what we propose immediately yields a more reliable segmentation method. In fat, we onlyintend to point out the possibility of heking any proposed segmentation, by any segmentationmethod, from the point of view of meaningfulness. So far, this hek will only be analysed indetail for straight boundaries : given a segmentation performed by any other method, we an,with the method proposed here, a posteriori deide about the meaninfulness of straight parts ofthe proposed boundaries.Another drawbak of most segmentation methods is their loality. Despite the Gestaltiststheories, they look rather for loal struture. Let us mention some nonloal theories of imageanalysis : the Hough Transform (see [11℄), the detetion of globally salient strutures by Sha'Ashuaand Ullman (see [15℄), the Extension Field of Guy and Medioni (see [7℄) and the Parent and Zukerurve detetor (see [13℄). These methods have the same drawbak as the variational models ofsegmentation desribed above. The main point is that they a priori suppose that what they wantto �nd (lines, irles, urves...) is in the image. They may �nd too many or too little suh struturesin the image and do not yield an existene proof for the found strutures. As a main example,let us desribe the Hough transform. We assume that the image under analysis is made of dotswhih may reate aligned patterns or not. We then ompute for eah straight line in the image,the number of dots lying on the line. In fat, the Hough transform desribes a fast algorithm todo so. The result of the Hough transform is then a map assoiating with eah line a number ofdots. Then, \peaks" of the Hough transform may be omputed : they indiate the lines whihhave more dots. Whih peaks are signi�ant ? Clearly, a threshold must be used. For the todaytehnology, this threshold generally is given by a user or learned. The Hough transform is nothingbut a partiular kind of \grouping".Aording to Gestalt theory, \grouping" is the law of visual pereption (see [9℄). Its main ideais that whenever points (or previously formed visual objets) have a harateristi in ommon,they get grouped and form a new, larger visual objet, a \Gestalt". Some of the main groupingharateristis are olour onstany, \good ontinuation", alignment, parallelism, ommon orienta-tion, onvexity and losedness (for a urve), ... In addition, the grouping priniple is reursive. Forexample, if points have been grouped into lines, then these lines may again be grouped aording(e.g.) to parallelism.Our purpose is not to propose a new segmentation method. We rather propose a omputationalmethod to deide whether a given Gestalt (obtained by any segmentation or grouping method) issure or not. Although most of what we write here an be generalized to other geometri strutures,we shall fous on alignments, one of the most basi Gestalt (see [16℄).In this paper, we push the study to the end for the detetion of alignments, but we will �rst givea general de�nition of what we will all \a meaningful event". Many of our statements will applyto other Gestalt as well. Our main idea is that a meaningful event is an event that, aordingto probabilisti estimates, should not happen in an image and therefore is signi�ant. In thatsense, we shall say that it is a \proven event". The above informal de�nition immediately raisesan objetion : if we do probabilisti estimates in an image, this means that we have an a priorimodel. We are therefore losing any generality in the approah, unless the probabilisti model ouldbe proven to be \the right one" for any image. In fat, we shall do statistial estimates, but relatednot to a model of the images but to a general model of pereption. We shall apply the so alled2



Helmholtz priniple. This priniple attempts to desribe when pereption deides to group objetsaording to some quality (olour, alignment, et.). It an be stated in the following way. Assumethat objets O1, O2,...,On are present in an image. Assume that k of them, say O1,...,Ok have aommon feature, say, same olour, same orientation, et. We are then faing the dilemna : is thisommon feature happening by hane or is it signi�ant ? In order to answer this question, wemake the following mental experiment : we assume that the onsidered quality has been randomlyand uniformly distributed on all objets, i.e. O1, ...On. Notie that this quality may be spatial(like position, orientation); then we (mentally) assume that the observed position of objets in theimage is a random realization of this uniform proess. Then, we may ask the question : is theobserved repartition probable or not?The Helmholtz priniple states that if the expetation in the image of the observed on�gurationO1, ...,Ok is very small, then the grouping of these objet makes sense, is a Gestalt.De�nition 1 ("-meaningful event) We say that an event of type \suh on�guration of pointshas suh property" is "-meaningful, if the expetation in a image of the number of ourenes ofthis event is less than ".When " << 1, we talk about meaningful events. This seems to ontradit our notion of aparameter-less theory. Now, it does not, sine the "-dependeny of meaningfulness will be low (itwill be in fat a log "-dependeny). The probability that a meaningful event is observed by aidentwill be very small. In suh a ase, our pereption is liable to see the event, no matter whether itis \true" or not. Our term "-meaningful is related to the lassial p-signi�ane in statistis ; aswe shall see further on, we must use expetations in our estimates and not probabilities.The program we state here has been proposed several times in Computer Vision. We knowof at least two instanes: David Lowe [10℄ and Witkin-Tenenbaum [17℄. Let us quote extensivelyDavid Lowe's program, whose mathematial onsequenes we shall try to develop in this paper:\we need to determine the probability that eah relation in the image ould have arisen by aident,P (a). Naturally, the smaller that this value is, the more likely the relation is to have a ausalinterpretation. If we had ompletely aurate image measurements, the probability of aidentalourene ould beome vanishingly small. For example, the probability of two image lines beingexatly parallel by aident of viewpoint and position is zero. However, in real images there aremany fators ontributing to limit the auray of measurements. Even more important is the fatthat we do not want to limit ourselves to perfet instanes of eah relation in the sene - we wantto be able to use the information available from even approximate instanes of a relation. Givenan image relation that holds within some degree of auray, we wish to alulate the probabilitythat it ould have arisen by aident to within that level of auray. This an only be done inthe ontext of some assumption regarding the surrounding distribution of objets, whih servesas the null hypothesis against whih we judge signi�ane. One of the most general and obviousassumptions we an make is to assume that a bakground of independently positioned objets inthree-spae, whih in turn implies independently positioned projetions of the objets in the image.This null hypothesis has muh to reommend it. (...) Given the assumption of independene inthree-spae position and orientation, it is easy to alulate the probability that a relation wouldhave arisen to within a given degree of auray by aident. For example if two straight lines areparallel to within 5 degrees, we an alulate that the hane is only 5=180 = 1=36 that the relationwould have arisen by aident from two independent objets." Some main points of the program weshall mathematially develop are ontained in the preeding quotation : partiularly the idea thatsigni�ant geometri objets are the ones with small probability and the idea that this probabilityis anyway never zero beause of the neessary lak of auray of observations in an image. Now,the preeding program is not aurate enough to give the right priniples for omputing Gestalt.The above mentionned example is e.g. not omplete enough to be onvining. Indeed, we simplyannot �x a priori an event suh as \these two lines are parallel" without merging it into the setof all events of the same kind, that is, all parallelisms. The spae of straight lines in an imagedepends on the auray of the observations, but also on the size of the image itself. The fatthat the mentionned probability be \low" (1=36) does not imply that few suh events will our3



in the image : we have to look for the number of possible pairs of parallel lines. If this number islarge, then we will in fat detet many nonsigni�ant pairs of parallel lines. Only if the expetednumber of suh pairs is muh below 1, an we deide that the observed parallelism makes sense.Before proeeding to the mathematial theory, let us give some other toy example and disuss ourde�nition of \"-meaningfulness".Example and Disussion : Let us onsider an image of size 100 � 100 pixels. We assumethat the grey-level at eah pixel is 0 or 1, whih means that we work on a binary image. Ourmain asumption is that if two points do not belong to the same objet, then their grey-levels areindependent (and equally distributed if the image is equalized). Now, imagine that we observe thefollowing event: a blak 10� 10 square. The expetation of the number of 10� 10 blak squaresin the image is simply the number of 10� 10 squares in the 100� 100 image times the probabilitythat eah pixel of a 10� 10 square is blak. And so the expetation is90 � 90 � �12�100 ;whih is muh less than 1. We onlude that this event is meaningful.Remarks :1) Subsquares (large enough) are also meaningful, and so are also andidates to be\Gestalt".2) Interation of Gestalts : if we take into aount that we observe a 10�10 blak square on a 30�30white bakground, then the expetation of the number of ourenes of this square-on-bakgroundevent is 70 � 70 � �12�100 ��12�800 ;and so we get a \muh more meaningful" event. This is rather a toy example, but it showsimmediatly whih kind of diÆulties and apories are assoiated with \meaningfulness" :1. Too many meaningful events : by the same argument as above, all large enough parts of theblak square are meaningful. If (e.g.) we take all parts of this square with ardinality largerthan 50, they are all meaningful and their number is larger than 250 ! We will see how tosolve the problem of having too many meaningful events by de�ning the notion of \maximalmeaningful event".2. Problem of the a priori/a posteriori de�nition of the event : if we take an arbitrary 10� 10pattern in a 100�100 random binary image, then the expetation of the number of ourenesof this event is 90 � 90 � � 12�100 whih is muh less than 1. The answer is that we need an apriori geometri de�nition of the event, as done in Gestaltism. The event annot be de�nedfrom the observed image itself !3. Moreover, we an remark that the de�nition of the geometri event hanges its \meaningful-ness". For example if we onsider our 10 � 10 blak square as a onvex set with area 100,then the expetation beomes � 12�100 times the number of onvex sets with area 100. Andso the event may loose its meaningfulness.4. Abstrat geometrial harater of the information, lak of loalization.ex.1: if we observe a meaningful blak path, all what we an say is: \there is a blak pathand the indiated dots may belong to it". We do not know whih points belong \for sure"to the event.ex.2: if we observe a meaningful alignment of points, then we an say \on that line, thereare aligned points" but we are not able to de�ne the endpoints.5. How many Gestalt ? If we make a list of \pregnant" Gestalt, following Gestalt theory, thelonger the list, the higher the expetation of �nding \false gestalt". Thus, pereption, andalso omputer vision will at some time meet the following problem : to �nd the best tradeo� between number of Gestalt (whih might be a priori as high as possible) and the false4



detetion rate. For the time being, we shall not adress this problem; it will be adressed onlywhen we are in a position to do a orret theory for many Gestalt !Our plan is as follows. In Setion 2, we explain our de�nition of meaningful alignments. Setion3 is devoted to the struture properties of the \number of false alarms". In Setion 4, we giveasymptoti (as l ! 1) and non-asymptoti estimates about the meaningfulness of the followingobservation : \k well-aligned points in a segment of length l". Setion 5 introdues maximalmeaningfulness as a mean to redue the number of events and loalize them. Setion 6 gives strongarguments in favour of our main onjeture : two maximal meaningful segments on the same lineare disjoints. In the experimental Setion 7, we ompute meaningful and maximal meaningfulalignments in several images.2 De�nition of meaningful segments2.1 Very loal omputation of the diretion of the level linesLet us onsider a gray image of size N (that is N2 pixels). At eah point, we ompute a diretion,whih is the diretion of the level line passing by the point alulated on a q�q pixels neighbourhood(generally q = 2). No previous smoothing on the image will be performed and no restoration: suhproesses would loose the a priori independene of diretions whih is required for the detetionmethod.The omputation of the gradient diretion is based on an interpolation (we have q = 2). We de�nethe diretion at pixel (i; j) by rotating by �2 the diretion of the gradient of the order 2 interpolationat the enter of the 2� 2 window made of pixels (i; j), (i+1; j), (i; j+1) and (i+1; j+1). We getdir(i; j) = 1jj ~Djj ~D where ~D = � �[u(i; j + 1) + u(i+ 1; j + 1)℄ + [u(i; j) + u(i+ 1; j)℄[u(i+ 1; j) + u(i+ 1; j + 1)℄� [u(i; j) + u(i; j + 1)℄ � :Then we say that two points X and Y have the same diretion with preision 1n ifAngle(dir(X); dir(Y )) 6 2�n : (4)In agreement with psyhopysis and numerial experimentation, we onsider that n should notexeed 16.2.2 Probabilisti modelAording to the Helmholtz priniple, our main assumption is following: we assume that thediretion at all points in an image is a uniformly distributed random variable. In the following, weassume that n > 2 and we set p = 1n < 12 ; p is the auray of the diretion. We interpret p as theprobability that two independent points have the \same" diretion with the given auray p. Ina strutureless image, when two pixels are suh that their distane is more than 2, the diretionsomputed at the two onsidered pixels should be independent random variables. We assume thatevery deviation from this randomness assumption will lead to the detetion of a struture (Gestalt)in the image. Alignments provide a more onrete way to understand Helmholtz priniple. Weknow (by experiene) that images have ontours and therefore meaningful alignments. This ismainly due to the smoothness of ontours of solid objets and the generation of geometri strutureby most physial and biologial laws. Now, it an be assumed that in a �rst approximation, therelative positions of objets are independent. This means that whenever two points x and y belongto the same ontour, their diretions are likely to be highly orrelated, while if they belong to twodi�erent objets, their diretions should be independent (see the above quoted Lowe's program).From now on, the omputations will be performed on any image presenting at eah pixela diretion whih is uniformly distributed, two points at a distane larger than q = 2 having5



independent diretions. Let A be a segment in the image made of l independent pixels (it meansthat the distane between two onseutive points of A is 2 and so, the real length of A is 2l).We are interested in the number of points of A whih have the property of having their diretionaligned with the diretion of A. Suh points of A will simply be alled aligned points of A.The question is to know what is the minimal number k(l) of aligned points that we must observeon a length l segment so that this event beomes meaningful when it is observed in a real image.2.3 De�nition of meaningLet A be a straight segment with length l and x1, x2, ... , xl be the l (independent) points of A.Let Xi be the random variable whose value is 1 when the diretion at pixel xi is aligned with thediretion of A, and 0 otherwise. We then have the following distribution for Xi :P [Xi = 1℄ = p and P [Xi = 0℄ = 1� p : (5)The random variable representing the number of xi having the \good" diretion isSl = X1 + X2 + : : : +Xl : (6)Beause of the independene of the Xi, the law of Sl is given by the binomial distributionP [Sl = k℄ = � lk�pk(1� p)l�k : (7)When we onsider a length l segment, we want to know whether it is "-meaningful or not amongall the segments of the image (and not only among the segments having the same length l). Letm(l) be the number of oriented segments of length l in a N�N image. We de�ne the total numberof oriented segments in a N � N image as the number of pairs (x; y) of points in the image (anoriented segment is given by its starting point and its ending point) and so we havelmaxXl=1 m(l) = N2(N2 � 1) ' N4 : (8)The estimate N4 is aurate enough, taking into aount that what matters here will be its loga-rithm.De�nition 2 ("-meaningful segment) A length l segment is "-meaningful in a N � N imageif it ontains at least k(l) points having their diretion aligned with the one of the segment, wherek(l) is given by k(l) = minnk 2 N; P [Sl > k℄ 6 "N4o : (9)Let us develop and explain this de�nition. For 1 6 i 6 N4, let ei be the following event: \thei-th segment is "-meaningful" and �ei denote the harateristi funtion of the event ei. We haveP [�ei = 1℄ = P [Sli > k(li)℄where li is the length of the i-th segment. Notie that if li is small we may have P [Sli > k(li)℄ = 0.Let R be the random variable representing the exat number of ei ouring simultaneously in atrial. Sine R = �e1 + �e2 + : : : + �eN4 , the expetation of R isE(R) = E(�e1) +E(�e2) + : : : +E(�eN4 ) = lmaxXl=0 m(l)P [Sl > k(l)℄ : (10)6



We ompute here the expetation of R but not its law beause it depends a lot upon the relationsof dependene between the ei. The main point is that segments may interset and overlap, so thatthe ei events are not independent, and may even be strongly dependent.By de�nition we haveP [Sl > k(l)℄ 6 "N4 ; so that E(R) 6 "N4 �N4 6 ":This means that the expetation of the number of "-meaningful segments in an image is less than".This notion of "-meaningful segments has to be related to the lassial \�-signi�ane" in statistis,where � is simply "=N4. The di�erene whih leads us to have a slightly di�erent terminologyis following: we are not in a position to assume that the segment deteted as "-meaningful areindependent in anyway. Indeed, if (e.g.) a segment is meaningful it may be ontained in manylarger segments, whih also are "-meaningful. Thus, it will be onvenient to ompare the numberof deteted segments to the expetation of this number. This is not exatly the same situation asin failure detetion, where the failures are somehow disjoint events. See remark (*) below. Thismeans that � is an absolute parameter, not depending upon the size of the image, but only onthe number of false detetions whih the user allows. Of ourse, if the image is larger, it maybe expeted that an inreasing number of false detetions should be allowed. However, by �xing� always smaller than one, we deided not to take this opportunity. Our proposed de�nition ofmeaningfulness is also related to the statistial analysis of funtional medial images (fMRI, PET)by Statistial Parameter Map (SPM), with two main di�erenes, however. The �rst one is this :in the reent work of Stuart Clare (FMRIB enter, Oxford, see [1℄), and in the works of Fristonet al. [3℄ and Forman et al. [4℄, an hypothesis testing method against white noise is performed intime series. As in the present work, the binomial law appears and a areful aount of the e�etof �ltering on the number of e�etive degrees of freedom : this leads e.g. S.Clare to divide thisnumber by three after a small gaussian �ltering and is related to our deision of onsidering onlynets of points at a distane larger than 2. S.Clare does as we do ; he p-tests against the white noiseassumption and admits a p-value of 0.005 by patient. Here is the main di�erene : the numberof patients, and the length of the data are not taken into aount in the test. In partiular, thetime length of the test is of ourse just enough to perform a signi�ant test and the p-value is athreshold "per patient". In our ase, we have two fators : the �rst one is that the number of"patients" is huge. Thus, with a p-test, the expetation of false detetions would be muh above 1,whih is what we avoid by imposing � muh smaller than 1 and by entering into the omputationthe number of segments N4. This is why we ompute an expetation and not a probability : wehave too many and not independent trials. The reason for introduing expetation here is the nonindependene (ontrarily to patients) and the huge number of trials, inreasing with the imagesize.Remark : We ould have de�ned a "-meaningful length l segment as a segment "-meaningfulonly among the set of the length l segments. It would have been a segment with at least k0(l)points having the \good" diretion where k0(l) is de�ned by m(l) � P [Sl > k0(l)℄ 6 " : Notie thatm(l) ' N3 beause there are approximately N2 possible disrete straight lines in a N �N imageand on eah disrete line, about N hoies for the starting point of the segment. But we did notkeep this de�nition beause when looking for alignments we annot a priori know the length ofthe segment we look for. In the same way, we never onsider events like : \a segment has exatlyk aligned points", but rather \a segment has at least k aligned points", and k must be given, aswe do, by a detetability riterion and not a priori �xed.
7



3 Number of false alarms3.1 De�nitionDe�nition 3 (Number of false alarms) let A be a segment of length l0 with at least k0 pointshaving their diretion aligned with the diretion of A. We de�ne the number of false alarms of Aas NF (k0; l0) = N4 � P [Sl0 > k0℄ = N4 � l0Xk=k0 �l0k�pk(1� p)l0�k : (11)Interpretation of this de�nition : the number NF (k0; l0) of false alarms of the segment A representsan upper-bound of the expetation in an image of the number of segments of probability less thanthe one of the onsidered segment.Remark (*) : (relative notion) Let A be a segment and NF (k0; l0) its number of false alarms.Then A is "-meaningful if and only if NF (k0; l0) 6 ", but it is worth notiing that we ould haveompared NF (k0; l0) not to " but to the real number of segments with probability less than theone of A, observed in the image. For example, if we observe 100 segments of probability less than�, and if the expeted value R of the number of segments of probability less than � was 10, weare able to say that this 100-segments event ould happen with probability less than 1/10, sine10 = E(R) > 100 � P [R = 100℄. Now, eah of these 100 segments only is 10-meaningful !3.2 Properties of the number of false alarmsProposition 1 The number of false alarms NF (k0; l0) has the following properties :1. NF (0; l0) = N4, whih proves that the event for a segment to have more than zero alignedpoints is never meaningful !2. NF (l0; l0) = N4 � pl0 , whih shows that a segment suh that all of its points have the \good"diretion is "-meaningful if its length is larger than (�4 lnN + ln ")= ln p.3. NF (k0+1; l0) < NF (k0; l0). This an be interpreted by saying that if two segments have thesame length l0, the \more meaningful" is the one whih has the more \aligned" points.4. NF (k0; l0) < NF (k0; l0 + 1). This property an be illustrated by the following �gure of asegment (where a � represents a misaligned point, and a ! represents an aligned point) :!! � !! �� !!!!! �If we remove the last point (on the right), whih is misaligned, the new segment is less probableand therefore more meaningful than the onsidered one.5. NF (k0 + 1; l0 + 1) < NF (k0; l0). Again, we an illustrate this property :!! � !! �� !!!!!!If we remove the last point (on the right), whih is aligned, the new segment is more probableand therefore less meaningful than the onsidered one.This proposition is a onsequene of the de�nition and properties of the binomial distribution(see [2℄).If we onsider a length l segment (made of l independent pixels), then the expetation of thenumber of points of the segment having the same diretion as the one of the segment is simply theexpetation of the random variable Sl, that isE(Sl) = lXi=1 E(Xi) = lXi=1 P [Xi = 1℄ = p � l : (12)8



We are interested in "-meaningful segments, whih are the segments suh that their number offalse alarms is less than ". These segments have a small probability (less than "=N4), and sinethey represent alignments (deviation from randomness), they should ontain more aligned pointsthan the expeted number omputed above. That is the main point of the following proposition.Proposition 2 Let A be a segment of length l0 > 1, ontaining at least k0 points having the samediretion as the one of A. If NF (k0; l0) 6 p �N4, (whih is the ase when A is meaningful), thenk0 > pl0 + (1� p) : (13)This is a \sanity hek" for the model.4 ThresholdsIn the following, " and p are �xed numbers smaller than 1, and we use the notationP (k; l) = P [Sl > k℄ = lXi=k �li�pi(1� p)l�i : (14)We reall that a segment of length l is "-meaningful as soon as it ontains at least k(l) pointshaving the \right" diretion, where k(l) is de�ned byk(l) = minnk 2 N; P [Sl > k℄ 6 "N4o : (15)The �rst simple neessary ondition we an get is a threshold on the length l. For an "-meaningful segment, we have pl 6 P [Sl > k(l)℄ 6 "N4 ; (16)so that l > �4 lnN + ln "ln p : (17)Let us give a numerial example : if the size of the image is N = 512, and if p = 1=16 (whihorresponds to 16 possible diretions), the minimal length of a 1-meaningful segment is lmin = 9.We an also give estimates of the thresholds k(l). The mathematial theorems are given in theAppendix. They roughly say that k(l) ' pl+rC � l � ln N4" ; (18)where 2p(1 � p) 6 C 6 1=2. Some of these results are illustrated by Figure 1. These estimatesare not neessary for the algorithm (beause P [Sl > k℄ is easy to ompute) but they provide aninteresting order of magnitude for k(l).5 Maximal meaningful segments5.1 De�nitionSuppose that on a straight line we have found a meaningful segment S with a very small number offalse alarms (i.e. NF (S) << 1). Then if we add some \spurious" points at the end of the segment9
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Figure 1: Estimates for the threshold of meaningfulness k(l)The middle (stepase) urve represents the exat value of the minimal number of aligned pointsk(l) to be observed on a 1-meaningful segment of length l in an image of size 512, for a diretionpreision of 1=16. The upper and lower urves represent estimates of this threshold obtained byProposition 5 and Proposition 7 (see Appendix).we obtain another segment with probability higher than the one of S and having still a number offalse alarms less than 1, whih means that this new segment is still meaningful (see �gure).!!!!!!!!!!!!!!!!!! � � � �In the same way, it is likely to happen in general that many subsegments of S having a probabilityhigher than the one of S will still be meaningful (see experimental Setion, where this problemobviously ours for the DNA image). These remarks justify the introdution of the followingnotion of \maximal segment".De�nition 4 (Maximal segment) A segment A is maximal if1. it does not ontain a stritly more meaningful segment : 8B � A; NF (B) > NF (A),2. it is not ontained in a more meaningful segment : 8B � A; NF (B) > NF (A),Then we say that a segment is maximal meaningful if it is both maximal and meaningful.This notion of \maximal meaningful segment" is linked to what Gestaltists alled the \maskingphenomenon". Aording to this phenomenon, most parts of an objet are \masked" by the objetitself exept the parts whih are signi�ant from the point of view of the onstrution of the wholeobjet. For example, if one onsiders a square, the only signi�ant segments of this square are thefour sides, and not large parts of the sides. With our de�nition, long enough parts of a side maybe meaningful segments, but only the whole side itself will be a maximal meaningful segment.Proposition 3 (Properties of maximal segments) Let A be a maximal segment, then1. the two endpoints of A have their diretion aligned with the diretion of A,10



2. the two points next to A (one on eah side) do not have their diretion aligned with thediretion of A.These elementary properties are simple onsequenes of Proposition 1.5.2 Density of maximal segmentsIn general, it is not easy to ompare P (k; l) and P (k0; l0) by performing simple omputations on k,k0, l and l0. However, a simple ase is solved by the followingProposition 4 Let A = (k; l) and B = (k0; l0) be two 1-meaningful segments of a N �N image(with N > 3) suh that k0l0 > kl and l0 > l:Then, B is more meaningful than A, that is NF (B) < NF (A).An interesting appliation of this proposition is the onatenation of meaningful segments. LetA = (k; l) and B = (k0; l0) be two meaningful segments lying on the same line. Moreover we assumethat A and B are onseutive, so that A [ B is simply the segment (k + k0; l + l0). Then, sinek + k0l + l0 > min�kl ; k0l0 � ;we dedue, thanks to the above proposition, thatNF (A [ B) < max(NF (A); NF (B)): (19)This shows that the onatenation of two meaningful segment is a meaningful segment.6 A onjeture about maximalityUp to now, we have established some properties that permit to haraterize or ompare meaningfulsegments. We now study the struture of maximal segments, and give some evidene that twodistint maximal segments on a same straight line have no ommon point.Conjeture 1 If for i = 1; 2; 3, ki and li are integers suh that li 6= 0 and ki 6 li, thenmin�p; P (k1; l1); P (k1 + k2 + k3; l1 + l2 + l3)� < maxi2f2;3gP (k1 + ki; l1 + li) (20)This onjeture an be dedued from a stronger (but simpler) onjeture : the onavity in apartiular domain of the level lines of a natural ontinuous extension of P involving the inompleteBeta funtion.Corollary 1 (Union and Intersetion) Suppose that Conjeture 1 is true. Then, if A and Bare two segments on the same straight line suh that A * B and B * A, one hasmin�pN4; NF (A \ B); NF (A [ B)� < max�NF (A); NF (B)� : (21)
11



This is a diret onsequene of Conjeture 1. Numerially, we heked this property for allsegments A and B suh that jA [ Bj 6 256. For p = 1=16, we obtainedminjA[Bj6256 max�(NF (A); NF (B)��min�pN4; NF (A \ B); NF (A [B)�max�(NF (A); NF (B)�+min�pN4; NF (A \ B); NF (A [B)� ' 0:000754697::: > 0;this minimum (independent of N) being obtained for A = (23; 243), B = (23; 243) and A \ B =(22; 230) (as before, the ouple (k; l) we attah to eah segment represents the number of alignedpoints (k) and the segment length (l)).Notie also that Conjeture 1 an be proven when P (k; l) is replaed by its approximation bythe Gaussian law (asymptoti estimate when k ' pl)G(k; l) = 1p2� Z +1�(k;l) e�x22 dx where �(k; l) = k � plplp(1� p) (22)or by its Large Deviation estimate (asymptoti estimate when l ! +1 and kl > r > p),H(k; l) = exp�k ln p+ (l � k) ln(1� p)� k ln kl � (l � k) ln l � kl � : (23)Theorem 1 (maximal segments are disjoint) Suppose that Conjeture 1 is true. Then, anytwo maximal segments lying on the same straight line have no intersetion.Remark : The numerial heking of Corollary 1 ensures that for p = 1=16 (but we ould haveheked for another value of p), two maximal meaningful segments with total length smaller than256 are disjoint, whih is enough for most pratial appliations.7 ExperimentsIn all the following experiments, the diretion at a pixel in an image is omputed on a 2� 2 neigh-borhood with the method desribed in setion 2.1 (q = 2) and the preision is p = 1=16.The diretion is omputed at all pixels, unless the gradient is stritly equal to zero (up to ma-hine preision). Let N denote the size of the onsidered image. The algorithm used to �nd themeaningful segments is the following. For eah one of the four sides of the image, we onsider foreah pixel of the side the lines starting at this pixel, and having an orientation multiple of �=48.And then on eah line, we ompute the meaningful segments. For eah segment, let l be its lengthounted in independant pixels (whih means that the real length of the segment is 2l), then amongthe l points we ount the number k of points having their diretion aligned with the diretion ofthe segment (with the preision p), and �nally we ompute P (k; l): if it is less than 148N3 � 110 , wesay that the segment is meaningful. The value 48N3 is an estimate of the number of onsideredsegments and we took " = 1=10. Beause of the angle preision 2�=16 (to be ompared with�=48), the sampling of diretions is enough to over all possible alignments in a 512�512 image.Motie that P (k; l) an be simply tabulated at the begining of the algorithm using Newton's lawP (k + 1; l + 1) = pP (k; l) + (1� p)P (k + 1; l).It must be made lear that we applied exatly the same algorithm to all presented images,whih have very di�erent origins. The only parameter of the algorithm is preision. We �xed itequal to 1=16 in all experiments ; this value orresponds to the very rough auray of 22.5 degrees ;this means that (e.g.) two points an be onsidered as aligned with, say the 0 diretion if their12



angles with this diretion are up to �22:5 degrees ! It is lear that these bounds are very rough,but in agreement with the more pessimisti estimates for the vision auray in psyhophysisand the numerial experiene as well. Moreover, in all experiments, we only keep the meaningfulsegments having in addition the property that their endpoints have their diretion aligned withthe one of the segment: blak points represent points on a meaningful segment whih have thesame diretion as the one of the segment (with the preision p), and gray points represent pointson a meaningful segment whih do not have the same diretion as the segment.For eah one of the following images, we omput1. all the meaningful segments.2. the maximal meaningful segments.3. for some of them: meaningful segments with length less than 30 or 20. These segments havea small length (lose to the minimal length lmin = �4 lnN= ln p), and onsequently a densityof aligned points lose to 1.Typial CPU time for a 512� 512 image is ten seonds, and one seond for a 256� 256 image.As a general omment to all experiments, we shall see that the (non maximal) meaningful eventsare too long : indeed, if we �nd a very meaningful segment (and this happens very systematiallyin the experiments), then muh larger segments ontaining this very meaningful one will still bemeaningful. We display, for a sake of ompleteness, several images with all meaningful alignments.In ontinuation, we display the maximal meaningful alignments, as a way to hek by omparisonthat these maintain the whole alignment information, and are by far more aurate. We thinkthe experiments learly demonstrate the neessity of maximality. We also diplay in several imagesthe only alignments whose length is smaller than a given threshold (20 or 30). This is a way tohek that, in \natural" images, most alignments an be loally deteted. Indeed, we see that mostmaximal deteted alignements are a onatenation of small, still meaningful, alignments.Image 1 : Penil strokes. This digital image was �rst drawn with a ruler and a penil ona standard A4 white sheet of paper, and then sanned into a 478�598 digital image (image 1a);the sanner's apparent blurring kernel is about two pixels wide and some aliasing is pereptible,making the lines somewhat blurry and dashed. Two pairs of penil strokes are aligned on purpose.We display in the �rst experiment all meaningful segments (image 1b). Four phenomena our,whih are very apparent in this simple example, but will be pereptible in all further experiments.1. Too long meaningful alignments : we ommented this above ; learly, the penil strokesboundaries are very meaningful, thus generating larger meaningful segments whih ontainthem.2. Multipliity of deteted segments. On both sides of the strokes, we �nd several parallel lines(reminder : the orientation of lines is modulo 2�). These parallel lines are due to the blurringe�et of the sanner's optial onvolution. Classial edge detetion theory would typiallyselet the best, in terms of ontrast, of these parallel lines.3. Lak of auray of the deteted diretions : We do not hek that the diretions along ameaningful segment be distributed on both sides of the lines diretion. Thus, it is to beexpeted that we detet lines whih are atually slanted with respet to the edge's \true"diretion. Typially, a blurry edge will generate several parallel and more or less slantedalignements. It is not the aim of the atual algorithm to �lter out this redundant information ;indeed, we do not know at this point whether the deteted parallel or slanted alignments aredue to an edge or not : this must be the objet of a more omplex algorithm. Everythingindiates that an edge is no way an elementary phenomenon in Gestalt.We display in the seond experiment for this image all maximal meaningful segments (image 1),whih show for eah stroke two bundles of parallel lines on eah side of the stroke. In the third one,we display all meaningful segments whose length is less than 60 pixels (image 1d). This ahieves13



a kind of loalization of the segments. Now, a visual omparison between this experiment and theformer one (1) shows that maximality ahieves a better, more aurate loalization. Thus, wewill not show the \small segments" in all experiments to follow.Image 2 : White noise blurred images. Image 2a is a white noise, all pixels values beingindependent and identially distributed with a gaussian law. Image 2b is Image 2a onvolved witha gaussian kernel with standard deviation 4 pixels and Image 2 is Image 2a onvolved with agaussian kernel with standard deviation 16 pixels. We apply the same algorithm as before to allof these images. The outome was for all of three : no alignement deteted ! This experiment wasdevised to show that the loal independene of pixels an be widely violated without a�eting the�nal outome. Indeed, a blurring reates loal alignments but not global ones.Image 3 : Uello's painting. This image (3a) is a result of the san of an Uello's painting:\Presentazione della Vergine al tempio" (from the book \L'opera ompleta di Paolo Uello",Classii dell'arte, Rizzoli). In image 3b we display all maximal meaningful segments and in image3 all meaningful segments with length less than 60. Notie how maximal segments are detetedon the stairase in spite of the olusion by the going up hild. Compare with the small meaningfulsegments. All remarks made in Image 1 apply here (parallelisms due to the blur, et.)Image 4 : Airport image. This digital image also has a notieable aliasing whih reateshorizontal and vertial dashes along the edges. We display in image 4b all maximal detetablesegments, always for " = 1=10. We ompare in image 4 and 4d with the same image with" = 1=100 and " = 1=1000.Image 5 : A road (ourtesy of INRETS). We display all maximal meaningful segments (image5b) and all meaningful segments with length less than 60 (image 1). Notie the deteted horizontallines in 5b: they orrespond to \horizon lines", that is, lines parallel to the horizon. They tend toaumulate towards the horizon of the image. Suh lines orrespond to nonloal alignments (theyare not present in Image 5). They are due to a perspetive e�et : all visual objets on the road(shadows, spots, et.) are seen in very slanted view. Thus, their ontours are mostly parallel tothe horizon, thus generating what we should all \perspetive alignements".8 ConlusionThis preliminary study about Gestalt has tried to build the orret mathematial framework forthe widespread idea that signi�ant geometri strutures in an image orrespond to very lowprobability events. They are two ways to interpret this statement : the wellspread one is to de�nea probabilisti funtional whih is minimized, thus yielding the most likely geometri strutures.Now, we emphasized the fat that the detetion of struture has an intermediate stage, learlymissed in the variational framework : before we look for the most likely strutures, we have tomake a list of all proven strutures. Experiments show well the di�erene between both approahes :where edge detetion algorithm (whih always look for the best position for an edge) diretly yielda single edge, we �nd multiple alignments. In many ases, it is plain from the experiments thatedge detetion ould be interpreted as a seletion proedure among the alignments. To summarize,we have two di�erent qualities whih are mixed in the variational framework : the feasibilityand the optimality. By looking for optimality only, we forget to prove that the found, optimalstrutures indeed exist. Next, we proposed an alternative to global variational priniples : thenotion of maximal event. In some extent, maximal alignments are loal minimizers of a probabilityfuntional. The main di�erene is �rst that we do a minimization among feasible strutures only;seond, that we get aditional struture properties from maximality, as the fat that maximalalignments do not interset. It may well be asked at that point what we an further do. We haveonsidered one Gestalt quality only : the alignment. A �rst question is : to whih other qualitiesthe notions developped here apply ? We do not intend to give here a detailed answer. We willdevelop this general viewpoint in a further work. A seond question whih was raised by Lowe isthe ombination of several Gestalt qualities to generate more elaborate geometri strutures. Edgedetetion is suh an elaborate geometri struture : it is a ombination of alignment (or urviness),of ontrast along the edge urve, of homogeneity on both sides, of maximality of the slope and14
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(a) Image 5a
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�nally of stability aross sales ! (see the sale spae theory). All of these riteria ontribute tomore and more sophistiated edge detetors. In this paper, we have shown that one of the qualitiesinvolved, the alignment, an be proved separately. The other qualities an reeive an analogous,if not sometimes idential theory of meaningfulness. Now, the question of how we should let suhqualities ollaborate seems open.A AppendixIn the following, " and p are �xed numbers smaller than 1. We reall the notationP (k; l) = P [Sl > k℄ = lXi=k �li�pi(1� p)l�i :We also reall that a segment of length l is "-meaningful as soon as it ontains at least k(l) pointshaving the \right" diretion, where k(l) is de�ned byk(l) = minnk 2 N; P (k; l) 6 "N4o : (24)A.1 SuÆient ondition of meaningfulnessIn this appendix, we will see how the theory of large deviations and other inequalities onerningthe tail of the binomial distribution an provide us a suÆient ondition of meaningfulness. Thekey point is the following result due to Hoe�ding (see [8℄).Theorem 2 (Hoe�ding's inequality) If k, l are positive integers with k 6 l, and if p is a realnumber suh that 0 < p < 1.Then if r = k=l > p, we have the inequalitiesP (k; l) 6 exp�lr ln pr + l(1� r) ln 1� p1� r� 6 exp(�l(r � p)2h(p)) 6 exp(�2l(r � p)2) ; (25)where h is the funtion de�ned on ℄0; 1[ byh(p) = 11� 2p ln 1� pp for 0 < p < 12 ;h(p) = 12p(1� p) for 12 6 p < 1 :Using this theorem, we dedue a suÆient ondition for a segment to be meaningful. The sizeN of the image, and the probability p < 1=2 of a given diretion are �xed.Proposition 5 (suÆient ondition of "-meaningfulness) Let A be a length l segment, on-taining at least k aligned points. Ifk > pl + s4 lnN � ln "h(p) pl ; (26)then A is "-meaningful.Notie that Proposition 5 is interesting only whenl > pl + s lh(p) (4 lnN � ln ") ;that is when l > 4 lnN � ln "(1� p)2h(p) :Numerial example: for " = 1, N = 512 and p = 1=16, we obtain l > 10.20



A.2 Neessary onditions for meaningfulnessWe use a omparison between the Binomial and the Gaussian laws given by the followingTheorem 3 (Slud 1977) If 0 < p 6 1=4 and pl 6 k 6 l, thenP [Sl > k℄ > 1p2� Z +1�(k;l) e�x2=2 dx where �(k; l) = k � plplp(1� p) : (27)Proposition 6 (neessary ondition of meaningfulness) We assume that 0 < p 6 1=4 andN are �xed. If a segment S = (k; l) is "-meaningful thenk > pl+ �(N)plp(1� p) ; (28)where �(N) is uniquely de�ned by 1p2� Z +1�(N) e�x2=2 dx = "N4 : (29)This proposition is a diret onsequene of Slud's Theorem. The assumption 0 < p 6 1=4 is nota strong ondition sine it is equivalent to onsider that the number of possible oriented diretionsis larger than 4.A.3 Asymptotis for the meaningfulness threshold k(l)In this setion, we still onsider that " and p are �xed. We will work on asymptoti estimations ofP (k; l) when l is \large". We �rst reall a version of the Central limit theorem in the partiularase of the binomial distribution (see [2℄).Theorem 4 (De Moivre-Laplae limit theorem) If � is a �xed positive number, then as ltends to +1, P hSl > pl + �pl � p(1� p) i �! 1p2� Z +1� e�x2=2 dx : (30)Our aim is to get the asymptoti behaviour when l is large of the threshold k(l) de�ned by(15). The problem is that if l gets to in�nity, we also have to onsider that N tends to in�nity(beause, sine l is the length of a segment in a N �N image, neessarily l 6 p2N). And so the� used in the De Moivre-Laplae theorem will depend on N . This is the reason why we use thefollowing stronger version of the previous theorem (see [2℄).Theorem 5 (Feller) If �(l)! +1 and �(l)6=l! 0 as l! +1, thenP hSl > pl + �(l)pl � p(1� p) i � 1p2� Z +1�(l) e�x2=2 dx : (31)Proposition 7 (asymptoti behaviour of k(l)) When N ! +1 and l ! +1 in suh a waythat l=(lnN)3 ! +1, one hask(l) = pl +s2p(1� p) � l � �ln N4" +O(ln lnN)�: (32)21
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