
Edge Detetion by Helmholtz PrinipleAgn�es Desolneux, Lionel Moisan and Jean-Mihel MorelCMLA, ENS Cahan, 61 av. du pr�esident Wilson, 94235 Cahan edex, FRANCE.reeived: july 24th 2000. revised : de. 18th 2000. aepted: de. 19th 2000Abstrat.We apply to edge detetion a reently introdued method for omputing geo-metri strutures in a digital image, without any a priori information. Aording toa basi priniple of pereption due to Helmholtz, an observed geometri strutureis pereptually \meaningful" if its number of ourenes would be very small in arandom situation: in this ontext, geometri strutures are haraterized as largedeviations from randomness. This leads us to de�ne and ompute edges and bound-aries (losed edges) in an image by a parameter-free method. Maximal detetableboundaries and edges are de�ned, omputed, and the results ompared with theones obtained by lassial algorithms.Keywords: image analysis, pereption, Helmholtz priniple, edge detetion, largedeviations 1. IntrodutionIn statistial methods for image analysis, one of the main problems isthe hoie of an adequate prior. For example, in the Bayesian model(Geman and Geman, 1984), given an observation \obs", the aim is to�nd the original \model" by omputing the Maximum A Posteriori(MAP) of P [modeljobs℄ = P [obsjmodel℄� P [model℄P [obs℄ :The term P [obsjmodel℄ represents the degradation (superimposition ofa gaussian noise for example) and the term P [model℄ is alled the prior.This prior plays the same role as the regularity term in the variationalframework. This prior has to be �xed and it is generally diÆult to �nda good prior for a given lass of images. It is also probably impossibleto give an all-purpose prior!In (Desolneux et al., 1999) and (Desolneux et al., 2000), we haveoutlined a di�erent statistial approah, based on phenomenologial ob-servations oming from Gestalt theory (Wertheimer, 1923). Aordingto a pereption priniple whih seems to go bak to Helmholtz, everylarge deviation from a \uniform noise" image should be pereptible,provided this large deviation orresponds to an a priori �xed list ofgeometri strutures (lines, urves, losed urves, onvex sets, spots, 2001 Kluwer Aademi Publishers. Printed in the Netherlands.
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2 Desolneux, Moisan and Morelloal groups,...). Thus, there still is an a priori geometri model, but,instead of being quantitative, this model is merely qualitative. Let usillustrate how this should work for \grouping" blak dots in a whitesheet. Assume we have a white image with blak dots spread out. Ifsome of them form a luster, say, in the enter of the image, then, inorder to deide whether this luster indeed is a group of points, weompute the expetation of this grouping event happening by haneif the dots were uniformly distributed in the image. If this expetationhappens to be very low, we deide that the group in the enter ismeaningful. Thus, instead of looking for objets as lose as possible toa given prior model, we onsider a \wrong" and naive model, atuallya random uniform distribution, and then de�ne the \objets" as largedeviations from this generi model. One an �nd in (Lowe, 1985) a verylose formulation of omputer vision problems.We may all this method Minimal A Posteriori Expetation, wherethe prior for the image is a uniform random noise model. Indeed, thegroups (geometri strutures, gestalts1 ) are de�ned as the best ounter-examples, i.e. the least expeted. Those ounterexamples to the uniformnoise assumption are taken in a restrited geometri lass. Notie thatnot all suh ounterexamples are valid: the Gestalt theory �xes a list ofpereptually relevant geometri strutures whih are supposedly lookedfor in the pereption proess. The omputation of their expetation inthe uniform noise model validates their detetion: the least expeted inthe uniform noise model, the more pereptually meaningful they willbe.This uniform noise prior is generally easy to de�ne. Consider forexample the ase of orientations: sine we do not have any reason tofavour some diretions, the prior on the irle S1 will be the uniformdistribution. We applied this method in a previous paper dediatedto the detetion of meaningful alignments (Desolneux et al., 1999).In (Desolneux et al., 2000) we have generalized the same method tothe de�nition of what we alled \maximal meaningful modes" of ahistogram. This de�nition is ruial in the detetion of many geometristrutures or gestalts, like groups of parallel lines, groups of segmentswith similar lengths, et.It is lear that the above outlined MinimumA Posteriori method willprove its relevane in Computer Vision only if it an be applied to eahand all of the gestalt qualities proposed by phenomenology. Atually,we think the method might onversely ontribute to a more formal andgeneral mathematial de�nition of geometri strutures than just the1 We hoose to write gestalt(s) instead of the german original Gestalt (en). Wemaintain the german spelling for \Gestalt theory"
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Edge Detetion by Helmholtz Priniple 3ones oming from the usual plane geometry. Now, for the time being,we wish to validate the approah by mathing the results with all ofthe lassialy omputed strutures in image analysis. In this paper, weshall address the omparison of edge and boundary detetors obtainedby the Minimum a Posteriori method with the ones obtained by stateof the art segmentation methods.A main laim in favour of the Minimum a Posteriori is its redutionto a single parameter, the meaningfulness of a geometri event depend-ing only on the di�erene between the logarithm of the false alarm rateand the logarithm of the image size! We just have to �x this false alarmrate and the dependane of the outome is anyway a log-dependeneon this rate, so that the results are very insensitive to a hange. Ourstudy of edge detetion will on�rm this result, with slightly di�erentformulas though.In addition, and although the list of geometri strutures looked foris wide (probably more than ten in Gestalt theory), the theoretialonstrution will make sense if they are all dedued by straightforwardadaptations of the same methodology to the di�erent geometri stru-tures. Eah ase of geometri struture deserves, however, a partiularstudy, in as muh as we have to �x in eah ase the \uniform noise"model against whih we detet the geometri struture. We do notlaim either that what we do is 100% new: many statistial studieson images propose a \bakground" model against whih a detetionis tested ; in many ases, the bakground model is a merely uniformnoise, as the one we use here. Optimal thresholds have been widelyaddressed for detetion or image thresholding (Abutaled, 1989; Guyand Medioni, 1992; Pun, 1981; Weszka, 1978). Also, many appliedimage analysis and engineering methods, in view of some detetion,address the omputation of a \false alarm rate". Our \meaningfulness"is nothing but suh a false alarm rate, but applied to very generalgeometri objets instead of partiular looked for shapes and events.As was pointed out to us by David Mumford, our method is alsorelated to the statistial hypothesis testing, where the asked question is:does the observation follow the prior law given by Helmoltz priniple ?The gestalts will be the \best proofs" (in terms of the a priori �xedgeometri strutures) that the answer to this question is no. Let usillustrate what is being done in the hypothesis testing language, bytaking the ase of the detetion of alignments.Let us summarize: not all geometri strutures are pereptually rel-evant ; a small list of the relevant ones is given in Gestalt theory ;we an \detet" them one by one by the above explained Helmholtzpriniple as large deviations from randomness. Now, the outome is nota global interpretation of the image, but rather, for eah gestalt quality
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4 Desolneux, Moisan and Morel(alignment, parallelism, edges), a list of the maximal detetable events.The maximality is neessary, as shows the following example, whihan be adapted to eah other gestalt: assume we have deteted a denseluster of blak dots ; this means that the expetation of suh a biggroup is very small for a random uniform distribution of dots. Now, verylikely, many subgroups of the deteted dots and also many larger groupswill have a small expetation too. So we an add spurious elements tothe group and still have a detetable group. Thus, maximality is veryrelevant in order to obtain the best detetable group. We say that agroup or gestalt is \maximal detetable" if any subgroup and any groupontaining it are less detetable, that is, have a smaller expetation.We shall address here one of the serpents de mers of ComputerVision, namely \edge" and boundary \detetion". We de�ne an \edge"as a level line along whih the ontrast of the image is strong. We all\boundary" a losed edge. We shall in the following give a de�nitionof meaningfulness and of optimality for both objets. Then, we shallshow experiments and disuss them. A omparison with the lassialMumford-Shah segmentation method will be made and also with theCanny-Derihe edge detetor. We shall give a (very simple in that ase)proof of the existene of maximal detetable gestalt, applied to theedges. What we do on the edges won't be a totally straightforwardextension of the method we developped for alignments in (Desolneuxet al., 1999). Indeed, we annot do for edge or boundary strength asfor orientation, i.e. we annot assume that the modulus of the gradientof an image is uniformly distributed.2. Contrasted BoundariesWe all \ontrasted boundary" any losed urve, long enough, withstrong enough ontrast and whih �ts well to the geometry of theimage, namely, orthogonal to the gradient of the image at eah one ofits points. We will �rst de�ne "-meaningful ontrasted boundaries, andthen maximal meaningful ontrasted boundaries. Notie that this de�-nition depends upon two parameters (long enough, ontrasted enough)whih will be usually �xed by thresholds in a omputer vision al-gorithm, unless we have something better to say. In addition, mostboundary detetion will, like the snake method (Kass et al., 1987),introdue regularity parameters for the searhed for boundary (Moreland Solimini, 1994). If we remove the ondition \long enough", we anhave boundaries everywhere, as is patent in the lassial Canny �lter(Canny, 1986).
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Edge Detetion by Helmholtz Priniple 5The onsidered geometri event will be: a strong ontrast along alevel line of an image. Level lines are urves diretly provided by theimage itself. They are a fast and obvious way to de�ne global, ontrastinsensitive andidates to \edges" (Caselles et al., 1996). Atually, it iswell aknowledged that edges, whatever their de�nition might be, are asorthogonal as possible to the gradient (Canny, 1986; Davis, 1975; Dudaand Hart, 1973; Martelli, 1972; Rosenfeld and Thurston, 1971). As aonsequene, we an laim that level lines are the adequate andidatesfor following up loal edges. The onverse statement is false: not alllevel lines are \edges". The laim that image boundaries (i.e. losededges) in the senses proposed in the literature (Zuker, 1976; Pavlidis,1986) also are level lines is a priori wrong. How wrong it is will omeout from the experiments, where we ompare an edge detetor with aboundary detetor. Surprisingly enough, we will see that they an giveomparable results.We now proeed to de�ne preisely the geometri event: \at eahpoint of a length l (ounted in independent points) part of a level line,the ontrast is larger than �". Then, we ompute the expetation ofthe number of ourrenes of suh an event (i.e. the number of falsealarms). This will de�ne the thresholds: minimal length of the levelline, and also minimal ontrast in order to be meaningful. We will givesome examples of typial numerial values for these thresholds in digitalimages. Then, as we mentioned has been done for other gestalts likealignments and histograms, we will de�ne here a notion of maximality,and derive some properties.2.1. DefinitionsLet u be a disrete image, of size N � N . We onsider the level linesat quantized levels �1; :::; �k. The quantization step q is hosen in suha way that level lines make a dense overing of the image: if e.g. thisquantization step q is 1 and the natural image ranges 0 to 256, we getsuh a dense overing of the image. A level line an be omputed as aJordan urve ontained in the boundary of a level set with level �,�� = fx=u(x) 6 �g and �� = fx=u(x) > �g:Notie that along a level line, the gradient of the image must be ev-erywhere above zero. Otherwise the level line ontains a ritial pointof the image and is highly dependent upon the image interpolationmethod. Thus, we onsider in the following only level lines along whihthe gradient is not zero. The interpolation onsidered in all experimentsbelow is the order zero interpolation (the image is onsidered onstanton eah pixel and the level lines go between the pixels).
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6 Desolneux, Moisan and MorelLet L be a level line of the image u. We denote by l its length ountedin independent points. In the following, we will onsider that points ata geodesi distane (along the urve) larger than 2 are independent (i.e.the ontrast at these points are independent random variables). Let x1,x2,...xl denote the l onsidered points of L. For a point x 2 L, we willdenote by (x) the ontrast at x. It is de�ned by(x) = jruj(x); (1)where ru is omputed by a standard �nite di�erene on a 2� 2 neigh-borhood (Desolneux et al., 2000). For � 2 R�+ , we onsider the event:for all 1 6 i 6 l, (xi) > �, i.e. eah point of L has a ontrast largerthan �. From now on, all omputations are performed in the Helmholtzframework explained in the introdution: we make all omputationsas though the ontrast observations at xi were mutually independent.Sine the l points are independent, the probability of this event isP [(x1) > �℄� P [(x2) > �℄� :::� P [(xl) > �℄ = H(�)l; (2)where H(�) is the probability for a point on any level line to have aontrast larger than �. An important question here is the hoie ofH(�). Shall we onsider that H(�) is given by an a priori probabilitydistribution, or is it given by the image itself (i.e. by the histogram ofgradient norm in the image)? In the ase of alignments, we took byHelmholtz priniple the orientation at eah point of the image to be arandom, uniformly distributed variable on [0; 2�℄. Here, in the ase ofontrast, it does not seem sound at all to onsider that the ontrastis uniformly distributed. In fat, when we observe the histogram ofthe gradient norm of a natural image (see Figure 1), we notie thatmost of the points have a \small" ontrast (between 0 and 3), and thatonly a few points are highly ontrasted. This is explained by the fatthat a natural image ontains many at regions (the so alled \blue skye�et", (Huang and Mumford, 1999)). In the following, we will onsiderthat H(�) is given by the image itself, whih means thatH(�) = 1M#fx = jruj(x) > �g: (3)where M is the number of pixels of the image where ru 6= 0. In orderto de�ne a meaningful event, we have to ompute the expetation ofthe number of ourrenes of this event in the observed image. Thus,we �rst de�ne the number of false alarms.DEFINITION 1 (Number of false alarms). Let L be a level line withlength l, ounted in independent points. Let � be the minimal ontrast
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Edge Detetion by Helmholtz Priniple 7of the points x1,..., xl of L. The number of false alarms of this eventis de�ned by NF (L) = Nll � [H(�)℄l; (4)where Nll is the number of level lines in the image.Notie that the number Nll of level lines is provided by the imageitself. We now de�ne "-meaningful level lines. The de�nition is analo-gous to the de�nition of "-meaningful modes of a histogram or to thede�nition of alignments: the number of false alarms of the event is lessthan ".DEFINITION 2 ("-meaningful boundary). A level line L with length land minimal ontrast � is an "-meaningful boundary ifNF (L) = Nll � [H(�)℄l 6 ": (5)The above de�nition involves two variables: the length l of the levelline, and its minimal ontrast �. The number of false alarms of an eventmeasures the \meaningfulness" of this event: the smaller it is, the moremeaningful the event is.Let us now proeed to de�ne \edges". We denote by Nllp the numberof piees of level lines in the image.DEFINITION 3 ("-meaningful edge). A piee of level line E with lengthl and minimal ontrast � is an "-meaningful edge ifNF (E) = Nllp � [H(�)℄l 6 ": (6)Here is how Nllp is omputed: we �rst ompute all level lines at uni-formly quantized levels (grey level quantization step is 1 and generallyranges from 1 to 255. For eah level line, Li with length li, we omputeits number of piees, sampled at pixel rate, the length unit being pixelside. We then have Nllp =Xi li(li � 1)2 :This �xes the used number of samples. This number of samples will befair for a 1-pixel aurate edge detetor. Clearly, we do detetion andnot optimization of the deteted edge: in fat, aording to Shannononditions, edges have a between two or three pixels width. Thus, thequestion of �nding the \best" edge representative among the found onesis not addressed here, but has been widely addressed in the literature(Canny, 1986; Davis, 1975).
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8 Desolneux, Moisan and Morel
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contrastFigure 1. From left to right: 1. original image; 2. histogram of the norm of thegradient; 3. its repartition funtion (� 7! P [jruj > �℄).2.2. ThresholdsIn the following we will denote by F the funtion de�ned byF (�; l) = Nll � [H(�)℄l: (7)Thus, the number of false alarms of a level line of length l and minimalontrast � is simply F (�; l).Sine the funtion � 7! H(�) = P [(x) > �℄ is dereasing, and sine forall �, we have H(�) 6 1, we obtain the following elementary properties:� We �x � and l 6 l0, thenF (�; l) > F (�; l0);whih shows that if two level lines have the same minimal ontrast,the more meaningful one is the longer one.
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Edge Detetion by Helmholtz Priniple 9� We �x l and � 6 �0, thenF (�; l) > F (�0; l);whih shows that if two level lines have the same length, the moremeaningful one is the one with higher ontrast.When the ontrast � is �xed, the minimal length lmin(�) of an "-meaningful level line with minimal ontrast � islmin(�) = log "� logNlllogH(�) : (8)Conversely, if we �x the length l, the minimal ontrast �min(l) neededto beome "-meaningful is suh that�min(l) = H�1 �["=Nll℄1=l� : (9)2.3. MaximalityIn this subsetion, we address two kinds of maximality for the edgesand the boundaries. Let us start with boundaries. A natural relationbetween losed level lines is given by their inlusion (Monasse, 1999).If C and C 0 are two di�erent losed level lines, then C and C 0 annotinterset. Let D and D0 denote the bounded domains surrounded by Cand C 0. Either D \D0 = ; or (D � D0 or D0 � D). We an onsider,as proposed by Monasse, the inlusion tree of all level lines. From nowon, we work on the subtree of the deteted level urves, that is, theones for whih F (�; l) 6 " where " is our a priori �xed expetation offalse alarms. (In pratie, we take " = 1 in all experiments.) On thissubtree, we an, following Monasse, de�ne what we shall all a maximalmonotone level urve interval, that is, a sequene of level urves Ci,i 2 [1; k℄ suh that :- for i > 2, Ci is the unique son of Ci�1,- the interval is maximal (not ontained in a longer one)- the grey levels of the deteted urves of the interval are either de-reasing from 1 to k, or inreasing from 1 to k.We an see many suh maximal monotone intervals of deteted urvesin the experiments: they roughly orrespond to \fat" edges, made ofseveral well ontrasted level lines. The edge detetion ideology tends tode�ne an edge by a single urve. This is easily made by seleting thebest ontrasted edges along a series of parallel ones.DEFINITION 4. We assoiate with eah maximal monotone intervalits optimal level urves, that is, the ones for whih the false alarms num-ber F (�; l) is minimal along the interval. We all \optimal boundarymap" of an image the set of all optimal level urves.
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10 Desolneux, Moisan and MorelThis optimal boundary map will be ompared in the experimentswith lassial edge detetors or segmentation algorithms.We now address the problem of �nding optimal edges among the de-teted ones. We won't be able to proeed as for the boundaries. Al-though the piees of level lines inherit the same inlusion struture asthe level lines, we annot ompare two of them belonging to di�erentlevel urves for detetability, sine they an have di�erent positions andlengths. We an instead ompare two edges belonging to the same levelurve. Our main aim is to de�ne on eah urve a set of disjoint maxi-mally detetable edges. In the following, we denote by NF (E) = F (�; l)the false alarm number of a given edge E with minimal gradient norm� and length l.DEFINITION 5. We all maximal meaningful edge any edge E suhthat for any other edge E0 on the same level urve suh that E � E0(resp. E0 � E) we have NF (E0) > NF (E) (resp. NF (E0) > NF (E).This de�nition follows (Desolneux et al., 1999) and (Desolneux et al.,2000) where we apply it to the de�nition of maximal alignments andmaximal modes in a histogram.PROPOSITION 1. Two maximal edges annot meet.Proof: Let E and E0 be two maximal distint and non-disjointmeaningful edges in a given level urve and � and �0 the respetiveminima of gradient of the image on E and E0. Assume e.g. that � 6 �0.Then E [E0 has the same minimum as E0 but is longer. Thus, by theremark of the preeding subsetion, we have F (�0; l + l0) < F (�0; l0),whih implies that E[E0 has a smaller number of false alarms than E0.Thus, E0 is not maximal. As a onsequene, two maximal edges annotmeet. 23. Experiments� INRIA desk image (Figure 2).In this experiment, we ompare our method with two other meth-ods : Mumford and Shah image segmentation and Canny-Derihe edgedetetor.In the Mumford and Shah model (Mumford and Shah, 1985), givenan observed image u de�ned on the domain D, one looks for thepieewise approximation v of u that minimizes the funtionalE(v) = ZD jv � uj2 + �length(K(v));
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Edge Detetion by Helmholtz Priniple 11

Figure 2. First row: left: original image; right: boundaries obtained with the Mum-ford-Shah model (1000 regions). Seond row: edges obtained with Canny-Deriheedge detetor, for two di�erent threshold values (2 and 15). Third row: edges (left)and boundaries (right) obtained with our model (" = 1). Fourth row: reonstrutionwith the Mumford-Shah model (left) and with our model (right). This last reon-strution is easily performed by the following algorithm: attribute to eah pixel xthe level of the smallest (for inlusion) meaningful level line surrounding x (see(Monasse, 1999)).
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12 Desolneux, Moisan and Morelwhere length(K(v)) is the one-dimensional measure of the disontinuityset of v, and � a parameter. Hene, this energy is a balane betweena �delity term (the approximation error in L2 norm) and a regularityterm (the total length of the boundaries). The result v, alled a seg-mentation of u, depends upon the parameter �, that indiates how toweight both terms. As shown on Figure 2, the Mumford-Shah modelgenerally produes reasonable boundaries exept in \at" zones wherespurious boundaries often appear (see the front side of the desk forexample). This is easily explained: the a priori model is: the imageis pieewise onstant with boundaries as short as possible. Now, theimage does not �t exatly the model: the desk in the image is smoothbut not at. The deteted \wrong" boundary in the desk is neessaryto divide the desk into at regions. The same phenomenon ours inthe sky of the heetah image (next experiment).The Canny-Derihe �lter (Canny, 1986; Derihe, 1987) is an opti-mization of Canny's well known edge detetor, roughly onsisting inthe detetion of maxima of the norm of the gradient in the diretion ofthe gradient. Notie that, in ontrast with the Mumford-Shah modeland with our model, it does not produe a set of boundaries (ie one-dimensional strutures) but a disrete set of points that still are to beonneted. It depends on two parameters : the width of the impulseresponse, generally set to 1 pixel, and a threshold on the norm of thegradient that selets andidates for edge points. As we an see on Figure2, the result is very dependent on this threshold. Thus, we an onsiderthe meaningfulness as a way to selet the right edges. If Canny's �lterwere ompleted to provide us with piees of urves, our algorithm oulda posteriori deide whih of them are meaningful. Notie that manyCanny edges are found in at regions of the image, where no pereptualboundary is present. If we inrease the threshold, as is done on the right,the deteted edges look pereptually more orret, but are broken.� Cheetah image (Figure 3).This experiment ompares our edge detetor with the Mumford-Shah model. As before, we observe that the Mumford-Shah modelprodues some spurious boundaries on the bakground, due to theinadequay of the pieewise onstant model. This means that a moresophistiated model must be applied if we wish to avoid suh spuri-ous boundaries: the general Mumford-Shah model replaes the piee-wise onstant onstraint by a smoothness term (the Dirihlet integralR jruj2(x)dx) on eah region. Now, adding this term means using atwo-parameters model sine, then, the Mumford-Shah funtional hasthree terms whose relative weights must be �xed.
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Edge Detetion by Helmholtz Priniple 13

Figure 3. First row: original image (left) and boundaries obtained with the Mum-ford-Shah model with 1000 regions (right). Seond row: edges (left) and boundaries(right) obtained with our method (" = 1).� DNA image (Figure 4).This experiment illustrates the onept of \optimal boundaries" thatwe have introdued previously. When we ompute the boundaries of theoriginal image, eah \spot" produes several parallel boundaries due tothe important blur. With the de�nition of maximality we adopted, weselet exatly one boundary for eah spot.
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14 Desolneux, Moisan and Morel

Figure 4. From top to bottom: 1. original image; 2. boundaries; 3. optimalboundaries.
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Edge Detetion by Helmholtz Priniple 15

Figure 5. Up: original image. Downleft: boundaries. Downright: optimal boundaries.� Segments image (Figure 5).As in the DNA experiment, the \optimal boundaries" allow to se-let exatly one boundary per objet (here, hand-drawn segments). Inpartiular, the number of boundaries we �nd (21) ounts exatly thenumber of segments.� Noise image (Figure 6).This image is obtained as a realization of a Gaussian noise withstandart deviation 40. For " = 1 and " = 10, no boundaries are de-teted. For larger values of ", some boundaries begin to be deteted :7 for " = 100 (see Figure 6), 148 for " = 1000 and 3440 for " = 10000.
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16 Desolneux, Moisan and Morel

Figure 6. Left: an image of a Gaussian noise with standart deviation 40. Right: themeaningful boundaries found for " = 100 (no boundaries are found for " = 1).4. Disussion and onlusionIn this disussion, we shall address objetions and omments made tous by the anonymous referees and also by Jos�e-Luis Lisani, Yves Meyerand Alain Trouv�e. In all that follows, we all respetively \boundarydetetion algorithm" and \edge detetion algorithm" the algorithms weproposed. The other edge or boundary detetion algorithms put intothe disussion will be alled by their author's names (Mumford-Shah,Canny).4.1. Eight objetions and their answersObjetion 1: the blue sky e�et.If a signi�ant part of a natural image happens to be very at, beauseof a \blue sky e�et", thenmost level lines of the image will be detetedas meaningful. If (e.g.) one tenth of the image is a blak at region,then the histogram of the gradient has a huge peak near zero. Thus, allgradients slightly above this peak will have a probability 910 signi�antlysmaller than 1. As a onsequene, all level lines long enough (withlength larger than, say, 30 pixels) will be meaningful. In pratie, thismeans that the image will be plagued with deteted level lines with asmall ontrast. These deteted level lines are no edges under any deentriterion ?Answer 1: If the image has a wide \blue sky", then most level linesof the ground are meaningful beause any strong deviation from zerobeomes meaningful. This e�et an be heked on the heetah image:the strutured and ontrasted ground has lots of deteted boundaries(and the sky has none). This outome an be interpreted in the follow-ing way: when a at region is present in the image, it gives, via the
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Edge Detetion by Helmholtz Priniple 17gradient histogram, a indiret noise estimate. Every gradient whih isabove the noise gradient of the at region beomes meaningful and thisis, we think, orret.Objetion 2: dependene upon windows.Then the detetion of a given edge depends upon the window (ontain-ing the edge) on whih you apply the algorithm ?Answer 2: Yes, the algorithm is global and is a�eted by a reframingof the image. If (e.g.) we detet edges on a window essentially ontain-ing the sky, we shall detet more boundaries (see Figure 7) and if weompute edges in a window only ontaining the ontrasted boundaries,it will detet less boundaries.

Figure 7. First row: left: original image (hinese landsape); right: maximal mean-ingful edges for " = 1. Seond row: the same algorithm, but run on a subwindow(drawn on the left image); right: the result (in blak), with in light grey the edgesthat were deteted in the full image.Question 3: how to ompute edges with multiple windows ?Thus, you an apply your detetion algorithm on any window of theimage and get more and more edges !Answer 3: Yes, but, �rst, if the window is too small, no edge will bedeteted at all. Seond, if we apply the algorithm to say, 100 windows,we must take into aount in our omputations that the number of testsis inreased. Thus, we must derease aordingly the value of " in orderto avoid false detetions: an easy way is to do it is this: if we have 100windows, we an take on eah one " = 1=100. Then the global numberof false alarms over all windows remains equal to 1. Thus, a multiwin-dows version of the algorithm is doable and reommandable. Indeed,
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18 Desolneux, Moisan and Morelpsyhophysis and neurophysiology both advoate for a spatially loaltreatment of the retinian information.Objetion 4: syntheti images where everything is meaningful.If an image has no noise at all (syntheti image), all boundaries ontainrelevant information. All the same, your algorithm won't detet themall?Answer 4: Right. If a syntheti binary image is made (e.g.) of a blaksquare with white bakground, then all gradients are zero exept on thesquare's boundary. The gradient histogram has one single value, 255.(Remember that zero values are exluded from the gradient histogram).Thus, H(255) = 1 whih means that no line is meaningful. Thus, thesquare's boundary won't be deteted, whih is a bit paradoxial! Theaddition of a tiny noise or of a slight blur would of ourse restore thedetetion of this square's boundary. This means that syntheti piee-wise onstant images fall out of the range or the detetion algorithm.Now, in that ase, the boundary detetion is trivial by any other edgedetetor and our algorithm is not to be applied.Question 5: lass of images to whih the algorithm is adapted ?Is there a lass of images for whih the Mumford-Shah funtional isbetter adapted and another lass of images where your algorithm ismore adapted ?Answer 5: Our omparison of both algorithms may be misleading.We are omparing methods with di�erent sopes. The Mumford-Shahalgorithm aims at a global and minimal explanation of the image interms of boundaries and regions. As we pointed out in the disussionof the experiments, this global model is robust but rough, and moresophistiated models would give a better explanation, provided theadditional parameters an be estimated (but how?).The detetion algorithm does not aim at suh a global explanation: itis a partial detetion algorithm and not a global explanation algorithm.In partiular, deteted edges an be doubled or tripled or more, sinemany level lines follow a given edge. In ontrast, the Mumford-Shahfuntional and the Canny detetor attempt at seleting the best repre-sentative of eah edge. Conversely, the detetion algorithm provides ahek tool to aept or rejet edges proposed by any other algorithm.Objetion 6: the algorithm depends upon the quantizationstep.The algorithm depends upon the quanti�ation step q. When q tends to
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Edge Detetion by Helmholtz Priniple 19zero, you will get more and more level lines. ThusNll andNllp (numbersof level lines and piees of level lines respetively) will blow up. Thus,you get less and less detetions when q inreases and, at the end, none!Answer 6: Right again. The numbers Nll and Nllp stand for thenumber of e�etuated tests on the image. When the number of teststends to in�nity, the number of false alarms of De�nition 1 also tends toin�nity. Now, as we mentionned, q must be large enough in order to besure that all edges ontain at least one level line. Sine the quantizationnoise is 1 and the standard deviation of noise never goes below 1 or2, it is not likely to �nd any edge with ontrast smaller than 2. Thus,q = 1 is enough, and we annot miss any detetable edge. If we take qsmaller, we shall get more spatial auray to the ost of less detetions.Question 7: auray of the edges depends upon the quan-tization step.All the same, if q is not very small, you lose auray in the positiondetetion. Indeed, the quantized levels do not oinide with the optimallevel of the edge, as it would be found by a Canny edge detetor.Answer 7:Right again. The Canny edge detetor performs two tasks inone: deteting and optimizing the edge's position at subpixel auray.The proposed detetion algorithm does not �nd the optimal positionof eah edge. The spatial auray is roughly q=min jruj, where themin is omputed on the deteted edge. In the ase of the detetionof optimal boundaries, we therefore get this spatial auray for thedeteted optimal boundaries. Of ourse, a postproessing �nding foreah edge the best position in terms of detetability is possible.Objetion 8: edges are not level lines.You laim that every edge oinides with some level line. This is simplynot true!Answer 8: If an edge has ontrast kq, where q is the quantization step(usually equal to 1), then k level lines oinide with the edge, loally. Ofourse, one an onstrut long edges whose ontrast is everywhere k butwhose average level varies in suh a way that no level line fully oinideswith the edge. Now, long piees of level lines oinide partially with it.Thus, detetion of this edge by the detetion algorithm is possible allthe same, but it will be deteted as a union of several more loal edges.Objetion 9: values of the gradient on the level lines are notindependent.
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20 Desolneux, Moisan and MorelYou hose as test set the set of all level lines. You laim that the gradientamplitudes at two di�erent points of every edge are independent. Thisis, in most images, not true.Answer 9: The independene assumption is, indeed, not a realistiassumption. It is made in order to apply the Helmholtz priniple,aording to whih every large deviation from uniform randomnessassumption is pereptible. Thus, the independene assumption is nota model for the image ; it is an a ontrario assumption against whihthe gestalts are deteted.Objetion 10: A minimal desription model would do the jobas well.A minimal desription model (MDL) an ontain very wide lasses ofmodels for whih parameters will be estimated by the MDL priniple ofshortest desription in a �xed language. This �xed language an be thelanguage of Gestalt theory: explain the image in terms of lines, urves,edges, regions, et. Then existene and nonexistene of a given gestaltwould ome out from the MDL desription: a \detetable" edge wouldbe an edge whih is used by the minimal desription. Thus, thresholdswould be impliit in a MDL model, but exist all the same.Answer 10: A MDL model is global in nature. Until we have on-struted it, we annot make any omparison. In a MDL model, thethresholds on edges would depend on all other gestalts. Thus, we wouldbe in the same situation as with the Mumford-Shah model: we have seenthat a sligth error on the region model leads to a false detetion foredges. The main advantage of the proposed method relies on its lakof ambition: it is a partial gestalt detetion algorithm, whih does notrequire any global explanation model in order to be applied. We mayompare the outome of the algorithm with the omputation in opti-mization theory of feasible solutions. Feasible solutions are not optimal.We provide feasible, i.e. aeptable edges. We do not provide an optimalset of edges as is aimed at by the other onsidered methods.Objetion 11: is " a method parameter ?You laim that the method has no parameter. We have seen in theourse of the disussion not less than three parameters oming out: thehoie of the windows, the hoie of q, and �nally the hoie of ". Sowhat ?Answer 11:We always �x " = 1. Indeed, as we proved, the dependeneof detetability upon " is a Log-dependene. We also �x q = 1, but, here
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Edge Detetion by Helmholtz Priniple 21again, the q dependene would be a Log-dependene, sine the numberof level lines varies roughly linearly as a funtion of q. Finally, it is quiteliit to take as many windows as we wish, provided we take "k = 1=kwhere k is the number of windows. This yields a false alarm rate of1 over all windows. Again, sine the number of windows is neessarilysmall (they make a overing of the image and annot be too small),we an even take "k = 1 beause of the Log-dependene mentionnedabove. To summarize, " = 1 is not a parameter. When we subdivideour set of tests in subsets on several windows, we must of ourse dividethis value 1 by the number of sets of subtests. This does not requiresany user's input.4.2. ConlusionIn this paper, we have tried to stress the possibility of giving a pereptu-ally orret hek for any boundary or edge proposed by any algorithm.Our method, based on the Helmholtz priniple, omputes thresholds ofdetetability for any edge. This algorithm an be applied to level linesor to piees of level lines and omputes then all detetable level lines.One annot view the algorithm as a new \edge detetor", to be added tothe long list of existing ones ; indeed, �rst, the algorithm does not seletthe \best" edge as the other algorithms do. Thus, it is more primitiveand only yields \feasible" andidates to be an edge. Only in the ase ofboundary detetion an it be laimed to give a �nal boundary detetor.Now, this boundary detetor may anyway yield multiple boundaries.On the other hand, the proposed method has the advantage of givingfor any boundary or edge detetor a sanity hek.Thus, it an, for any given edge detetor, help removing all edges whihare not aepted from the Helmholtz priniple viewpoint. As a sanityhek, the Helmholtz priniple is hardly to be disussed, sine it onlyrejets any edge whih ould be observed in white noise.The number of false alarms gives, in addition, a way to evaluate thereliability of any edge and we think that the maximality riterion ouldalso be used in onjontion with any edge detetor.Finally, we an laim that the kind of algorithm and experiments pro-posed here advoate for the neessity and usefulness of an intermediatelayer in image analysis algorithms, where feasibility of the sought forstrutures is heked before any more global interpretation is attemptedby a variational method.
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