
SIAM J. IMAGING SCIENCES c© 2013 Society for Industrial and Applied Mathematics
Vol. 6, No. 4, pp. 2640–2684

Posterior Expectation of the Total Variation Model:
Properties and Experiments∗
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Abstract. The total variation image (or signal) denoising model is a variational approach that can be in-
terpreted, in a Bayesian framework, as a search for the maximum point of the posterior density
(maximum a posteriori estimator). This maximization aspect is partly responsible for a restoration
bias called the “staircasing effect,” that is, the outbreak of quasi-constant regions separated by
sharp edges in the intensity map. In this paper we study a variant of this model that considers the
expectation of the posterior distribution instead of its maximum point. Apart from the least square
error optimality, this variant seems to better account for the global properties of the posterior dis-
tribution. We present theoretical and numerical results that demonstrate in particular that images
denoised with this model do not suffer from the staircasing effect.
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1. Introduction. Total variation (TV) is probably one of the simplest analytic priors on
images that favor smoothness while allowing discontinuities at the same time. Its typical use,
introduced in the celebrated Rudin, Osher, and Fatemi (ROF) image restoration model [64],
consists in solving an inverse problem like Au = v (where v is the observed image, u is the
unknown ideal image, and A is a given operator) by minimizing the energy

(1) E(u) = ‖Au− v‖2 + λTV (u).

This energy establishes a trade-off between data fidelity (the first term) and data regularity
(TV), the relative weight of the latter being specified by the hyperparameter λ. In a continuous
formulation, the TV of a gray-level image u : R2 → R is defined by

TV (u) = inf

{∫
R2

u div p; p ∈ C∞c (R2,R2), ‖p‖∞ ≤ 1

}
,

which boils down to

(2) TV (u) =

∫
R2

|Du| with |Du| =
√(

∂u

∂x

)2

+

(
∂u

∂y

)2
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for smooth images. Depending on the choice of A, (1) can be used for image denoising (A
is the identity operator), image deblurring (A is a convolution with a given blur kernel),
tomography (A is a Radon transform), superresolution (A is an image subsampling operator),
etc. In the last two decades, the TV prior has been used in a large variety of image processing
and computer vision applications: image inpainting [23], interpolation [35], segmentation
[20], image quality assessment [8], scale detection [49], cartoon+texture decomposition [4, 5],
motion estimation [76], and many others (and also, of course, in applications that do not
concern images). For a more complete list of applications concerning image processing and
the TV model, we invite the interested reader to consult [15, 18] and references therein.

Even if other prior functionals have been proposed (Besov priors, Markov random fields
learned on a large bench of images, sparsity priors, fields of experts [63]), TV still frequently
appears in nonlinear image processing algorithms. A possible explanation for this is the
simplicity of the TV operator and its ability to penalize edges (that is, sharp transitions), but
not too much: images that are smooth away from a jump set which is a finite union of smooth
curves of finite length will have a finite TV. Conversely, TV does penalize highly oscillating
patterns, noise in particular. Among other reasons that make TV worth studying, we can
mention the following:

• The prior model based on TV (or the median pixel prior, its discrete counterpart)
shows a natural connection with purely discrete Markov models [7, 9].

• If u is a binary image, that is, the characteristic function of some—regular enough—
subset S of R2, then TV (u) is simply the perimeter of S. For a general real-valued
image u, this correspondence is generalized thanks to the coarea formula [1]: the idea is
to decompose u into nested binary images (corresponding to the level sets of u) and to
sum up the infinitesimal contribution of the TV of each binary image. This geometric
characterization of TV allows us to interpret the ROF model as a regularization of the
level lines of v. If the data-fidelity term ‖u−v‖2 is replaced by its L1-norm counterpart
‖u − v‖1 in (1), which is more suitable in the case of impulse noise, we even have a
contrast-invariant transform [26], which processes the level sets of u independently.
This nice analytical framework around TV and bounded variation (BV) spaces [1]
makes it particularly fitted to mathematical image analysis.

• The TV model is simple enough to produce few artifacts, which is important for
applications in medical imaging, for instance, be it the segmentation of an organ or
the analysis of a pathology. This may not be the case for more sophisticated methods
like BM3D [24] or dictionary learning methods, where the higher performance comes
along with artifacts that are difficult to control and anticipate.

TV is simple and convenient, but it has its own drawbacks. First, textured image parts,
which are very oscillatory in general, are highly penalized by TV and are often destroyed (or at
least strongly attenuated) by the ROF model. Another well-known artifact is the staircasing
effect.

The staircasing effect. A simple example of the staircasing effect is obtained when a noisy
affine one-dimensional signal is processed with the ROF model: the denoised signal is not
smooth but piecewise constant (see, e.g., the ROF-denoised signal that is displayed in the
middle plot of Figure 2). The staircase shape obtained in this case is quite general: as
first noticed in [25] and then analyzed by [11, 15, 33, 57, 61] in different frameworks, the
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application of ROF denoising leads to blocky structures on most signals and images; this
phenomenon is called the staircasing effect. As far as we know, all image processing papers
discussing this effect on natural images consider it an artifact rather than a desirable property
[6, 10, 13, 15, 21, 22, 45]. Indeed, in [36], histograms of local features (such as directional
gradients) computed on a large bunch of natural images are faithfully modeled by generalized
Laplace distributions with a probability density function (p.d.f.) proportional to exp(−s|x|α)
with α ≈ 0.55. An image restored with the ROF model will have a potentially large proportion
of pixels with a strictly zero gradient, thus adding a Dirac mass to the generalized Laplace
distribution and contradicting the observed statistics of natural images. Furthermore, the
staircasing effect is incompatible with the Shannon sampling theory [68] in the sense that a
nonconstant bandlimited image (in the continuous domain) cannot be locally constant. Even
from a physical image formation viewpoint, truly constant regions are rare: because of little
variations in illumination, orientation, or simply because of the perspective, a minimum drift
of gray levels is generally observed. Last, the staircasing effect comes with the creation of
spurious edges in what should be smooth areas. Using an ROF filter as a preprocessing step
before a higher-level processing, such as segmentation, may be a source of systematic failures.

It is commonly admitted that the staircasing effect is due to the nonregularity of TV
[53, 55, 57], which, in the discrete framework, comes from the singularity of TV at zero
gradients. More than that, under several hypotheses [71], the ROF model is equivalent to
minimizing an energy like (1), but where the TV (the �1-norm of the gradient) is replaced
with the �0-“norm” of the gradient, hence promoting sparsity for the gradient and favoring
piecewise constant images.

A way to avoid this staircasing artifact is to regularize the TV operator, as proved in [55].
Among variants that have been proposed [3, 7, 28, 56, 74], some introduce a parameter ε > 0
and replace the term |Du| in (2) by fε(|Du|), where

fε(t) =
√
ε2 + t2, or fε(t) =

{
t2 if |t| < ε,

ε2 otherwise,
or fε(t) =

{
t2

2ε +
ε
2 if |t| < ε,

|t| otherwise,

or fε is another even, smooth function that is nondecreasing on R
+. More recently, different

authors managed to promote sparsity for higher-order derivatives [6, 10, 21, 22, 45], leading
to piecewise affine or piecewise polynomial images (hence pushing the staircasing effect to
higher orders). In [38], an elegant modification of the TV operator seems to avoid staircasing
in denoising and deblurring experiments, but no proof is provided.

All the above-mentioned variants require modifications of TV, or the addition of higher-
order terms in the variational model. One contribution of the present paper is to show that
the true TV prior is compatible with the avoidance of the staircasing artifact, provided that an
appropriate framework is used. Indeed, the ROF model can be reinterpreted in a statistical
(Bayesian) framework, where it exactly corresponds to the maximum a posteriori (MAP)
estimate, which means that the ROF model selects the image that maximizes the p.d.f. of a
certain distribution (the posterior distribution, associated to the TV prior and the data-fidelity
term). Several authors [57, 75] pointed out that MAP estimates tend to be very singular with
regard to the prior distribution. The staircasing artifact can be considered one of these prior
statistics singularities.
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Let us also mention the nonlocal extension of ROF (NL-ROF) proposed in [32], where
the neighborhood between pixels is based on a comparison of patches as in the NL-means
method [13]. As the authors notice in their experiments, it clearly improves the basic ROF
model, but produces staircasing effects. Another NL extension of ROF (NLBV) proposed in
[39] avoids staircasing artifacts by considering differences of gradients instead of differences of
gray values, in a spirit similar to that of the second-order TV models considered in [6, 10].

In the present work, we propose keeping the statistical framework associated to the ROF
model, but moving away from MAP estimation and considering instead the mean of the
posterior distribution (rather than its maximum). As in the preliminary work [47], we will
denote this approach by TV-LSE, for it reaches the least square error. This kind of approach
is also often called MMSE (minimizer of the mean square error) in the literature, or sometimes
CM (conditional mean).

LSE estimates versus MAP estimates. LSE estimates have been proposed for a long time in
the context of Bayesian image restoration. As early as 1989, Besag [7] mentioned the possibility
of using the LSE estimate instead of MAP in the discrete TV framework (then called median
pixel prior), as well as the marginal posterior mode and the median estimate. In the case of
a TV prior model, LSE is presented in [27] as a favorable alternative to MAP concerning the
statistics of the reconstructed image, relying on the example of binary image denoising (the
TV model is then equivalent to the Ising model), where MAP provides a nonrobust estimate.
Lassas, Siltanen, and colleagues [40, 42, 41] focus on one-dimensional signal restoration with
a TV prior, and make a comparative study of MAP and LSE at the interface between the
discrete and the continuous settings, when the quantization step goes to zero (so that the
dimension goes to infinity). They show that in their asymptotic framework, the TV prior may
lead only to trivial estimates (MAP equal to 0, LSE equivalent to Gaussian smoothing), and
they conclude by switching to a Besov prior which behaves properly when the quantization
step goes to 0.

MAP estimation, seen as the minimization of an energy, is often preferred to LSE estima-
tion because the computation is made easier and faster by a whole world of energy minimiza-
tion algorithms, contrary to LSE which requires Monte-Carlo Markov chain algorithms [31] or
Gibbs samplers [29], which are known to be slow. This computational issue can motivate one
to use MAP instead of LSE or, more interestingly, to see an LSE estimate as a MAP estimate
in another Bayesian framework, as was done in [34] and [58].

The debate between MAP and LSE goes far beyond algorithmic issues, as the literature,
mostly on learned prior Markov random fields, testifies. LSE estimates, regarding [58, 63, 67],
seem to recover the prior statistics in a better way than MAP estimates. But in [59], it is
argued that the prior learning method (maximum margin principle or maximum likelihood)
has to be connected to the estimation function: maximum likelihood seems to perform better
while associated to an LSE estimator, but learning with a maximum margin principle seems
to perform even better while associated to a MAP estimator.

Since the preliminary work [47] in 2008, several researchers have taken an interest in TV-
LSE. Jalalzai and Chambolle [38], Lefkimmiatis, Bourquard, and Unser [45], and Salmon [66]
mention the TV-LSE model for its ability to naturally remove staircasing artifacts. In the
conclusion of [51], Mirebeau and Cohen propose a TV-LSE–like approach to denoising images
using anisotropic smoothness features, an interesting counterpart to TV, arguing that LSE
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is able to deal with nonconvex functionals. Chaari and colleagues propose LSE estimates for
a frame-based Bayesian denoising task [16] and for a parameter estimation task [17], where
a TV prior is used jointly with a prior on the frame coefficients; the abundant numerical
experiments show that the proposed method compares favorably with the MAP estimate. In
the handbook chapter [15], Caselles, Chambolle, and Novaga dedicate a section to TV-LSE.

Outline of the paper. The paper is organized as follows. In section 2 we recall the Bayesian
point of view on the ROF model and justify the LSE approach using measure concentration
arguments. In section 3 we analyze the proposed TV-LSE estimator in a finite-dimensional
framework (finite number of pixels but real-valued images). Simple invariance and convergence
properties are first given in sections 3.1 and 3.2. Then in section 3.3, a deeper insight is
developed, where the TV-LSE denoiser is viewed as the gradient of a convex function, which
allows us to prove, using convex duality tools, that TV-LSE avoids the constant regions of the
staircasing effect while allowing the restoration of sharp edges. We also interpret the TV-LSE
denoiser as a MAP estimate, whose prior is carefully analyzed. In section 4, we give numerical
experiments on image denoising, showing that the TV-LSE offers an interesting compromise
between blur and staircasing, and generally gives rise to more natural images than ROF. We
then conclude in section 5.

2. From ROF to TV-LSE: Bayes TV-based models.

2.1. ROF Bayesian interpretation. Let u : Ω→ R be a discrete gray-level image defined
on a finite rectangular domain Ω ⊂ Z

2, which maps each pixel x = (x, y) ∈ Ω to the gray level
u(x). The (discrete) total variation of the image u is defined by

(3) TV (u) =
∑
x∈Ω
|Du(x)|,

where |Du(x)| is a discrete scheme used to estimate the gradient norm of u at point x. In
what follows we shall consider either the �1- or the �2-norm on R

2, associated with the simplest
possible approximation of the gradient vector, given by

(4) Du(x, y) =

(
u(x+ 1, y)− u(x, y)
u(x, y + 1)− u(x, y)

)

(note that all the results of this paper hold for a large variety of discrete TV operators; see
Appendix A). Concerning boundary conditions, we shall use the convention that differences
involving pixels outside the domain Ω are zero. Given a (noisy) image v, the ROF method
proposes selecting the unique image u minimizing the energy

(5) Ev,λ(u) = ‖u− v‖2 + λTV (u),

where ‖ · ‖ is the classical L2-norm on images and λ is a hyperparameter which controls
the denoising level. This formulation as energy minimizer can be transposed in a Bayesian
framework. Indeed, for β > 0 and μ ∈ R, let us consider the p.d.f.

(6) ∀u ∈ Eμ, pβ(u) =
1

Zβ
e−βTV (u), where Zβ =

∫
Eμ
e−βTV (u) du,
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(7) and ∀μ ∈ R, Eμ =
{
u ∈ R

Ω, ū = μ
}

with ū =
1

|Ω|
∑
x∈Ω

u(x).

Let us now suppose that instead of u, we observe the noisy image v = u + N , where N is
a white Gaussian noise with zero mean and variance σ2. Applying Bayes’ rule with prior
distribution pβ leads to the following posterior p.d.f.:

(8) p(u|v) = p(v|u)pβ(u)
p(v)

=
1

Z
exp

(
−Ev,λ(u)

2σ2

)
,

where λ = 2βσ2 and Z is a normalizing constant depending on v and λ only, ensuring that
u 	→ p(u|v) remains a p.d.f. on R

Ω. Hence, the variational formulation (argminuEv,λ(u)) is
equivalent to a Bayesian formulation in terms of MAP

(9) ûROF = argmax
u∈Eμ

p(u|v).

This means that ROF denoising amounts to selecting the most probable image under the
posterior probability defined by p(u|v). Notice that the constraint u ∈ Eμ, which was imposed
to obtain a proper (that is, integrable) prior p.d.f., pβ, can be dropped out when μ = v̄, since
this leaves the MAP estimate unchanged [2].

In a certain sense, the most complete information is given by the whole posterior distri-
bution function. However, for obvious practical reasons, one generally seeks an “optimal”
estimate of the original image built from the posterior distribution, with respect to a certain
criterion. The MAP estimate is obtained by minimizing the Bayes risk when the associated
cost function is a Dirac mass located on the true solution. In a certain sense, this estimator
is not very representative of the posterior distribution, since it only “sees” its maximum; in
particular, as (8) shows, the solution does not depend on σ, which measures the “spread”
of the posterior distribution. As ûROF minimizes the energy Ev,λ(u), it tends to concentrate
certain exceptional structures which are cheap in energy, in particular, regions of constant
intensity, leading to the well-known staircasing effect (see Figure 1).

2.2. The staircasing effect. In order to establish the existence of this staircasing effect
for ROF denoising in the discrete setting, Nikolova [55] remarks that the discrete TV operator
(3) can be written under the more general form

TV (u) =
r∑

i=1

ϕi(Giu),

where Gi : R
Ω → R

m (1 ≤ i ≤ r) are linear operators (here, differences between neighboring
pixels), and ϕi : R

m → R are piecewise smooth functions that are not differentiable in zero
(here, all ϕi correspond to the L1-norm on R

2).
Proposition 2.1 (see [55]). If S(v) = argminu ‖u−v‖2+λJ(u), where J(u) =

∑r
i=1 ϕi(Giu)

and, for all i, Gi is linear and ϕi is piecewise smooth and not differentiable in 0, then, under
some technical assumptions, there exists an open neighborhood V of v for which

(10) ∀v′ ∈ V,
{
i | Gi(S(v

′)) = 0
}
=

{
i | Gi(S(v)) = 0

}
.
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Figure 1. The staircasing effect. A noisy version (a) of the Lena image (additive white Gaussian noise
with standard deviation σ = 10) is denoised with the ROF model with λ = 40 (b). The details (c) and (d) of (b)
reveal the so-called staircasing effect: ROF denoising tends to create smooth regions separated by spurious edges.
This effect clearly appears on the level lines (e) and (f) of images (c) and (d): most level lines (here computed
using a bilinear interpolation) tend to be concentrated along spurious edges. The histograms of the horizontal
derivative of the original Lena image (g) and the ROF-denoised image (h) also reveal this staircasing effect:
whereas such a histogram is generally well modeled by a generalized Laplace distribution for natural images, the
ROF version presents a large peak in 0 that is a direct consequence of the staircasing effect. Similar plots would
be obtained with the vertical derivative.
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In the case of TV, the Gi are differences between neighboring pixels, so the set {i ∈
{1, . . . , r} | Gi(S(v)) = 0} corresponds to the constant sets of S(v) = ûROF. The existence
of an open neighborhood V = {v′} of v for which any S(v′) has the same constant set as
S(v) indicates that the regions of constant gray level have a certain stability with respect
to perturbations of the observed data v. This gives a first theoretical explanation of the
staircasing effect. In other words, if the space of noisy images RΩ is endowed with a probability
distribution that is absolutely continuous with respect to the Lebesgue measure on R

Ω, then
for any x ∈ Ω, the probability of having a zero gradient at pixel x in the denoised image is
positive. Hence, there is a bias toward constant regions, which can be measured by a Dirac
mass at zero on the histograms of gradients (see Figure 1, plots (g) and (h)).

In the continuous domain, Jalalzai [37] assesses the presence of staircasing by testing
the positivity of |{x ∈ Ω | S(v)(x) = c}| for some c. He proves that this property occurs
for c = maxS(v) and c = minS(v) when the datum v is in L2(Ω) ∩ L∞(Ω) and Ω = R

2.
In particular the gradient of S(v) is zero in the interior of {x ∈ R

2 | S(v)(x) = c}. As
this definition is specific to the continuous setting, in what follows we shall rather focus on
Nikolova’s viewpoint [55].

Let us also cite the recent work of Caselles, Chambolle, and Novaga [14], where staircasing
is studied not from the point of view of constant regions but in terms of discontinuities. An
interesting property concerning the jump set of the reconstructed image in the continuous
framework is proved, which could suggest that staircasing is due only to a bad quantization
of the TV. The (approximate) jump set of a continuous image u is defined as the set of points
x ∈ R

2 satisfying

∃u+(x) �= u−(x), ∃νu(x) ∈ R
2,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

|νu(x)| = 1,

lim
ρ↓0

∫
B+

ρ (x,νu(x))
|u(y)− u+(x)| dy∫

B+
ρ (x,νu(x))

dy
= 0,

lim
ρ↓0

∫
B−

ρ (x,νu(x))
|u(y) − u−(x)| dy∫

B−
ρ (x,νu(x))

dy
= 0,

where
B+

ρ (x, νu(x)) = {y | ‖y − x‖ < ρ , 〈y − x, νu(x)〉 > 0}
and B−

ρ (x, νu(x)) is the same with a negative inner product. Intuitively, the jump set of an
image u is the set of points where u can be locally described as a two-dimensional Heaviside
function, which corresponds to regular edges. It is shown that if the datum image v has
bounded variation, then the jump set of the solution û to the continuous ROF denoising
problem is contained within the jump set of v. In other words, ROF denoising does not create
edges which did not already exist in v. This would contradict some kind of staircasing effect
(the discontinuity part) if we forgot that v is generally noisy so that the jump set contains
almost every point of the domain.

2.3. Concentration of the posterior distribution. Another distortion induced by the
MAP approach comes from the high dimension of the problem. Indeed, the MAP estimate
depends only on the location of the mode (that is, the point with maximum density), not
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on the probability mass that this mode contains [65], and this difference may become huge
in high-dimensional spaces. Let us illustrate this with a simple example. If n is a positive
integer and X is a random vector distributed as N (0, σ2In) (centered normal distribution
with covariance matrix σ2In, In being the n-dimensional identity matrix), then by applying
the Bienaymé–Chebyshev inequality to the random variable ‖X‖2 =

∑n
i=1X

2
i (which follows

a σ2χ2(n) distribution), we obtain

(11) ∀ε > 0, P

(∣∣∣∣ 1n‖X‖2 − σ2
∣∣∣∣ > ε

)
≤ 2σ4

nε2
,

and the right-hand term decreases toward 0 when the dimension n grows to infinity. In this
example, the mode of X is located in 0, but when n goes to +∞ all the mass of the distribution
“concentrates” around the sphere centered in 0 with radius σ

√
n and therefore goes away from

the mode. This kind of situation is quite common in high dimension. A similar example is the
case of the uniform distribution on the unit ball, whose mass concentrates in an arbitrarily
small neighborhood of the unit sphere when the dimension grows. Hence, the MAP estimate
may be, especially in high dimension, a very special image whose properties may strongly
differ from those of typical samples of the posterior. This remark particularly makes sense for
images, whose typical dimension can be n = 106 or more.

In our image denoising problem, we should deal with the posterior probability π asso-
ciated to the p.d.f. π(u) = p(u|v) (see (8)), which is a log-concave Gibbs field. For such
probability distributions, we can have concentration results similar to (11), but they require
more sophisticated tools [44].

A key notion in studying the concentrating power of a probability distribution π on a
Euclidean space X is the concentration function απ(r) [44], defined for each r > 0 by

(12) απ(r) = sup

{
1− π(Ar); A Borel set of RΩ and π(A) ≥ 1

2

}
,

where Ar = {u ∈ R
Ω, d(u,A) < r} (d is the Euclidean distance on X ). For instance, in the

case of a uniform distribution on the d-dimensional unit sphere, the concentration function
can be proved to be smaller than a Gaussian function of r [43], whose fast decay for large r
indicates, thanks to (12), that the probability is very concentrated near any equator.

An analytical point of view for απ is useful when considering other distributions. The
concentration function can be addressed in terms of the concentration of Lipschitz-continuous
functions around their medians. Namely, a measurable function F : X → R is said to be
1-Lipschitz when

‖F‖Lip := sup
u,v∈X

|F (u)− F (v)|
‖u− v‖ ≤ 1,

and mF is called a median of F if it satisfies

π(F ≤ mF ) ≥ 1

2
and π(F ≥ mF ) ≥ 1

2
.

The concentration function can be characterized for any r > 0 by [43]

(13) απ(r) = sup
F

π(F −mF ≥ r),
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where the supremum runs over all real-valued measurable 1-Lipschitz functions F , and where
mF is any median of F .

In the case of the posterior probability having p.d.f. (8) of our image denoising problem,
we can have a Gaussian concentration inequality similar to the uniform distribution on the
unit sphere, as shown in the following proposition.

Proposition 2.2 (concentration property for the ROF posterior distribution). Let π denote the
posterior probability with p.d.f. (8). Then

(14) ∀r > 0, απ(r) ≤ 2e−
r2

4σ2 .

Proof. The probability π has p.d.f. π = 1
Z e

−V , where V = 1
2σ2Ev,λ satisfies the strong

convexity inequality

(15) ∃c > 0 ∀u, v ∈ R
Ω, V (u) + V (v)− 2V

(
u+ v

2

)
≥ c

4
‖u− v‖2

with c = 1/σ2. Then applying [44, Theorem 2.15, p. 36], we obtain (14).
This shows that any Lipschitz-continuous function F is concentrated around its median

mF : indeed, combining (13) and (14) yields

(16) π(F −mF ≥ r) ≤ 2e−
‖F‖2Lipr

2

4σ2 ,

and the same argument with −F leads to

(17) π(F −mF ≤ −r) ≤ 2e−
‖F‖2Lipr

2

4σ2 .

Putting both inequalities together, we deduce that for each r > 0,

(18) π(|F −mF | ≥ r) ≤ 4e−
‖F‖2Lipr

2

4σ2 .

Now we prove that the energy Ev,λ is concentrated around a particular value. Ev,λ is not
Lipschitz-continuous (because the data-fidelity term is quadratic), but its square root is
Lipschitz-continuous as soon as v is not constant, which leads to a weaker form of concentra-
tion for the energy.

Proposition 2.3. Let π denote the posterior probability with p.d.f. (8). Assume that v is
not constant. Then there exist m ∈ R and c > 0 such that for any r ≥ 0,

(19) π(|√Ev,λ −m| ≥ r) ≤ 4e−
c2r2

4σ2 .

Proof. For any images u and u′, let us write√
Ev,λ(u′)−

√
Ev,λ(u) = C1 + C2

with

C1 =
√
‖u′ − v‖2 + λTV (u′)−

√
‖u− v‖2 + λTV (u′)
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and

C2 =
√
‖u− v‖2 + λTV (u′)−

√
‖u− v‖2 + λTV (u).

For C1, let us recall that when u′ is fixed, u 	→
√
‖u− v‖2 + λTV (u′) is the composition of

u 	→ ‖u− v‖ and x ∈ R 	→ √x2 + ε with ε = λTV (u′) ≥ 0, which are both 1-Lipschitz. This
gives the inequality

(20) |C1| ≤ ‖u′ − u‖.
To bound C2, we need to compute the Lipschitz constant of the discrete TV. It depends on the
scheme for TV which is used and depends monotonically on |Ω|. Writing ‖TV ‖Lip = κ

√|Ω|,
κ can be evaluated to κ = 4 + O(1/

√|Ω|) for the �1-scheme, and κ = 2
√
2 + O(1/

√|Ω|) for
the �2-scheme (the approximation is due to the domain’s border effect, and in both cases the
Lipschitz constant is reached when computing TV (u) − TV (0), where u is the chessboard
image defined by u(i, j) = (−1)i+j). We have

C2 =
‖u− v‖2 + λTV (u′)− ‖u− v‖2 − λTV (u)√‖u− v‖2 + λTV (u′) +

√‖u− v‖2 + λTV (u)
.

But as v is supposed to be nonconstant, Ev,λ is coercive and cannot equal zero, so that it is

bounded from below by a positive constant. Hence, since
√‖u− v‖2 + λTV (u′) is nonnega-

tive, we have

(21) |C2| ≤ λ|TV (u′)− TV (u)|
0 +

√
minEv,λ

≤ λκ
√|Ω|‖u′ − u‖√

minEv,λ

.

Then, combining (20) and (21), we obtain∣∣∣∣√Ev,λ(u′)−
√
Ev,λ(u)

∣∣∣∣ ≤
(
1 +

λκ
√|Ω|√

minEv,λ

)
‖u′ − u‖,

and
√
Ev,λ is Lipschitz-continuous, with constant c, with c = λκ

√|Ω|/minEv,λ +O(1) when
|Ω| goes to ∞. We conclude by applying (18).

By homogeneity of ‖ · −v‖2 and TV with respect to the dimension |Ω| of the images,
it is not restrictive to assume that the median m goes to ∞ as the dimension |Ω| of images
increases (by juxtaposing several versions of v, for instance). This means that as the dimension

increases, π(|√Ev,λ −m|/|m| ≥ r) is bounded by 4 exp (− c2r2m2

4σ2 ), where

c2 =
λ2κ2|Ω|
minEv,λ

+O(1)

is bounded because minEv,λ is proportional to |Ω|, while m goes to +∞ as |Ω| → +∞. Hence
π(|√Ev,λ −m|/|m| ≥ r) converges to 0, and for large domains Ω, almost any image u drawn
from π satisfies Ev,λ(u) ≈ m2.

As Ev,λ is strictly convex and continuous, the lower set {u, Ev,λ(u) < m2} is a bounded
convex set. It is not symmetric, and its boundary is not smooth as soon as v is not constant
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and λ > 0, but it always contains ûROF (because it reaches the lowest energy). Let us define
the median energy set as the boundary of {u, Ev,λ(u) < m2}. In high dimension, (19) means
that almost all the mass of π is supported by a thin dilation of this median energy set.
Estimating the original image u by ûROF does not take the geometry of this median energy
set into consideration, its asymmetrical shape in particular. In high dimension, the mean of
π approximately corresponds to the isobarycenter of the median energy set, which is likely to
give interesting results in terms of image denoising performance.

2.4. Definition of the TV-LSE operator. Instead of using the risk associated to a Dirac
cost (leading to a MAP estimate), we propose using a least square risk, which amounts to
searching the image û(v) minimizing

(22) Eu,v

(‖u− û(v)‖2) = ∫
RΩ

∫
Eμ
‖u− û(v)‖2p(u, v) dv du.

The image reaching this minimum is the expectation of the posterior distribution (least square
estimate (LSE)), that is,

(23) ûLSE := E(u|v) =
∫
RΩ

p(u|v)u du,

which, thanks to (8), can be rewritten in the form below.

Definition 2.4. The TV-LSE operator (denoted by SLSE) maps a discrete image v ∈ R
Ω

into the discrete image ûLSE defined by

(24) ûLSE = SLSE(v) =

∫
RΩ

exp

(
−Ev,λ(u)

2σ2

)
· u du∫

RΩ

exp

(
−Ev,λ(u)

2σ2

)
du

,

where λ and σ are positive parameters and Ev,λ is the energy function defined in (5).

In this paper we concentrate on TV-LSE, but we are conscious that minimizing risks other
than the least square risk in (22) can lead to other interesting estimates (a median estimate
for an L1 risk, for instance), though they seem to be more difficult to analyze.

3. Properties of TV-LSE. In this section, we explore several theoretical aspects of the
TV-LSE operator. We give geometric invariance properties and study the limiting operator
when one of the parameters goes either to 0 or to +∞. Finally, we use Moreau’s theory of
proximations (or proximity operators) [52, 62] to state finer properties of TV-LSE, among
which the fact that the staircasing effect cannot occur in TV-LSE denoising.

3.1. Invariance properties. Here we give several geometric invariance properties of SLSE
(such as gray-level average preservation, translation, and symmetry invariance), all shared
with ROF denoising [2], which are basic but essential requirements for image processing.

First we establish a facilitating formulation of the TV-LSE operator. It makes use of
integrals on the smaller space Ev̄, on which the prior pβ is proper and compatible with (6).
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Lemma 3.1. Let v̄ be the average of v, and let Ev̄ be the space of images having average v̄
(see (7)). Then (24) can be rewritten as

(25) ∀v ∈ R
Ω, SLSE(v) =

∫
Ev̄

exp

(
−Ev,λ(u)

2σ2

)
u du∫

Ev̄
exp

(
−Ev,λ(u)

2σ2

)
du

.

Proof. For a given v ∈ R
Ω, let us make the change of variable u = ū + z in (24), where

ū ∈ R is the mean of u and z is in Ev̄. We have

SLSE(v) =

∫
z∈Ev̄

∫
ū∈R

(ū+ z)e−
1

2σ2 (‖ū+z−v‖2+λTV (z)) dū dz∫
z∈Ev̄

∫
ū∈R

e−
1

2σ2 (‖ū+z−v‖2+λTV (z)) dū dz

.

As both z and v have mean v̄, the quadratic term ‖ū+ z− v‖2 equals |Ω|ū2+ ‖z− v‖2. Hence
ûLSE becomes

SLSE(v) =

∫
z∈Ev̄

e−
1

2σ2 (‖z−v‖2+λTV (z))
∫
ū∈R

(ū+ z)e−
|Ω|ū2
2σ2 dū dz∫

z∈Ev̄
e−

1
2σ2 (‖z−v‖2+λTV (z))

∫
ū∈R

e−
|Ω|ū2
2σ2 dū dz

,

which, thanks to the properties of the normal distribution N (0, σ2

|Ω|), simplifies into the desired

expression (25).

Proposition 3.2 (average preservation). For any image u, let ū = 1
|Ω|

∑
x∈Ω u(x) denote the

mean gray level of u. Then for every v ∈ R
Ω,

SLSE(v) = v.

Proof. Thanks to Lemma 3.1, SLSE(v) is written as a weighted average of images all having
mean v̄. Hence the result has mean v̄.

Proposition 3.3 (invariance by composition with a linear isometry). Let s : R
Ω → R

Ω be a
linear isometry such that for all u ∈ R

Ω, TV ◦ s(u) = TV (u) holds. Then

∀v ∈ R
Ω, SLSE ◦ s(v) = s ◦ SLSE(v).

Proof. The change of variable u′ = s−1(u) in the numerator and the denominator of (24)
yields

SLSE(s(v)) =

∫
s(u′)e−

‖s(u′)−s(v)‖2+λTV (s(u′))
2σ2 du′∫

e−
‖s(u′)−s(v)‖2+λTV (s(u′))

2σ2 du′
,
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because s being an isometry implies ds(u′) = du′. Furthermore, s is isometric, so we have
‖s(u′)− s(v)‖2 = ‖u′ − v‖2 and TV (s(u′)) = TV (u′); thus

SLSE ◦ s(v) =

∫
s(u′)e−

‖u′−v‖2+λTV (u′)
2σ2 du′∫

e−
‖u′−v‖2+λTV (u′)

2σ2 du′
= s(SLSE(v)),

because s is linear.
A consequence of Proposition 3.3 is that the TV-LSE operator inherits many properties

of the discrete scheme used for TV. For the classical �1- or �2-schemes used in (3) and (4), we
obtain in particular the following invariances:

(1) translation invariance: SLSE ◦ τt = τt ◦ SLSE, where τt is the translation operator of
vector t ∈ Z

2 defined by τt ◦ u(x) = u(x− t) (Ω is assumed to be a torus);
(2) π/2-rotation invariance: if ρ is a π/2-rotation sending Ω onto itself, then SLSE ◦ ρ =

ρ ◦ SLSE;
(3) gray-level shift invariance: for all u ∈ R

Ω, for all c ∈ R, SLSE(u + c) = SLSE(u) + c
(this is not a direct consequence of Proposition 3.3, but the proof is easily adapted to the case
s(u) = u+ c).

These properties can help find the structure of SLSE(v) when v contains many redundancies
and much structure. For example, if v is a constant image, then SLSE(v) = v. Indeed, v is
invariant under the translations of vectors (1, 0) and (0, 1), and so is SLSE(v); moreover, the
average gray level of SLSE(v) is the same as v. Finally SLSE(v) is a constant equal to v.
Another example is the checkerboard, defined by

vi,j =

{
a if i+ j is even,

b if i+ j is odd

for some constants a, b ∈ R. It is quite easy to see that v′ = SLSE(v) is also a checkerboard
(use the invariance by translations of vectors (1, 1) and (1,−1)), even if it seems difficult to
get the associated gray levels a′ and b′.

3.2. Asymptotics. Unlike ROF denoising (which depends on the single parameter λ),
TV-LSE denoising depends on two distinct parameters λ and σ. The strict Bayesian point of
view (see section 2.1) would rather encourage the focus on the single parameter β = λ/(2σ2)
associated to the TV prior, while σ2 is set as the actual noise variance. In practice, it is more
interesting to relax this point of view and to consider σ as a parameter, because, as we shall
see later, in general the best denoising results are not obtained when σ2 equals the actual noise
variance. A second reason is that when an image is corrupted with a noise of variance σ2, the
parameter λ in ROF achieving the best peak signal-to-noise ratio (PSNR) is not proportional
to σ2 (as the identity λ = 2βσ2 would suggest) but behaves roughly like a linear function for
large values of σ (in [30] a regression yields the estimate λopt(σ) ≈ 2.92σ2/(1 + 1.03σ)). This
is why we propose taking (λ, σ) as the parameters of the TV-LSE model. In section 4.3, the
role of these parameters is further discussed and illustrated by numerical experiments.

Theorem 3.4 below sums up several asymptotic behaviors of ûLSE when one of the param-
eters goes to 0 or +∞.



2654 C. LOUCHET AND L. MOISAN

Remark 1. By the change of variables v′ = v/σ, u′ = u/σ, λ′ = λ/σ, σ′ = 1, the trans-

formed operator, with obvious notation, satisfies Sλ,σ
LSE(v) = σS

λ/σ,1
LSE ( vσ ).

Theorem 3.4. For a given image v ∈ R
Ω, let us write ûLSE(λ, σ) = SLSE(v) to recall the

dependency of ûLSE with respect to λ and σ. For any fixed λ > 0, we have

(i) ûLSE(λ, σ) −−−→
σ→0

ûROF(λ),

(ii) ûLSE(λ, σ) −−−−−→
σ→+∞ v,

while for any σ > 0, we have

(iii) ûLSE(λ, σ) −−−→
λ→0

v,

(iv) ûLSE(λ, σ) −−−−→
λ→+∞

v̄1,

where v̄1 is the constant image equal to the average of v. Moving λ such that β = λ/(2σ2) is
kept constant, we have

(v) ûLSE(2βσ
2, σ) −−−→

σ→0
v,

(vi) ûLSE(2βσ
2, σ) −−−−−→

σ→+∞ v̄1.

Proof. As Ev,λ is strongly convex (15), the probability distribution with density 1
Z exp(−Ev,λ

2σ2 )
(where Z is a normalizing constant depending on σ) weakly converges when σ → 0 to the
Dirac distribution located at ûROF(λ) = argminuEv,λ(u), whose expectation is ûROF(λ),
which proves (i).

For (ii), let us consider the change of variable w = (u− v)/σ. Then

(26) ûLSE(λ, σ) = v +

∫
RΩ

σwe−
1
2
(‖w‖2+λ

σ
TV (w+ v

σ
)) dw∫

RΩ

e−
1
2
(‖w‖2+λ

σ
TV (w+ v

σ
)) dw

= v +
N

D
.

When σ → ∞, the function inside the denominator D converges almost everywhere (a.e.)
to e−‖w‖2/2 and is uniformly bounded by e−‖w‖2/2; thus thanks to Lebesgue’s dominated

convergence theorem, D converges toward
∫
e−‖w‖2/2 dw. For the numerator, notice that

the mean value theorem applied to x 	→ e−x implies the existence of a real number cw,σ ∈
[0, λ

2σTV (w + v
σ )] such that

e−
λ
2σ

TV (w+ v
σ
) = 1− λ

2σ
TV

(
w +

v

σ

)
e−cw,σ .

Hence N can be split into

N = σ

∫
we−

‖w‖2
2 dw − λ

2

∫
we−

‖w‖2
2 TV

(
w +

v

σ

)
e−cw,σ︸ ︷︷ ︸

fσ(w)

dw.
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The first integral is equal to zero. Concerning the second integral, when σ →∞, cw,σ goes to
0, and as TV is Lipschitz-continuous, fσ satisfies, for every σ ≥ 1,

fσ(w) −−−→
σ→∞ we−

‖w‖2
2 TV (w) a.e.

and

(27) ‖fσ(w)‖ ≤ ‖w‖e−
‖w‖2

2 (TV (w) + α‖v‖),

where α is the Lipschitz-continuity coefficient of TV . As the right-hand term of (27) belongs
to L1(RΩ) (as a function of w), again Lebesgue’s dominated convergence theorem applies and∫

fσ(w) dw −−−→
σ→∞

∫
we−

‖w‖2
2 TV (w) dw = 0

because the function inside the integral is odd (since TV is even). Hence, N goes to 0 as σ
tends to infinity, which implies the convergence of ûLSE(λ, σ) toward v and proves (ii).

The proof of (iii) is a simple application of Lebesgue’s dominated convergence theorem on
both integrals of (24).

For (iv), let us assume that v has zero mean (which does not reduce the generality of the
proof, because of the gray-level shift invariance of section 3.1). Then, thanks to the average
invariance property (Proposition 3.2), we simply have to show that ûLSE(λ, σ) converges to 0
when λ goes to ∞. Using Lemma 3.1 and making the change of variable u = z/λ, we obtain

(28) ûLSE(λ, σ) =
1

λ

∫
E0
ze−

1
2σ2 (‖ z

λ
−v‖2+TV (z)) dz∫

E0
e−

1
2σ2 (‖ z

λ
−v‖2+TV (z)) dz

.

Now, for both functions g(z) = 1 and g(z) = z, we have⎧⎪⎨
⎪⎩
g(z)e−

1
2σ2 (‖ z

λ
−v‖2+TV (z)) −−−→

λ→∞
g(z)e−

1
2σ2 (‖v‖2+TV (z)),∥∥∥g(z)e− 1

2σ2 (‖ z
λ
−v‖2+TV (z))

∥∥∥ ≤ ‖g(z)‖e− 1
2σ2 TV (z) ≤ ‖g(z)‖e− C

2σ2 ‖z‖1,

where the last inequality comes from the fact that since TV is a norm on the finite-dimensional
space E0, there exists C > 0 such that for every z ∈ E0, TV (z) ≥ C‖z‖1 (this can be considered
as a discrete version of the Poincaré inequality [1]). Thus thanks to Lebesgue’s dominated
convergence theorem, each integral in (28) converges to a positive value when λ→ +∞, and
dividing by λ yields the desired limit ûLSE(λ, σ)→ 0.

To prove (v) it is enough to apply Lebesgue’s dominated convergence theorem to the
integrals that appear in (26).

For (vi), we use Lemma 3.1 and Lebesgue’s dominated convergence theorem as in the
proof of (iv) above.
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3.3. TV-LSE as a proximity operator and several consequences. Proximity operators
[52, 62] are mappings of a Hilbert space into itself, which extend the notion of projection
onto a convex space; here we prove that the TV-LSE denoiser is a proximity operator on R

Ω.
From that, we deduce several stability and regularity properties of TV-LSE, and prove that
it cannot create staircasing artifacts.

3.3.1. SLSE is a proximity operator. Let us start by setting a frame of convex analysis
(in finite dimension) around TV-LSE. Let n = |Ω| denote the total size of the considered
images. An image is therefore an element of Rn. Let Γ0(R

n) be the space of convex, lower
semi-continuous functions from R

n to (−∞,+∞] that are proper (that is, nonidentically equal
to +∞).

Definition 3.5 (see [52, 62]). Let f be an arbitrary function in Γ0. The proximity operator
associated to f is the mapping proxf : Rn → R

n defined by

proxf (u) = arg min
v∈Rn

1

2
‖v − u‖2 + f(v).

Notice that if f is the characteristic function associated to a closed, convex and nonempty
set C (f = 0 on C and f = +∞ elsewhere), proxf simply reduces to the projection on C, and
that proxλ

2
TV corresponds to the ROF denoising operator.

Note 1 (see [52, 62]). Whenever f is in Γ0, its convex conjugate f∗ (Legendre–Fenchel
transform), defined by

f∗(v) = sup
u∈Rn

〈u, v〉 − f(u),

is in Γ0(R
n) and satisfies f∗∗ = f . Moreover, Moreau’s decomposition theorem states that

given f ∈ Γ0, every z ∈ R
n can be decomposed into z = u + v, with u = proxf (z) and

v = proxf∗(z).

Definition 3.6 (see [52, 62]). The primitive function associated to proxf is the function Φ ∈
Γ0(R

n) defined by

∀z ∈ R
n, Φ(z) =

1

2
‖v‖2 + f(u), where u = proxf (z) and v = proxf∗(z).

The function f = λ
2σ2TV is an element of Γ0(R

n) whose domain {u ∈ R
n | f(u) <∞} has

a nonempty interior. In addition, f can be viewed as the potential of the (improper) prior
distribution in our Bayesian framework whose p.d.f. is p = exp(−f).

Letting Gσ denote the Gaussian kernel u ∈ R
n 	→ 1

σn(2π)n/2 exp(−‖u‖2
2σ2 ), the TV-LSE

operator, denoted SLSE, can be written as

(29) ∀v ∈ R
n, SLSE(v) =

∫
uGσ(u− v) p(u) du∫
Gσ(u− v) p(u) du .

We come to the specific study of SLSE.
Lemma 3.7. SLSE : RΩ → R

Ω is differentiable, and its differential dSLSE is a symmetric
positive-definite matrix at every point.

The proof can be found in Appendix B.
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Lemma 3.8. There exists a C∞ function ϕ ∈ Γ0(R
n) such that SLSE = ∇ϕ. Furthermore,

ϕ is strictly convex and has the closed form

(30) ϕ : v ∈ R
n 	→ 1

2
‖v‖2 + σ2 log(p ∗Gσ)(v).

Proof. The function ϕ defined by (30) is C∞ since the convolution of p with a Gaussian
kernel is C∞. Moreover, we have

(31) ∇ϕ(v) = v + σ2∇v log

∫
Gσ(v − u) p(u) du = v + σ2

∫ ∇vGσ(v − u) p(u) du∫
Gσ(v − u) p(u) du ,

and since ∇vGσ(v − u) = − 1
σ2Gσ(v − u) · (v − u), we finally get

∇ϕ(v) =
∫
Gσ(v − u) p(u)u du∫
Gσ(v − u) p(u) du = SLSE(v).

Now the only difficulty is to prove that ϕ is strictly convex (the concavity of the second term
σ2 log(p ∗Gσ) follows from the proof of Theorem 3.9 below). In fact, it suffices to check that
the Hessian of ϕ is (symmetric) positive-definite. But the Hessian of ϕ at point v equals
the differential dSLSE(v) of SLSE at point v, and by Lemma 3.7, dSLSE(v) is positive-definite,
which ends the proof.

Theorem 3.9. The operator SLSE is a proximity operator.
Proof. The application p ∗ Gσ is log-concave as the convolution of two log-concave dis-

tributions [60]. Hence σ2 log(p ∗ Gσ) is concave, and the function ϕ (defined in Lemma 3.8)
is less convex than v 	→ 1

2‖v‖2 (that is, the mapping v 	→ 1
2‖v‖2 − ϕ(v) is convex). Then,

applying [52, Proposition 9.b, (I) ⇒ (III)], ϕ is necessarily the primitive function associated
to a proximity operator; that is, there exists g ∈ Γ0(R

n) such that ϕ is the primitive function
associated to proxg. Now, denoting by g∗ ∈ Γ0(R

n) the Legendre–Fenchel transform of g, we
have ∇ϕ = proxg∗ [52, Proposition 7.d], which proves that SLSE is a proximity operator.

As SLSE is a proximity operator, we can define the convex function with which SLSE is
associated.

Definition 3.10 (TVσ prior). Let us assume that λ = 1. For any σ > 0, we define TVσ as
the unique function in Γ0(R

n) such that TVσ(0) = 0 and SLSE = prox 1
2
TVσ

.

The existence of such a function TVσ is given by Theorem 3.9, while the uniqueness is a
consequence of [52, Proposition 8.a]. Thus, and still for λ = 1, SLSE(v) corresponds to the
MAP estimation of v with the prior potential TVσ, in the same way that ROF gives a MAP
estimation of v with the prior potential TV . As we shall see in section 3.3.3, the potential
TVσ has interesting properties that significantly differ from those of TV .

Note that for other values of λ, SLSE remains a proximity operator, associated to a rescaled
version of TVσ. Indeed, with obvious notation for Sλ,σ

LSE, since we have

∀v ∈ R
Ω, Sλ,σ

LSE(v) =
1

λ
S
1,σ

λ
LSE

(
1

λ
v

)
and the scaling property of the proximity operators,

∀f ∈ Γ0(R
Ω), ∀α > 0, ∀v ∈ R

Ω, proxα2f (v) = α proxf(α·)

(
1

α
v

)
,
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it follows that
Sλ,σ
LSE = proxλ2

2
TVσ

λ
( ·
λ
)
.

SLSE being a proximity operator is a rather strong property that implies the following stability
and monotonicity properties.

Corollary 3.11. SLSE is nonexpansive, that is,

(32) ∀v1, v2 ∈ R
n, ‖SLSE(v2)− SLSE(v1)‖ ≤ ‖v2 − v1‖,

and monotone in the sense of Minty [50], that is,

(33) ∀v1, v2 ∈ R
n, 〈SLSE(v2)− SLSE(v1), v2 − v1〉 ≥ ‖SLSE(v2)− SLSE(v1)‖2.

Proof. The nonexpansiveness property is a consequence of [52, Proposition 5.b], and the
monotonicity a consequence of [50] or [52, 5.a] (these properties are condensed in [62, p.
340]).

3.3.2. No staircasing effect with TV-LSE. We first show that SLSE is a C∞-diffeo-
morphism from R

n onto itself.
Lemma 3.12. SLSE is injective.
Proof. Assume that SLSE(v1) = SLSE(v2). Then considering the mapping ψ such that

∀t ∈ R, ψ(t) = 〈SLSE((1− t)v1 + tv2), v2 − v1〉
satisfies ψ(0) = ψ(1), its derivative

ψ′(t) = 〈dSLSE((1− t)v1 + tv2)(v2 − v1), v2 − v1〉
must vanish at a certain point t0 ∈ [0, 1]. But dSLSE((1 − t0)v1 + t0v2) is a positive-definite
matrix (see Lemma 3.7), and consequently ψ′(t) > 0 unless v1 = v2.

Lemma 3.13. Let I denote the identity of Rn. The operator SLSE− I is bounded, and SLSE
is onto.

The proof follows from the Lipschitz-continuity of the discrete TV operator and is detailed
in Appendix C.

Theorem 3.14. SLSE is a C∞-diffeomorphism from R
n onto R

n.
Proof. SLSE is C∞ because it satisfies SLSE = ∇ϕ with ϕ in C∞ (see Lemma 3.8). Now,

adding the fact that dSLSE is invertible at every point (Lemma 3.7) and that SLSE is injective
(Lemma 3.12), we obtain by the global inversion theorem that SLSE is a C∞-diffeomorphism
from R

n to SLSE(R
n). We conclude the proof by using the fact that SLSE(R

n) = R
n (Lemma

3.13).
The fact that SLSE has the regularity of a C∞-diffeomorphism is interesting in itself (ro-

bustness of the output with respect to the input, nondestruction of information), but it also
allows us to state the main result of this section.

Theorem 3.15 (SLSE induces no staircasing). If V is a random image whose p.d.f. is abso-
lutely continuous with respect to the Lebesgue measure, then for any distinct pixels x and y,
one has

(34) P

{
SLSE(V )(x) = SLSE(V )(y)

}
= 0.
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A consequence of this property is that two neighboring pixels (say, for the 4- or the 8-
connectedness) have a probability zero of having the same value in SLSE(V ). Thus, almost
surely ûLSE contains no constant region, which means that there is no staircasing in the sense
of [55], contrary to ROF.

For example, if V writes V = u+N with u a fixed image and N a white Gaussian noise,
that is, a realization of V is a noisy version of u, or if V is drawn from the TV distribution
(that is, V ∼ 1

Z e
−λTV (V )), then the assumption on V in Theorem 3.15 is met, and ûLSE almost

surely contains no staircasing. Note that it does not state that edges should be blurred out. In
section 3.3.3 (through a theoretical argument) and section 4 (through denoising experiments),
we show that it is indeed not the case.

Note incidentally that (34) implies that any original image in which two pixels share
the same gray value cannot be exactly restored. This is not really an issue since “exact
restoration” does not make much sense in the numerical world (numerical solutions, and also
physical images, are known only up to some precision), and of course such an image can be
arbitrarily well approximated using an image with distinct gray values.

Proof of Theorem 3.15. Let pV be the probability measure associated with the random
image V . Let A be the event {V (x) = V (y)} ⊂ R

n. As A is a subspace of Rn with dimension
strictly less than n and pV is absolutely continuous with respect to the Lebesgue measure, the
probability pV (A) is null. Now

P

{
SLSE(V )(x) = SLSE(V )(y)

}
= pV (S

−1
LSE(A)),

and as SLSE is a diffeomorphism from R
n onto itself and the p.d.f. of pV is measurable, the

change of variables formula can apply [69, Théorème 1.1]. In particular, S−1
LSE transforms

negligible sets into negligible sets [69, Lemma 2.1], and pV (S
−1
LSE(A)) = 0.

3.3.3. Properties of TVσ and recovery of edges. In this section, we study the potential
TVσ introduced in Definition 3.10. Since we have SLSE = prox 1

2
TVσ

for λ = 1, the SLSE oper-

ator can be considered as a MAP estimator associated to the prior pLSE = 1
Z exp(− 1

2σ2TVσ),
or, equivalently, as the minimizer of a variational formulation including the classical squared
L2 data-fidelity term and the potential TVσ, as was pointed out in [46, section 3.5] and later
in [34] in a more general framework. Here we specifically investigate some properties of TVσ
that are particularly useful in comparing the TVσ and TV potentials.

Proposition 3.16. TVσ is C∞.
Proof. Let z ∈ R

n. Having u ∈ 1
2∂TVσ(z) is equivalent to having ‖z′− (u+ z)‖2+TVσ(z′)

minimized by z among all z′ ∈ R
n. Hence z = SLSE(u + z). But as SLSE is invertible, the

solution u is unique and satisfies u = S−1
LSE(z)− z. This proves the equivalence

u ∈ 1

2
∂TVσ(z) ⇐⇒ u = S−1

LSE(z)− z.

This means that ∂TVσ(z) contains a single point, so that TVσ is differentiable at point z.
Furthermore, we have

(35)
1

2
∇TVσ = S−1

LSE − I,
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and the right-hand term is C∞ thanks to Theorem 3.14, which concludes the proof.
The regularity of TVσ distinguishes it from TV which is singular. Intuitively, this is con-

sistent with the behavior of the denoising operator in terms of staircasing: in [55] Nikolova
proves (under particular assumptions which are probably not met here) that the differentia-
bility of the regularizing term is a necessary and sufficient condition to avoid the staircasing
effect.

Corollary 3.17. TVσ is Lipschitz-continuous, and denoting by ‖ · ‖Lip the Lipschitz constant
of an operator, we have

∀σ > 0, ‖TVσ‖Lip ≤ ‖TV ‖Lip.
Proof. TVσ is differentiable and SLSE is invertible, so thanks to (35), we get

‖TVσ‖Lip = sup
u
‖∇TVσ(u)‖ = 2 sup

v
‖SLSE(v)− v‖ = 2 sup

v
‖σ2∇ log(p ∗Gσ)(v)‖

= 2σ2‖ log(p ∗Gσ)‖Lip.

It remains to compute ‖ log(p ∗Gσ)‖Lip. But since p = 1
Z e

− TV
2σ2 , letting κ = ‖TV ‖Lip, we have

for every u, v, and v′ in R
n

p(v − u) ≤ p(v′ − u)e κ
2σ2 ‖v−v′‖.

Hence, for every v and v′,

p ∗Gσ(v) =

∫
p(v − u)Gσ(u) du ≤

∫
p(v′ − u)e κ

2σ2 ‖v−v′‖Gσ(u) du = p ∗Gσ(v
′)e

κ
2σ2 ‖v−v′‖,

which means that ‖ log(p ∗ Gσ)‖Lip ≤ κ
2σ2 and that ‖TVσ‖Lip ≤ κ, which concludes the

proof.
Let us consider a consequence of Corollary 3.17. By definition of TVσ, û = SLSE(v)

minimizes ‖u − v‖2 + TVσ(u) among all u ∈ R
Ω. As TVσ is smooth and convex, this energy

can be differentiated, and û is characterized by

(36) 2(û− v) +∇TVσ(û) = 0.

Subtracting (36) in two neighboring pixels x and y yields

(û(x)− v(x)) − (û(y)− v(y)) = 1

2

(
∇TVσ(û)(y) −∇TVσ(û)(x)

)
,

but as ‖∇TVσ‖ is bounded from above by ‖TV ‖Lip, we have

(37) |û(x)− û(y)| ≥ |v(x)− v(y)| − ‖TV ‖Lip.

In particular, if the absolute gap of v between pixels x and y is greater than ‖TV ‖Lip, then
there will also be a gap for û between these pixels. This explains why TV-LSE is able, like
ROF, to restore contrasted edges.

We end this section with an explicit (but hardly tractable) formulation connecting TVσ
to TV .
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Corollary 3.18. The potential TVσ is linked to TV by the equality

(38)

(
I +

1

2
∇TVσ

)−1

= I + σ2
∇(p ∗Gσ)

p ∗Gσ

or, equivalently, by

(39)
1

2
∇TVσ =

(
I + σ2∇ log(e−

TV
2σ2 ∗Gσ)

)−1
− I.

Proof. Rewriting (31) gives

SLSE = I + σ2
∇(p ∗Gσ)

p ∗Gσ
.

Now, because of (35), we can write

S−1
LSE = I +

1

2
∇TVσ.

Grouping these two equations yields (38), and (39) immediately follows from p = 1
Z e

− TV
2σ2 .

There is probably no simple closed formula for TVσ, but (39) is a natural starting point
to derive approximations of ∇TVσ. For instance, it seems that when σ goes to 0, ∇TVσ
converges to ∇TV at each point where TV is differentiable. Obtaining a higher order Taylor
expansion of the right-hand side of (39) would be most helpful in getting an intuition of the
deviation made by TVσ with respect to TV . Closed-form approximations of TVσ would be
very interesting, too, since they could be inserted into a minimization algorithm to efficiently
compute approximations of the TV-LSE operator.

Another natural question that arises from the definition of TVσ is, Would it be interesting
to iterate the TV 	→ TVσ process? Let us make this idea more explicit: call S0 the ROF
denoising operator (associated to the TV-based prior π0); then by induction define Si+1 (for
any integer i) as the conditional mean of πi, and assume that it can be interpreted as the
mode of a prior πi+1 (as we did to define TVσ from TV-LSE). By definition, S1 is nothing but
the TV-LSE operator (SLSE), and the study of the sequence (Si)i≥0 could be an interesting
problem. Now, since the distribution π1 is associated to the smooth functional TVσ, its
mode and its expectation are likely to be very close to each other (for a second-order—hence
symmetric—approximation around the mode, they would be equal), so that S2 ≈ S1, which
makes us believe that more iterations of the process would probably result in minor alterations
of S1. In a sense, the TV-LSE operator could reconcile Bayesian and frequentist point of views,
since the MAP and LSE approaches lead to very similar operators for the prior associated to
TVσ (this is another way of saying that S2 ≈ S1).

4. Experiments.

4.1. An algorithm for TV-LSE. As we saw in (24), the denoised image ûLSE can be
written as

(40) ûLSE =

∫
uπ(du) =

∫
uπ(u) du, where π(u) =

1

Z
e−

1
2σ2 Ev,λ(u)
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is the density of the posterior distribution π. Hence, the computation of ûLSE implies an
integration on the whole space of discrete images RΩ. Surprisingly enough, such an integration
over a very high dimensional space can be realized in a reasonable time via a Monte-Carlo
Markov chain (MCMC) method. Here we give only a quick and intuitive explanation of the
algorithm described in [47]. A more complete publication, devoted to the detailed description
and study of this algorithm, is currently in preparation; for the time being, the interested
reader can find more details in [46].

The principle of the MCMC algorithm is the following: if we were able to draw inde-
pendent and identically distributed samples from the posterior distribution π (40), a good
approximation of the posterior mean ûLSE could be obtained, thanks to the law of large num-
bers, by averaging all of these samples. Now, as sampling directly from π is computationally
out of reach, we build a first-order Markov chain of images (Un)n≥0 (which means that Un+1

depends only on Un and on other independent random variables) whose stationary distribution
(that is, the asymptotic distribution of Un when n → +∞) is π. The Metropolis–Hastings
algorithm provides a simple way of achieving this. Then an ergodic theorem, well adapted to
our framework, states that the average of the (dependent) samples successfully approximates
the mean of π (see [47]).

Let us describe the construction of (Un) in more detail. The first sample U0 is drawn at
random from an initial measure μ0 (e.g., a white noise). Then, the transition from Uk to Uk+1

(for any k ≥ 0) is realized in two steps. First, an intermediate image Uk+1/2 is generated by
adding a uniform random perturbation to one random pixel of Uk. Second, Uk+1 is chosen to
be equal to Uk+1/2 or Uk (that is, the transition Uk → Uk+1/2 is accepted or not) according
to the following rule: if π(Uk+1/2) > π(Uk), then Uk+1 = Uk+1/2 (the transition is accepted);
otherwise, the transition is accepted only with probability π(Uk+1)/π(Uk) (if the transition is
rejected, then Uk+1 = Uk; that is, nothing happens during this iteration). The chain is run
until it reaches a precise convergence criterion, say at iteration n. In the end, we approximate
ûLSE by 1

n

∑n
k=1 Uk.

This mathematical construction can be translated into Algorithm 1 below, which returns
an estimate of SLSE(u). It makes use of the function Ex

v,λ(u, t), which is defined as follows:

denote by ux,t ∈ R
Ω the image defined by

∀y ∈ Ω, ux,t(y) =

{
u(y) if y �= x,

t if y = x;

then Ex
v,λ(u, t) captures in the formula for Ev,λ(ux,t) (see (5)) only the terms that depend on

t. It is not difficult to see that if the �2-norm is used for |Du|, then

∀(x, y) ∈ Ω, E
(x,y)
v,λ (u, t) = (t− v(x, y))2

+λ
√
(u(x− 1, y)− t)2 + (u(x− 1, y)− u(x− 1, y + 1))2

+λ
√
(u(x, y − 1)− t)2 + (u(x, y − 1)− u(x+ 1, y − 1))2

+λ
√
(t− u(x+ 1, y))2 + (t− u(x, y + 1))2,(41)

with the boundary convention that any squared difference term that contains an undefined
term (u(z) with z �∈ Ω) is replaced with 0.
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Algorithm 1. Principle of Metropolis–Hastings algorithm to compute ûLSE.

n← 0, S ∼ μ0
draw a white noise image U
repeat
draw x ∼ U(Ω) (uniform distribution on Ω)
t← U(x)
draw t′ ∼ U([t− α, t+ α])

let U(x)← t′ with probability min
(
1, exp

(− Ex
v,λ(u,t

′)−Ex
v,λ(u,t)

2σ2

))
(see (41))

S ← S + U
n← n+ 1

until convergence criterion is satisfied
return 1

nS.

In practice, a more elaborate version of Algorithm 1 is used, as described in [46, 47]. The
convergence criterion is based on the use of two independent chains, (Uk) and (Ũk), and on the
fact that due to the large dimension (see section 2.3), the estimation error can be accurately
predicted by the distance between the two chains. Indeed, one has (see [46, section 2.3.3] and
[47, section 3.2])∥∥∥∥∥ûLSE − Sn + S̃n

2

∥∥∥∥∥ ≈ 1

2
‖Sn − S̃n‖, where Sn =

1

n

n∑
k=1

Uk and S̃n =
1

n

n∑
k=1

Ũk.

Also, a so-called burn-in procedure is used, which speeds up the convergence of the algo-
rithm: instead of averaging all the (Uk)1≤k≤n, it is preferable to skip the first b iterations and
begin the averaging from iteration b + 1, once the chain has attained an approximately sta-
tionary regime. An elegant procedure, again relying on the high dimensionality of the image
space, permits one to optimize the parameter b during the iterations (see [46, section 2.4]).

As for the parameter α of Algorithm 1, it can be automatically set by using a fast prelim-
inary scaling procedure based on the control of the acceptation rate of the U(x)← t′ decision
in the algorithm. More details, as well as a proof of convergence of the algorithm, can be
found in [46] and [47].

Algorithm 1, optimized as described above, is able to compute the TV-LSE denoised
version ũ of a 256 × 256 image with precision 1 (that is, 1

|Ω|
∑

x∈Ω(ũ(x) − ûLSE(x))
2 ≤ 1)

in approximately 1 minute on a single 3 GHz processor (σ = 10, λ = 40). Note that this
algorithm can be very easily and efficiently parallelized on multicore hardware by running
(and averaging) several independent chains.

4.2. Comparison to the ROF model and the staircasing effect. In Figures 2–4, we
show signals and images corrupted with additive Gaussian noise and denoised using both
the proposed TV-LSE method and the classical ROF method. The signal version of both
denoisers consists in regarding the input signal as a one-line (N × 1) image; note that in
this case, both �1- and �2-schemes for |Du| lead to absolute values of successive differences.
On the one hand, several similarities between the denoised signals or images can be noticed.
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Figure 2. Denoising of a simple synthetic signal. A triangle-shaped signal (left figure, red curve) is corrupted
by an additive white Gaussian noise, and the resulting signal (left, green curve) is then denoised using the ROF
(middle) and TV-LSE (right) methods. In the ROF result, the noise has been wiped off on the initially constant
parts of the signal, but a strong staircasing effect appears on the slope. The TV-LSE method behaves more
smoothly: no staircasing appears on the slope, and the noise is attenuated (but not completely removed) on the
initially constant parts. The parameters of the ROF and TV-LSE methods have been set to equalize the method
noise level (L2-distance from the noisy signal to the result).

Indeed, it can be seen that most of the noise is removed and that contrasted contours (or
large gaps for signals) are preserved. On the other hand, the proposed TV-LSE model shows
some differences with respect to the ROF model, the most striking of which is the avoidance
of the staircasing effect, proved in Theorem 3.15. This can be seen, for instance, in Figure
2, where the affine part of the signal is well restored by TV-LSE. In Figure 3, a constant
image is corrupted with a Gaussian white noise (σ = 20) and then denoised by either ROF or
TV-LSE for different values of the parameter λ, and we can observe that the artificial edges
brought by ROF are avoided by the TV-LSE method, which manages to attenuate the noise
in a much smoother way. Figure 4 again considers the images of Figure 1 and illustrates the
good behavior of TV-LSE with respect to the staircasing effect, whereas the ROF denoiser
moves smooth regions into piecewise constant regions with spurious contrasted edges. Note
also that TV-LSE denoised images have a more “textured” aspect than ROF denoised images.
This heuristically agrees with the injectivity of the TV-LSE denoiser (Lemma 3.12), according
to which two versions of the noisy image (two different noise realizations) cannot lead to the
same denoised result: there must remain some trace of the initial noise in the denoised image.
In Figure 5, we can observe that the histograms of the horizontal derivatives of the ROF
denoised images contain a Dirac mass in zero, as was mentioned in section 2.2, while TV-LSE
denoised images avoid this artifact, as predicted by Theorem 3.15.

4.3. Role of the hyperparameters. As clearly appears in (24), the TV-LSE model in-
volves two hyperparameters: the (known or estimated) noise standard deviation σ and the
regularization parameter λ balancing the data-fidelity term and the regularity term. In com-
parison, the ROF model depends on the latter only.

Figures 6 and 7 show how the TV-LSE denoised image changes when λ is tuned while
maintaining a fixed value of σ (Figure 6), or when σ is tuned with a fixed value of λ (Figure
7). One can see in Figure 6 that fixing σ > 0 and letting λ go to 0 makes the image look
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noise (σ = 20) ROF (λ = 20.3) TV-LSE (λ = 50, σ = 20)

noise (enhanced contrast) ROF (λ = 28.4) TV-LSE (λ = 100, σ = 20)

Figure 3. Denoising of a pure noise image. A constant image is corrupted by a white Gaussian noise with
standard deviation σ = 20 (top left image and bottom left image after an affine contrast change). In columns
2 and 3 we show, respectively, the results of ROF and TV-LSE methods on this image, the gray-level scale
being the same for all images of a given row. As in Figure 2, the TV-LSE and ROF parameters are set to
equalize (inside each row) the method noise levels of both methods. For the low denoising level (first row),
isolated pixels remain in the ROF result (this can be understood by the fact that ROF is not far from being an
�0 (sparse) recovery operator, and a single pixel with outstanding value has a relatively small cost for the �0

energy), which does not happen for TV-LSE. Furthermore, a staircasing effect (artificial edges) is clearly visible
in the ROF result, while TV-LSE manages to maintain a smoother image. For the high denoising level (second
row), ROF almost acts like a segmentation method and breaks the domain into flat artificial regions, while the
TV-LSE result gets uniformly smoother. This experiment clearly illustrates the different behaviors of the ROF
and TV-LSE methods on flat regions, and in particular the fact that the TV-LSE model, though being based on
the TV operator, completely avoids the staircasing effect.

like the noisy initial image, and increasing λ makes the image smoother until it becomes a
constant. One can also see in Figure 7 that fixing λ > 0 and letting σ go to 0 makes the image
look like the ROF denoised image containing some staircasing effect, and that when σ gets
larger, the image gets closer to the noisy initial image. All of these observations agree with
the asymptotic results of section 3.2.

The λ parameter is useful since it permits one to easily compare ROF and TV-LSE
denoising methods. But a more relevant regularity parameter is β = λ

2σ2 , which corresponds
to the inverse temperature in the prior probability (6) motivating the introduction of TV-
LSE. Thus, considering σ and β as the two hyperparameters of the model allows us to better
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noisy ROF TV-LSE

Figure 4. No staircasing effect with TV-LSE. We experimentally check that the TV-LSE method does not
create staircasing artifacts. The left column shows parts of the classical Lena and Barbara images, after they
have been corrupted with an additive white Gaussian noise (σ = 10). The right column shows the corresponding
TV-LSE denoised images with (σ, λ) = (10, 40), while the middle column shows the ROF denoised images,
with a value of λ that leads to the same method noise level in each case (from top to bottom: λROF = 25.6,
λROF = 20.3, λROF = 29.0, λROF = 26.9). The main difference between the two methods is clearly the
staircasing effect, which does not occur in TV-LSE images but introduces spurious edges in the ROF images.
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Figure 5. The staircasing effect revealed by gradient histograms. These plots display the histogram of the
discrete horizontal derivative of several versions of the Lena (top row) and Barbara (bottom row) images. The
columns correspond, from left to right, to the original (noise-free) image, the noisy version (σ = 10), and the
noisy version denoised by ROF and TV-LSE, respectively, with the same level of denoising (measured by the
norm of the estimated noise image). The staircasing effect is responsible for the high central peak of the ROF
plot, whereas the TV-LSE plot looks like a generalized Laplace distribution, which would typically be observed
on a natural (staircasing-free) image.

σ
=

10

λ = 2 λ = 8 λ = 32 λ = 128

Figure 6. A noisy image is processed by TV-LSE with σ = 10 (which corresponds to the standard deviation
of the noise) and increasing values of λ. When λ is small (left), the denoised image ûLSE is very close to the
noisy image v. As λ increases, the noise gradually disappears, the homogeneous regions being smoothed out
without staircasing. Then, as λ increases further, the texture is erased, and the result gets close to a piecewise
smooth image (right).

dissociate the noise and regularization parameters. In Figure 8 a part of a noisy Lena image
is denoised using TV-LSE with a constant β and increasing values of σ. The denoised image
goes from the initial noisy image to a flat and smooth image: β really acts as the regularizing
parameter. Notice that, inversely, fixing σ and increasing β would be equivalent to the case
of Figure 6 (fixed σ and increasing values of λ).

To compare precisely the advantage of TV-LSE over ROF in terms of image denoising
(see Figure 9), we fixed the level of denoising, measured by the L2-norm of the residual image
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λ
=

30

σ = 1.25 σ = 5 σ = 20 σ = 80

Figure 7. A noisy image is processed by TV-LSE with λ = 30 and increasing values of σ. When σ is small
(left), the denoised image ûLSE is very close to the ROF-denoised image ûROF(λ), with some texture erased and
some staircasing visible: the cheek and hat parts contain boundaries which do not exist in the original Lena
image. As σ increases, ûLSE looks more and more like the noisy image, which is consistent with the convergence
ûLSE(σ, λ) → v when σ → ∞.

β
=

λ
2
σ
2
=

0.
15

σ = 1.25 σ = 5 σ = 20 σ = 80

Figure 8. A noisy image is processed by TV-LSE with β = λ
2σ2 = 0.15 fixed and increasing values of

σ. For small values of σ, the denoised image is close to the noisy image (left). As σ increases, the image is
regularized, the edges are preserved, but the texture is gradually erased. When σ further increases (right), the
denoised image is completely blurred out.

v − ûLSE (method noise) and considered increasing values of σ (for a given σ there exists at
most one value of λ such that the desired level of denoising is reached, and this value increases
with σ). For σ = 0, this corresponds to ROF denoising, but as σ increases we can observe the
benefit of using TV-LSE in terms of staircasing. The fact that staircasing artifacts gradually
disappear seems in contradiction with Theorem 3.15, which states that staircasing vanishes as
soon as σ is positive; in fact it is not, and this simply comes from the fact that the (classical)
definition of staircasing used in Theorem 3.15 is a qualitative (yes-no) property, while our
perception is more quantitative (difference between gray-level variations in flat zones and
along their boundaries). By the way, it would certainly be interesting to characterize the limit
TV-LSE image obtained by sending σ → +∞ while maintaining the method noise level as
in Figure 9. Indeed, this limit image would define a filter controlled by a single parameter,
the method noise level. In practice, we observe that ordinary values of σ (and, in particular,
choosing for σ the known or estimated noise level) lead to satisfactory results in the sense
that they benefit from the good properties of the TV model (in particular, edge preservation)
without suffering from the staircasing effect.
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Figure 9. The level of denoising ‖ûLSE(σ, λ) − v‖ = 9 being fixed, TV-LSE is applied to a noisy image v
for different values of σ. The value σ = 0 (left) corresponds to ROF: the image noise has been well cleaned, but
some texture is erased, and staircasing is clearly visible (on the cheek for instance). As σ increases, staircasing
disappears, and the aspect of the denoised image becomes more natural.

Figure 10 gives a two-dimensional view of the roles of the parameters σ and λ. The
visual quality of the denoised image is good for medium values of σ and λ (typically σ = 10,
corresponding to the noise level, and λ = 40), because it avoids the staircasing effect while
maintaining the main structure of the image. The denoising quality is quite robust to the
choice of σ, which allows for some inaccuracy in the estimation of the noise level.

4.4. A SURE criterion to select the hyperparameters σ and λ. Contrary to the ROF
model that only involves one parameter (λ), the TV-LSE model depends on two parameters
(λ and σ). Hence, considering the relative slowness of Algorithm 1, it may be interesting to
have an automatic way of setting these parameters. Of course, σ can be set equal to the noise
standard deviation, which is theoretically sound in the Bayesian framework of section 2.1, but
as our theoretical convergence results prove (section 3.2), having σ going to 0 makes TV-LSE
converge to ROF denoising, so that the tuning of σ comes into question. In the end, as we
discussed in section 3.2, it seems more interesting to consider σ as a tunable parameter, on
the same level as λ.

If one wants to tune (σ, λ) so as to minimize the L2-distance between the TV-LSE denoised
image and the original noise-free image, knowledge of the latter is required, unless an unbiased
risk estimator can be used. It turns out that Stein’s unbiased risk estimator (SURE) [70] is
easily computable for TV-LSE. The SURE for a denoising operator S and a noisy image
v ∈ R

Ω is

(42) SURE(S)(v) = ‖S(v) − v‖2 + 2σ20
∑
x∈Ω

∂S(v)(x)

∂v(x)
− σ20|Ω|,

where σ0 is the standard deviation of the noise. The interesting property of SURE is that
its expectation among all realizations of noise is the same as that of MSE(v) := ‖S(v)− u‖2,
where u is the (unknown) noise-free image (see [73] for a short proof and further references).
In practice, SURE and MSE have the same order of magnitude for a given noise, and it is
enough to set the parameters so as to minimize SURE to obtain a near-to-optimal PSNR.

Proposition 4.1. The SURE for the operator SLSE with parameters λ and σ is

(43) SURE(Sλ,σ
LSE)(v) = ‖Eπ(U)− v‖2 + 2σ20

σ2
Eπ‖U − Eπ(U)‖2 − σ20|Ω|,



2670 C. LOUCHET AND L. MOISAN

λ
=

0
λ
=

10
λ
=

40
λ
=

16
0

σ = 0 σ = 5 σ = 10 σ = 20

Figure 10. Effect of the two parameters λ and σ on TV-LSE. A noisy version of the Lena image (Gaussian
white noise with standard deviation equal to 10) is processed with TV-LSE for various values of λ and σ. First
row: λ = 0 (the TV-LSE image is equal to the noisy image); second row: λ = 10; third row: λ = 40; last row:
λ = 160. First column: σ = 0 (the TV-LSE denoised image corresponds to ROF); second column: σ = 5; third
column: σ = 10; last column: σ = 20.

where π is the posterior distribution (depending on λ and σ) and σ0 is the standard deviation
of the noise.

The proof of Proposition 4.1 is postponed to Appendix D.

Thanks to the usual property

Eπ‖U − Eπ(U)‖2 = Eπ‖U‖2 − ‖Eπ(U)‖2,
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SURE(Sλ,σ
LSE) can be computed within Algorithm 1 for a pair (σ, λ) with no extra loop: it

suffices to keep in memory the sum of the squares of the chains (the convergence is only a
little slower for SURE than for SLSE). In Figure 11, the value of the SURE criterion is plotted
for different values of σ and λ, and a comparison with the oracle MSE = ‖SLSE(v) − u‖2 is
proposed. It is apparent first that minimizing SURE is an efficient tool for minimizing MSE
as they attain their minimum for similar pairs (σ, λ). Note that the minimum of MSE (and
SURE) is reached neither for σ = 0 (which would have demonstrated the superiority of ROF
over TV-LSE) nor for σ = σ0, the true standard deviation of the noise (which is in favor of
considering σ as a full parameter, as we do). Note that the SURE criterion for ROF cannot be
directly derived from (43) because the associated distribution π has variance 0, but another
way to compute the SURE criterion of the ROF model can be found in [72].
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Figure 11. Comparison of SURE and MSE. Top left: The SURE criterion for TV-LSE is computed for
a noisy subpart of the Lena image, in function of λ (x-axis) and σ (y-axis), and some of its level lines are
displayed. The similarity to the level lines of the MSE oracle (top right) is remarkable. This shows that the
optimal values (in the PSNR sense) of the parameters λ and σ can be efficiently approximated by looking for the
values that minimize the SURE criterion. In the bottom row, we can observe slices corresponding, respectively,
to σ = 2.5 and a variable λ (left), and to λ = 12 and a variable σ (right), which are also very similar.

4.5. Comparison to other TV-based denoising methods. In this section, we propose
comparing TV-LSE to other denoising methods through numerical experiments. We limit
ourselves to TV-based methods, since the aim of this paper is not to bring a general and
state-of-the-art denoising method, but rather to explore new possibilities for TV as a model
for images, and in particular qualitative properties of the corresponding denoising algorithms.
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This is why we shall examine and discuss the visual properties of the denoised images rather
than try to blindly rank the different methods using classical metrics like the PSNR or the
structural similarity index which are poor predictors of the visual quality of the results. Indeed,
Table 1 show that except for the TV-L1 method (which performs significantly worse), all
considered methods achieve similar PSNR levels.

Table 1
Table of PSNR values obtained for the denoising of the Lena image for different values of σ0, the standard

deviation of the noise. For each method, the optimal parameters are used.

Noisy ROF TV-bary TV-L1 TV-LSE TV-Huber TV-ε Local-TV

σ0 = 10 28.13 34.21 34.22 32.90 34.26 34.25 34.25 34.21

σ0 = 20 22.10 31.05 31.07 30.04 31.10 31.09 31.09 31.05

Let us now focus on the visual comparison of the different TV-based denoising methods
being considered. Given a noisy image v, we propose comparing ûLSE(σ, λ), the result of
TV-LSE applied to v with parameters σ and λ, to the following:

• ROF denoising, alias TV-MAP: the denoised image is denoted by ûROF(λROF). The
parameter λROF is tuned in such a way that the denoising level ‖v − ûROF(λROF)‖
equals that of ûLSE(σ, λ), ‖v − ûLSE(σ, λ)‖.

• TV-barycenter: in order to be able to compare ûLSE(σ, λ) and ûROF(λ) with the same
value of λ (that is, for which both methods deal with the same energy Ev,λ), we propose
combining ûROF(λ) linearly with the noisy image v via

ûbary = t ûROF(λ) + (1− t) v with t =
‖v − ûROF(λ)‖
‖v − ûLSE(σ, λ)‖ .

We obtain a barycenter of ûROF(λ) and v which has the desired denoising level. The
choice of this method is also justified by the observation that the quality of denoising
often increases both visually and in PSNR when deviating the ROF estimate toward
v (in other terms, visual quality is better when noise and texture are not completely
removed).

• TV-ε: it is well known that smoothing the TV and embedding it in the usual variational
framework leads to a staircasing-free denoising model [55]. More precisely, we can
define generalizations of TV on R

Ω by

(44) TVf (u) =
∑
x∈Ω

f(|Du|)

for specific smooth functions f : R→ R that approximate the absolute value function,
and then denoise an image v by minimizing

(45) Ef (u) = ‖u− v‖2 + λTVf (u).

The smoothness of f in the neighborhood of 0 implies a regular processing of small
gradients and avoids staircasing. A natural example of such a function f is

fε : x 	→
√
ε2 + x2 with ε > 0,
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which is convex and smooth. This leads to a denoising method referred to here as
TV-ε, which is computable by a simple gradient descent. The parameter ε roughly
corresponds to the minimal gradient magnitude of a discontinuity in the denoised
image. We choose to set ε = 10 for images with gray levels lying in [0, 255], while the
parameter λ = λε is such that the denoising level of TV-LSE is reached.

• TV-Huber: another possible function f for (44) and (45), discussed in [74], for instance,
is the so-called Huber norm

fα : x 	→
{

1
2αx

2 if |x| ≤ α,
|x| − α

2 if |x| > α.

This leads to a denoising model referred to here as TV-Huber model, which also has
the property of avoiding the staircasing effect. A fast primal-dual algorithm can be
used to compute the minimum of Efα [19]. Like ε in TV-ε denoising, α corresponds
to a minimal gradient for discontinuity and is set to 10. The regularization parameter
λ = λHuber is such that the denoising level of TV-LSE is reached.

• TV-L1: we consider the minimizer of

E(u) = ‖u− v‖1 + λL1 TV (u),

where ‖ · ‖1 is the L1-norm. The only change of the fidelity term makes it especially
adapted to remove impulse noise and makes the denoiser become contrast invariant
[26, 54].

• Local-TV: it has been proved in [48] that another way of avoiding staircasing in a TV
framework is to “localize” it: denoising the pixel x of a noisy image v by the local-TV
filter consists of first extracting a patch v(Wx) centered at x from the image, then
denoising the patch by ROF with a given regularizing parameter λloc, independent
from x, and finally assigning to the denoised image at x the central value of the
denoised patch. The pixels of the patch can be weighted, leading to the more general
scheme

ûloc(x) = u(x), where u ∈ R
Wx minimizes

∑
y∈Wx

ω(y−x)(u(y)−v(y))2+λloc TV (u)

for each pixel x. This scheme (with Gaussian or constant weights ω(h), for instance)
is able to avoid staircasing in the sense that if all the patches of a given region have
small enough variance, then the filter is equivalent to a blurring linear filter on this
region [48]. In our present experiments, we use 5 × 5 patches and Gaussian weights
ω(h) = exp(−‖h‖2/(2a2)) with a = 2. The parameter λloc is chosen such that the
denoising level is that of TV-LSE.

Figures 12–14 zoom in on different parts of the Lena image processed with all of the
methods listed above. As expected, ROF results present strong staircasing artifacts, and the
added noise in TV-barycenter does not manage to remove them. The TV-L1 model, due
to its morphological invariance (invariance with respect to increasing contrast changes), is
more suitable for granularity analysis or impulse noise removal than for piecewise smooth
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noisy ROF TV-barycenter TV-L1

TV-LSE TV-Huber TV-ε local-TV

Figure 12. Comparison of TV-LSE denoising to other TV-based denoising methods. The Lena image is
corrupted with an additive Gaussian noise with standard deviation equal to 10, and the resulting noisy image
(detail on top, left) is first processed with TV-LSE using the parameters (σ, λ) = (10, 30), then processed with
the other above-mentioned methods. The fixed parameters for these other methods are ε = 10 for TV-ε, α = 10
for TV-Huber, while for local-TV 5× 5 patches are used together with Gaussian weights with parameter a = 2.
The remaining parameter of each method is adjusted in such a way that the resulting method noise (norm of
the estimated noise image) equals the one of TV-LSE, which leads to λROF = 17.03 for ROF, t = 0.87 for TV-
barycenter, λL1 = 0.80 for TV-L1, λHuber = 28.78 for TV-Huber, λε = 23.19 for TV-ε, and λloc = 15.54 for
local-TV. The 3 results appearing in the first row (ROF, TV-barycenter and TV-L1) all suffer from staircasing
artifacts, visible in particular as spurious contrasted edges. On the second row, staircasing is avoided but TV-
LSE and TV-Huber lead to better quality (and very similar) images compared to TV-ε and local-TV. Note that
these pictures only show a detail of the Lena image (processed as a whole). Zooms on other details are given
in Figures 13 and 14.

image retrieval, and the resulting images show even stronger staircasing artifacts. Among
other methods, the similarity between the results of TV-Huber and TV-LSE is striking, both
visually and qualitatively: no staircasing, a faithful reconstruction of contrasted edges, and
good overall quality. TV-ε also avoids staircasing and is able to reconstruct edges, but it is
not as good as TV-Huber and TV-LSE. Local-TV looks quite different: it is sharper than
TV-LSE, but several spurious contours or spikes are still visible as in the ROF image.

We observed in our experiments that the results obtained with TV-Huber and TV-LSE
could be very similar. We do not have a full explanation for this, but the results obtained in
section 3.3 shed an interesting light. Indeed, we showed that TV-LSE is a MAP estimator
associated to the smooth prior potential TVσ (see Definition 3.10), which seems, according to
(39), to be a regularized version of TV converging to TV when σ goes to 0. Hence, it is not
completely unexpected that replacing TV with a regularized prior as in TV-Huber leads to
results that resemble those of TV-LSE, at least for small values of σ. It would be interesting
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noisy ROF TV-barycenter TV-L1

TV-LSE TV-Huber TV-ε local-TV

Figure 13. A second detail of Lena, denoised with various TV-based methods, as in Figure 12. The
conclusions are similar: notice in particular how the stripes (top left corner of each subimage) are better
restored with the TV-LSE and TV-Huber methods.

to determine, among all regularized versions of the gradient norm under the form ϕ(‖Du‖),
which function ϕ leads to the best approximation of the TV-LSE operator for a given choice
of σ and λ.

5. Conclusion. In this paper, we studied the TV-LSE variant of the Rudin–Osher–Fatemi
(ROF) denoising model, which consists in estimating the expectation of the Bayesian posterior
distribution rather than the image with highest posterior density (MAP). We proved, among
other properties, that this denoising scheme avoids one major drawback of the classical ROF
model, that is, the staircasing effect. This shows in particular that the staircasing observed
with the classical ROF model is not a consequence of the TV term, but rather a model
distortion due to the MAP framework, as Nikolova pointed out in [57]. As mentioned in the
introduction, the posterior expectation often goes along with a better preservation of local
statistics: this is somehow the case for the gradient norm of the denoised images, which, in
the TV-LSE variant, avoids the strong peak in 0 that is observed with the ROF model.

These theoretical properties have a direct consequence in the visual quality of the denoised
images, which show a nice combination of sharp edges (the most interesting property of the TV
functional) and the absence of staircase (piecewise constant) regions. In this sense, the TV-
LSE model favorably compares to other TV-based denoising methods, as was shown in section
4. Note that the relative amount of staircasing was evaluated only visually (see Figures 12–14
in particular) and in terms of gradient histograms (Figure 5), but it would be very interesting
to derive a specific metric dedicated to staircasing evaluation, in order to obtain quantitative
results. Numerical experiments also revealed that the results of the TV-LSE model can be, for
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noisy ROF TV-barycenter TV-L1

TV-LSE TV-Huber TV-ε local-TV

Figure 14. A third detail of Lena, denoised with various TV-based methods, as in Figure 12.

a certain range of parameters, very close to the images produced by the TV-Huber method,
which sheds light on the latter model and, more generally, on modifications of the ROF energy
that would lead to good approximations of the TV-LSE method.

Beyond its use in the TV-LSE denoising variant, we believe that the theoretical and numer-
ical framework introduced here opens interesting perspectives, not only for other restoration
tasks such as deblurring, zooming, and inpainting, but also because a very similar algorithm
could be used to compute the LSE variant associated with other (nonnecessarily convex) func-
tionals (even the nonlocal TV denoising [32] could be reformulated in a TV-LSE setting) or
to explore other statistics (median, maximum of marginal distribution, etc.) of the posterior
distribution. The appealing case of concave priors seems particularly interesting, but even
though initial experiments tend to show that the algorithm used in the present paper still
works in some cases, the mathematical framework should be widely adapted.

Appendix A. Mild assumptions for the TV scheme. Throughout the paper, TV is
assumed to be of the form

TV (u) =
∑
x∈Ω

√
(Du(x)1)2 + (Du(x)2)2 (�2 formulation)

or

TV (u) =
∑
x∈Ω

(|Du(x)1|+ |Du(x)2|) (�1 formulation).

However, the only requirements we really need in the results of section 3 are the following
(which are met by both the �1 and �2 formulations):
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(A1) The TV operator maps R
Ω on R ∪ {+∞}; it is nonnegative, convex, and Lipschitz

continuous (so that its domain {u ∈ R
Ω, TV (u) < +∞} has a nonempty interior).

(A2) The TV operator is positively homogeneous; i.e., for every u ∈ R
Ω and every α ∈ R, we

have TV (αu) = |α|TV (u).
(A3) The TV operator is shift-invariant; i.e., for every c ∈ R and every u ∈ R

Ω, we have
TV (u+ c) = TV (u).

(A4) The TV operator satisfies the discrete form of the Poincaré inequality; i.e., there exists
C > 0 such that

∀u ∈ R
Ω, ‖u− ū‖ ≤ C TV (u),

where ū is the mean of u on Ω.
In particular, any norm on the space E0 of zero mean images, extended by shift invariance

on R
Ω, suits these assumptions. For example, if (ϕj,k) is any wavelet basis on the finite-

dimensional space R
Ω, the function

Fp,q;s(u) =

⎛
⎝∑

j

2−js/2

(∑
k

|〈u, ϕj,k〉|p
)q/p

⎞
⎠1/q

,

corresponding to the discretization of a homogeneous Besov seminorm ‖ · ‖Ḃs
p,q
, fits the as-

sumptions.

Appendix B. Proof of Lemma 3.7.
Lemma B.1. Let P ∈ R[X1, . . . ,Xn] be a polynomial. Let p be a bounded p.d.f. Let FP :

R
n → R be such that

(46) FP : v 	→
∫
Rn

P (u1, . . . , un) e
− ‖u−v‖2

2σ2 p(u) du.

Then FP is continuous and differentiable. Its derivative along the direction h is given by

dFP (v)(h) =

∫
Rn

〈u− v, h〉
σ2

P (u1, . . . , un) e
− ‖u−v‖2

2σ2 p(u) du.

Proof. In this proof, when u ∈ R
n, we shall write P (u) for P (u1, . . . , un) for concision.

Let us start by showing that FP is continuous, by applying the continuity theorem under the
integral sign. Let g be defined by

(47) g : (u, v) 	→ P (u) e−
‖u−v‖2

2σ2 p(u).

The mapping v 	→ g(u, v) is continuous. Now, note that if h is a unit vector of Rn, then

(48) |t| < ε ⇒ ‖u− v − th‖2 ≥ 1

2
‖u− v‖2 − ε2.

Let v ∈ R
n and ε > 0. Let us denote by B(v, ε) the set of v′ satisfying ‖v′ − v‖ ≤ ε. The

mapping g(u, ·) has an upper bound on B(v, ε), thanks to (48) given by

∀v′ ∈ B(v, ε),
∣∣g(u, v′)∣∣ ≤ |P (u)|e− 1

2 ‖u−v‖2−ε2

2σ2 p(u),



2678 C. LOUCHET AND L. MOISAN

which is an upper bound independent of v′ ∈ B(v, ε), and g(u, ·) is in L1(Rn) since p is
bounded (i.e., v 	→ g(u, v) is locally (in v) uniformly bounded by an integrable function).
Hence the continuity theorem under the integral sign applies, and FP is continuous.

To prove the differentiability of FP , let h be a unit vector of Rn, and let ε > 0. The
function

t ∈ (−ε, ε) 	→ P (u) e−
‖u−v−th‖2

2σ2 p(u)

is C1, with derivative

t 	→ 〈u− v, h〉 − t
σ2

P (u) e−
‖u−v−th‖2

2σ2 p(u),

and satisfies, thanks to (48),∣∣∣∣〈u− v, h〉 − tσ2
P (u) e−

‖u−v−th‖2
2σ2 p(u)

∣∣∣∣ ≤ ‖u− v‖+ ε

σ2
|P (u)| e− ‖u−v‖2

2σ2 e
ε2

2σ2 p(u).

This bound is independent of t (provided that |t| < ε) and h ∈ B(0, 1), and is integrable with
respect to u ∈ R

n since the Gaussian distribution admits finite moments of orders 1 and 2.
Now, thanks to the derivation theorem under the integral sign, the mapping t 	→ FP (v + th)
is differentiable at 0; then FP is differentiable, and its differential is written as

dFP (v)(h) =
∂

∂t

∫
Rn

P (u) e−
‖u−v−th‖2

2σ2 p(u) du

∣∣∣∣
t=0

=

∫
Rn

〈u− v, h〉
σ2

P (u) e−
‖u−v‖2

2σ2 p(u) du,

which is the desired result.
Proof of Lemma 3.7. SLSE is the division of two functions of type FP (46), with P = X

for the numerator and P = 1 for the denominator (leading to a positive value). Thanks to
Lemma B.1, FP is continuous and differentiable in both cases, and finally SLSE benefits from
this regularity, too.

Again, thanks to Lemma B.1,

σ2 dSLSE(v)(h)

=

∫ 〈h, u− v〉u e− ‖u−v‖2
2σ2 p(u) du∫

e−
‖u−v‖2

2σ2 p(u) du

−
∫ 〈h, u− v〉 e− ‖u−v‖2

2σ2 p(u) du∫
e−

‖u−v‖2
2σ2 p(u) du

∫
ue−

‖u−v‖2
2σ2 p(u) du∫

e−
‖u−v‖2

2σ2 p(u) du

=

∫ 〈h, u〉u e− ‖u−v‖2
2σ2 p(u) du∫

e−
‖u−v‖2

2σ2 p(u) du

−
∫ 〈h, u〉 e− ‖u−v‖2

2σ2 p(u) du∫
e−

‖u−v‖2
2σ2 p(u) du

∫
ue−

‖u−v‖2
2σ2 p(u) du∫

e−
‖u−v‖2

2σ2 p(u) du

.

The differential dSLSE(v) can be interpreted as a covariance matrix

σ2 dSLSE(v) = E[ZvZ
T
v ]− EZv EZT

v = CovZv,

where Zv follows a distribution with p.d.f. qv(u) =
1
Z e

− ‖u−v‖2
2σ2 p(u). Indeed, for each h ∈ R

n,

(CovZv)h = E[ZvZ
T
v h]− EZvE[Z

T
v h]

= E[〈h,Zv〉Zv]− E 〈h,Zv〉EZv,



POSTERIOR EXPECTATION OF THE TOTAL VARIATION MODEL 2679

where we can recognize σ2 dSLSE(v)(h). In particular, dSLSE(v) is symmetric with nonnegative
eigenvalues. Let us prove now that dSLSE(v) is positive-definite. To that end, let us assume
that there exists a vector h �= 0 in the kernel of dSLSE(v), i.e., such that

(CovZv)h = 0.

Then multiplying on the left by hT yields

hT (CovZv)h = var 〈h,Zv〉 = 0.

But the support of distribution qv satisfies

supp(qv) = supp(p) = {v ∈ R
n | f(v) <∞},

which has a nonempty interior. Then 〈h,Zv〉 cannot have a zero variance, and we obtain a
contradiction. Finally dSLSE(v) is a symmetric positive-definite matrix.

Appendix C. Proof of Lemma 3.13. For every v ∈ R
n, the triangle inequality applied to

SLSE(v)− v leads to

‖SLSE(v)− v‖ ≤
∫ ‖u− v‖e− ‖u−v‖2

2σ2 p(u) du∫
e−

‖u−v‖2
2σ2 p(u) du

≤
∫ ‖u‖e− ‖u‖2

2σ2 p(v + u) du∫
e−

‖u‖2
2σ2 p(v + u) du

.

Now since the potential f = − log p of the prior probability is Lipschitz-continuous, we have

∃k > 0, ∀u, v ∈ R
n, |f(v + u)− f(v)| ≤ k‖u‖,

so that
p(v)e−k‖u‖ ≤ p(v + u) ≤ p(v)ek‖u‖,

each side remaining positive. This allows us to bound the expression by

‖SLSE(v)− v‖ ≤
∫ ‖u‖e− ‖u‖2

2σ2 ek‖u‖p(v) du∫
e−

‖u‖2
2σ2 e−k‖u‖p(v) du

,

which simplifies into

‖SLSE(v)− v‖ ≤
∫ ‖u‖e− ‖u‖2

2σ2 ek‖u‖ du∫
e−

‖u‖2
2σ2 e−k‖u‖ du

,

which is finite and independent of v, proving the boundedness of SLSE − I.
If the dimension n = |Ω| is equal to 1, then SLSE is continuous and SLSE − I is bounded,

and, thanks to the intermediate value theorem, SLSE is onto. Now if n ≥ 2, as SLSE − I is
bounded, it is straightforward that

(49) lim
‖v‖→∞

| 〈SLSE(v), v〉 |
‖v‖ = +∞,
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so we can apply [12, Corollary 16]: since SLSE is continuous and satisfies (49) and

∀v1, v2 ∈ R
n, 〈SLSE(v2)− SLSE(v1), v2 − v1〉 ≥ 0

(monotony in the sense of Brezis, which is a weaker form of (33)), we conclude that SLSE is
onto.

Appendix D. Proof of Proposition 4.1. Recalling that SLSE(v) = Eπ(U), it is sufficient
to prove the equality of the middle terms of (42) and (43). Thanks to (31), SLSE(v) can be
written as

SLSE(v) = v + σ2∇ log(p ∗Gσ)(v),

with p = 1
Z e

− λ
2σ2 TV , so that

(50)
∑
x∈Ω

∂SLSE(v)

∂v(x)
(x) = |Ω|+ σ2Δ log(p ∗Gσ)(v).

Now

Δ log(p ∗Gσ)(v) =
∑
x∈Ω

(
∂2

∂v(x)2
log(p ∗Gσ)

)
(v)

=
∑
x∈Ω

⎡
⎣p ∗ ∂2Gσ

∂v(x)2
(v)

p ∗Gσ(v)
−

(
p ∗ ∂Gσ

∂v(x)(v)

p ∗Gσ(v)

)2
⎤
⎦ ,

with
∂Gσ

∂v(x)
(v) = −v(x)

σ2
Gσ(v) and

∂2Gσ

∂v(x)2
(v) =

v(x)2 − σ2
σ4

Gσ(v),

which we rewrite using the projection function δx : v 	→ v(x) as

∂Gσ

∂v(x)
= − 1

σ2
δxGσ and

∂2Gσ

∂v(x)2
=

1

σ4
(δ2x − σ2)Gσ ,

so that

Δ log(p ∗Gσ)(v) =
1

σ4

∑
x∈Ω

[
p ∗ (δ2x − σ2)Gσ(v)

p ∗Gσ(v)
−

(
p ∗ δxGσ(v)

p ∗Gσ(v)

)2
]
.

Now we have

p ∗ δxGσ(v)

p ∗Gσ(v)
=

∫
p(u)(v(x) − u(x))Gσ(u− v) du∫

p(u)Gσ(u− v) du = v(x) −
∫
p(u)u(x)Gσ(u− v) du∫
p(u)Gσ(u− v) du

= v(x)− SLSE(v)(x) = v(x) − Eπ[U(x)]

and

p ∗ (δ2x − σ2)Gσ(v)

p ∗Gσ(v)
=

∫
p(u)(v(x)2 − 2v(x)u(x) + u(x)2 − σ2)Gσ(u− v) du∫

p(u)Gσ(u− v) du
= v(x)2 − 2v(x)Eπ [U(x)] + Eπ[U(x)2]− σ2.
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Consequently,

Δ log(p ∗Gσ)(v) =
1

σ4

∑
x∈Ω

(
v(x)2 − 2v(x)Eπ[U(x)] + Eπ[U(x)2]− σ2 − (v(x) − Eπ[U(x)])2

)
,

which can be simplified to

Δ log(p ∗Gσ)(v) =
1

σ4

∑
x∈Ω

(
Eπ[U(x)2]− (Eπ[U(x)])2 − σ2

)
.

Combining this with (50), we obtain (43) from (42), and this concludes the proof.
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tions, Ph.D. thesis, Université Paris Est, Paris, France, 2010.



2682 C. LOUCHET AND L. MOISAN

[17] L. Chaari, J.-C. Pesquet, J.-Y. Tourneret, and P. Ciuciu, Parameter estimation for hybrid wavelet-
total variation regularization, in Proceedings of the IEEE Statistical Signal Processing Workshop
(SSP), 2011, pp. 461–464.

[18] A. Chambolle, V. Caselles, D. Cremers, M. Novaga, and T. Pock, An introduction to total
variation for image analysis, in Theoretical Foundations and Numerical Methods for Sparse Recovery,
De Gruyter, Berlin, 2010, pp. 263–340.

[19] A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with applications
to imaging, J. Math. Imaging Vision, 40 (2011), pp. 120–145.
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XVIII—1988, Lecture Notes in Math. 1427, Springer-Verlag, Berlin, 1990, pp. 113–193.

[29] S. Geman and D. Geman, Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of
images, in Readings in Computer Vision: Issues, Problems, Principles, and Paradigms, Morgan
Kaufmann, Los Altos, CA, 1987, pp. 564–584.

[30] P. Getreuer, Rudin-Osher-Fatemi Total Variation Denoising Using Split Bregman, Image Processing
On Line, 2012, http://dx.doi.org/10.5201/ipol.2012.g-tvd.

[31] C. J. Geyer, Practical Markov chain Monte Carlo, Statist. Sci., 7 (1992), pp. 473–483.
[32] G. Gilboa, J. Darbon, S. Osher, and T. Chan, Nonlocal Convex Functionals for Image Regularization,

UCLA CAM Report 06-57, UCLA, Los Angeles, CA, 2006.
[33] M. Grasmair, The equivalence of the taut string algorithm and BV-regularization, J. Math. Imaging

Vision, 27 (2007), pp. 59–66.
[34] R. Gribonval, Should penalized least squares regression be interpreted as maximum a posteriori estima-

tion?, IEEE Trans. Signal Process., 59 (2011), pp. 2405–2410.
[35] F. Guichard and F. Malgouyres, Total variation based interpolation, in Proceedings of the European

Signal Processing Conference, Vol. 3, 1998, pp. 1741–1744.
[36] G. Huang and D. Mumford, Statistics of natural images and models, in Proceedings of the IEEE

Computer Society Conference on Computer Vision and Pattern Recognition, 1999, pp. 541–547.
[37] K. Jalalzai, Regularization of Inverse Problems in Image Processing, Ph.D. thesis, École Polytechnique,
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[72] S. Vaiter, C. A. Deledalle, G. Peyré, C. Dossal, and J. Fadili, Local behavior of sparse analysis

regularization: Applications to risk estimation, Appl. Comput. Harmon. Anal., 35 (2013), pp. 433–451.
[73] D. Vandeville, SURE-based non-local means, IEEE Signal Process. Lett., 16 (2009), pp. 973–976.
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