
SIAM J. IMAGING SCIENCES c© 2011 Society for Industrial and Applied Mathematics
Vol. 4, No. 2, pp. 651–694

Total Variation as a Local Filter∗

Cécile Louchet† and Lionel Moisan‡

Abstract. In the Rudin–Osher–Fatemi (ROF) image denoising model, total variation (TV) is used as a global
regularization term. However, as we observe, the local interactions induced by TV do not propagate
much at long distances in practice, so that the ROF model is not far from being a local filter.
In this paper, we propose building a purely local filter by considering the ROF model in a given
neighborhood of each pixel. We show that appropriate weights are required to avoid aliasing-
like effects, and we provide an explicit convergence criterion for an associated dual minimization
algorithm based on Chambolle’s work. We study theoretical properties of the obtained local filter and
show that this localization of the ROF model brings an interesting optimization of the bias-variance
trade-off, and a strong reduction of an ROF drawback called the “staircasing effect.” Finally, we
present a new denoising algorithm, TV-means, that efficiently combines the idea of local TV-filtering
with the nonlocal means patch-based method.
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1. Introduction. Image denoising/smoothing is one of the most frequently considered
issues in image processing, not only because it plays a key preliminary role in many computer
vision systems, but also because it is probably the simplest way to address the fundamental
issue of image modeling, as a starting point towards more complex tasks such as deblurring,
demosaicking, and inpainting. Among denoising/smoothing methods, several classes arise
naturally. One of these consists of local filters, that is, translation-invariant operators that
transform a gray-level image v : Ω → R into a gray-level image

u : x �→ T
(
(v(x+ z))z∈B

)
,

where B is a bounded set (typically, a disc with radius r centered in 0), and T is an application
from RB to R. Note that this definition holds equally for images defined on a continuous
domain (Ω, B ⊂ R2) or on a discrete domain (Ω, B ⊂ Z2). Local filters include the averaging
filter, obtained (in a continuous setting) with the averaging operator

T (w) =
1

|B|
∫
B
w(z) dz,
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and, more generally, convolution filters with finite impulse response (when T is linear). Let
us also mention contrast-invariant operators like, for example, the median filter or the erosion
filter associated to

T (w) = inf
z∈B

w(z).

Another important example is given by Yaroslavsky’s filter [65], corresponding to

T (w) =
1

C(w)

∫
B
w(z) e−|w(z)−w(0)|2/h2

dz, where C(w) =

∫
B

e−|w(z)−w(0)|2/h2
dz,

and the related (not strictly local) SUSAN [59] and bilateral filters [62] (see [18] for a discussion
on the relationship between these three filters).

Another class of denoising/smoothing methods consists of variational formulations, which
transform an image v into an image u that minimizes some energy functional Eλ(u) depending
on v and on a parameter λ. A typical example is the L2-H1 minimization associated to

(1) Eλ(u) = ‖u− v‖2 + λ

∫
Ω
|∇u|2,

where ∇u = (∂u∂x ,
∂u
∂y )

T is the gradient of u. This example is a special case of the Wiener filter,

which can be solved explicitly when Ω = R2 with

∀ξ ∈ R2, û(ξ) =
v̂(ξ)

1 + λ|ξ|2 ,

where f̂ denotes the Fourier transform of f : R2 → R. This filter is a convolution, but since
the associated kernel is not compactly supported, it cannot be written as a purely local filter.
A more sophisticated example, avoiding undesirable blur effects caused by (1), is obtained
with

(2) Eλ(u) = ‖u− v‖2 + λ

∫
Ω
|∇u|,

which corresponds to the Rudin–Osher–Fatemi (ROF) model for image denoising [58]. This
model, which is the starting point of this work, has been widely used in image processing
for various tasks including denoising [25, 37], deblurring [27, 57], interpolation [42], super-
resolution [4, 22], inpainting [28, 26], and cartoon/texture decomposition [10, 53]. Dramatic
improvements have also been made recently on accuracy and computation speed for the nu-
merical solving of ROF-derived variational problems [9, 19, 22, 23, 34, 35, 64].

These two classes of methods (not to mention others) correspond to two different points
of view. A local filter can be iterated, which generally results in a partial differential equation
(PDE) formulation with interesting interpretations (the heat equation for positive isotropic
averaging filters, the mean curvature motion for the median filter [6], etc.). The amount
of smoothing/denoising can also be increased by changing the size of the neighborhood B,
whereas in a variational formulation (energy Eλ), this role is played by the hyperparameter
λ that controls the trade-off between the smoothness of u and its distance to the original
image v. The use of local filters is very natural in a shape recognition context, where the
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possibility of occlusions makes long-distance smoothing interactions questionable (it seems
more relevant to smooth the background of a scene mostly independently of the foreground,
and vice versa). In general, variational formulations do not lead to local filters, because short-
distance interactions involved in Eλ(u) (typically resulting from partial derivatives) cause
long-distance interactions due to the minimization process [14].

In this work, we first study the importance of these long-distance interactions for the
ROF model (2). We show in section 2 that most image pixels have a very limited influence
zone around them, which suggests that the ROF model is not far from being a local filter.
In section 3, we follow this idea and derive a local filter by considering an ROF model on
a neighborhood of each pixel. We show in particular that the introduction of a smooth
window (that is, appropriate weights on the neighborhood) is required to avoid aliasing-like
artifacts (that is, the enhancement of particular frequencies). The monotony of this local
TV-filter is investigated in section 4, and we show that it admits two limiting PDEs: the total
variation flow [12] and the heat equation. In section 5, we build a numerical scheme inspired
from Chambolle’s algorithm [22] to solve the weighted local ROF model on an arbitrary
neighborhood, and we give a convergence criterion involving a relationship between the time
step and the weighting function. Experiments performed in section 6 show in particular two
interesting properties of the local TV-filter compared to the global ROF model: its ability
to reach an intermediate bias-variance trade-off for image denoising and the elimination of a
well-known artifact called the “staircasing effect.” To illustrate the perspectives offered by
local TV-filtering, in section 7 we build a new denoising filter, called TV-means, that combines
in a simple way the strengths of TV-denoising and nonlocal (NL)-means denoising [17], and
produces much better results than either of them.

2. How nonlocal is TV-denoising? In this section we investigate the amount of locality
of the ROF denoising model. As we shall see, even though TV-denoising requires a global
optimization on the whole image, local interactions do not propagate very far, and the gray
level of a denoised pixel essentially depends on the pixels lying in its neighborhood, while
other pixels have negligible or null impact.

In the following, a (discrete) image is a function u : Ω → R, where Ω is a subset of Z2 (the
set of pixels) and u(i, j) represents the gray level at pixel (i, j). If A is a subset of Z2, Ac will
denote its complement, and ∂A is the boundary of A, defined as the set of pixels for which at
least one neighbor (for the four-neighbor topology) does not belong to A. To a subset A of
Z2 we associate the set A� ⊂ R2 defined by

A� =
⋃

(i,j)∈A

[
i− 1

2
, i+

1

2

]
×
[
j − 1

2
, j +

1

2

]
.

Thus, A� is obtained by considering grid points of Z2 as 1× 1 squares of R2. It is interesting
to notice that if a discrete image u : Z2 → R is extended to an image ū : R2 → R using
the nearest neighbor interpolation, then the level sets of ū are obtained by applying the ·�
operator to the level sets of u, that is,

∀λ ∈ R, {x ∈ R2, ū(x) ≤ λ} = {x ∈ Z2, u(x) ≤ λ}�.
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The ·� operator allows us to extend the usual perimeter operator (defined on Caccioppoli sets
of R2) to discrete sets, with

∀A ⊂ Z2, perA = Perimeter(A�).

Let us first recall the principle of ROF denoising [58]. If u is an image defined on Ω ⊂ Z2,
its total variation (TV) is defined by

(3) TV (u) =
∑

(i,j)∈Ω
|∇u(i, j)|,

where |∇u(i, j)| denotes a given scheme of the gradient norm of u at pixel (i, j). If v is a noisy
image, the ROF model proposes to smooth it by selecting the unique image u = T (v) that
minimizes

(4) Eλ(u) = ‖u− v‖2 + λTV (u),

where ‖ · ‖ stands for the classical Euclidean norm on RΩ. The positive parameter λ controls
the amount of denoising and should be set according to the noise level.

In what follows, as in [22], we shall choose for∇u(i, j) a scheme based on simple differences
between neighbor pixels, that is,

(∇u)1i,j =

{
u(i+ 1, j) − u(i, j) if (i+ 1, j) ∈ Ω,

0 else,

(5)

(∇u)2i,j =

{
u(i, j + 1)− u(i, j) if (i, j + 1) ∈ Ω,

0 else,

and we shall derive |∇u(i, j)| by considering either the �1-norm or the �2-norm of ∇u(i, j) in
R2. Each choice involves its own specificities:

• The �1-norm of the gradient, given by

(6) |∇u(i, j)|1 = |(∇u)1i,j|+ |(∇u)2i,j |,

is not isotropic (it favors vertical and horizontal directions), but it has the advantage
of making TV satisfy the coarea formula [23, 34, 39]

(7) ∀u ∈ RΩ, TV (u) =

∫
R
per{x ∈ Ω;u(x) ≤ λ} dλ,

which allows us to interpret TV (u) as the cumulated length of the level lines of u.
Furthermore, ROF denoising in that case is monotone, in the sense that

(8) [∀x ∈ Ω, v1(x) ≤ v2(x)] =⇒ [∀x ∈ Ω, T (v1)(x) ≤ T (v2)(x)]

(see [23] for a proof). In this section, these analytic properties will be most useful in
studying the locality of TV-denoising; this is why we will consider the �1-norm.
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• The �2-norm of the gradient, given by

(9) |∇u(i, j)|2 =
√

((∇u)1i,j)
2 + ((∇u)2i,j)

2

is more isotropic, and, in practice, the images denoised with this scheme look slightly
more natural. However, neither the coarea formula nor the monotony principle (see
section 4) holds anymore. This �2-norm will be used in the numerical experiments
(section 6).

Both �1- and �2-schemes are compatible with two other quite basic properties of operator
T . Namely, they force the TV-denoising operator to preserve the image average, i.e.,

(10) ∀v ∈ RΩ,
∑
x∈Ω

T (v)(x) =
∑
x∈Ω

v(x),

and to be shift-invariant, i.e.,

(11) ∀v ∈ RΩ, ∀b ∈ R, T (v + b) = T (v) + b,

which will be useful in what follows.
Let us now discuss the locality of TV-denoising, that is, the influence region of an arbitrary

pixel in the denoising process. We easily observe that the dependence in Eλ of a gray level
u(x) brings into play the pixels y that are neighbors of x only, through their gray levels u(y).
But the levels u(y) also depend on their neighbors and so on, such that the denoising is likely
to be indeed global, in the sense that a change on a pixel in the noisy image might change the
value of any other pixel in the denoised image.

For instance, let Ω be a rectangular domain, and let x0 be a pixel in Ω \ ∂Ω. If the image
v is an impulse image (discrete Dirac) defined for some A > 0 by

(12) ∀x ∈ Ω, v(x) = A · δx=x0 =

{
A if x = x0,
0 else,

(here δ is the 0-1 Kronecker-delta function), then simple calculations show that T (v), com-
puted with the �1-scheme, satisfies

(13) ∀x ∈ Ω, T (v)(x) =

{
(A− 2λ)δx=x0 +

λ
λc

· A
|Ω|δx �=x0 if λ < λc,

A/|Ω| if λ ≥ λc,

where |Ω| denotes the cardinal of Ω and λc = A
2 · (1 − 1

|Ω|). This means that any pixel of

the domain can be affected by a change in v(x0). However, one can notice that when |Ω| is
large, then the change in any pixel x �= x0 is negligible compared to the change in x0; hence
the globality of TV-denoising is rather weak in this example. Note also that if Ω is finite,
the scheme (5) corresponds to Neumann conditions in the minimization of (4), because the
gradient at a pixel lying on the boundary ∂Ω is treated as if its facing neighbors lying outside
Ω had the same gray level. TV-denoising based on these Neumann conditions has the property
of preserving the image average (10), which explains the slight correction of λ

λc
· A
|Ω| obtained

on the pixels x �= x0 in (13).
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2.1. Locality and boundary conditions. In the remainder of section 2, we shall offer evi-
dence of the fact that, with appropriate boundary conditions, TV-denoising is essentially local,
both in exact and in simulated examples. We propose here to consider boundary conditions
other than Neumann conditions. First we consider infinite boundary conditions: an image is
continued by 0 on the entire set Z2 and is viewed as a finitely supported function, that is, a
function u whose support

supp(u) = {x ∈ Ω, u(x) �= 0}
is a finite set.

Proposition 1 (locality for an infinite domain). Let v ∈ �2(Z2). We consider the variational
problem

(14) minimize
∑
x∈Z2

(u(x)− v(x))2 + λTV (u) for u ∈ �2(Z2),

where TV (u) is computed according to the �1-scheme (6) with Ω = Z2. If v has a finite support,
i.e., if there exists a finite rectangle Ω0 ⊂ Z2 satisfying supp(v) ⊂ Ω0, then the image u = T (v)
solving the variational problem (14) is also finitely supported and satisfies supp(u) ⊂ Ω0.

Proof. (i) Let A ≥ 0 and v = A1Ω0 , where Ω0 is any rectangle of Z2, and where

(15) ∀x ∈ Z2, 1Ω0(x) =

{
1 if x ∈ Ω0,

0 otherwise.

We prove supp(T (v)) ⊂ Ω0 by showing that {x ∈ Z2, T (v)(x) > 0} ⊂ Ω0 and then that
T (v) is nonnegative. Assume that the upper level set {x ∈ Z2, T (v)(x) > 0}, abbreviated
as {T (v) > 0}, intersects the complement Ωc

0 of Ω0. Consider the image w = T (v) · 1Ω0 .
Changing T (v) into w decreases the data-fidelity term because∑

x∈Z2

(w(x) − v(x))2 =
∑
x∈Ω0

(T (v)(x) − v(x))2 <
∑
x∈Z2

(T (v)(x) − v(x))2.

It also decreases the TV. Indeed a level set {w ≥ λ} satisfies

{w ≥ λ} = {T (v) ≥ λ} ∩ Ω0,

and thanks to the convexity of Ω�
0 (due to the fact that Ω0 is a rectangle), we get

per{w ≥ λ} = per({T (v) ≥ λ} ∩ Ω0)

= Perimeter({T (v) ≥ λ}� ∩Ω�
0 ) ≤ per{T (v) ≥ λ}.

Hence thanks to the coarea formula (7), we get

TV (w) =

∫
R
per{w ≥ λ} dλ ≤

∫
R
per{T (v) ≥ λ} dλ = TV (T (v)).

Finally we get

Eλ(w) =
∑
x∈Z2

(w(x) − v(x))2 + λTV (w)

<
∑
x∈Z2

(T (v)(x) − v(x))2 + λTV (T (v)) = Eλ(T (v)),

and we obtain a contradiction to the optimality of T (v).
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Now assume that the lower level set {T (v) < 0} is nonempty. We consider the positive
part T (v)+ of T (v), where (y)+ = max(y, 0) for any y. As earlier, we have ‖T (v)+ − v‖2 <
‖T (v)− v‖2 and

TV (T (v)+) =

∫
R+

per({T (v) < λ}) dλ ≤
∫
R
per({T (v) < λ}) dλ = TV (T (v)).

This contradicts the optimality of T (v) and proves that {T (v) < 0} is empty. The proposition
is therefore proved for v = A1Ω0 .

(ii) Now if v is an arbitrary image satisfying the conditions of the proposition, then

−A1Ω0 ≤ v ≤ A1Ω0 , where A = max
x∈Ω0

|v(x)|.

By monotony of TV-denoising (see (8)), the inequalities remain true for the denoised images;
i.e.,

−T (A1Ω0) ≤ T (v) ≤ T (A1Ω0),

where the leftmost and rightmost terms both have their support included in Ω0, thanks to
part (i) of the proof. Consequently, supp(T (v)) ⊂ Ω0, as claimed.

Now we consider Dirichlet boundary conditions, which impose that the denoised image
vanishes on ∂Ω. Then the same kind of result holds, as shown by the following corollary.

Corollary 1 (locality for Dirichlet boundary conditions). Let Ω1 be a subset of Ω = Z2 and v
an image defined on Ω1. Let us consider the variational problem

find u : Z2 → R that minimizes
∑
x∈Ω1

(u(x)− v(x))2 + λTV (u)

(16)
subject to ∀x ∈ ∂Ω1, u(x) = 0.

If there exists a rectangle Ω0 satisfying supp(v) ⊂ Ω0 ⊂ Ω1 \ ∂Ω1, then the image u = T (v)
solving the variational problem (16) satisfies supp(u) ⊂ Ω0.

Proof. As u is defined on Z2, the implicit Neumann conditions of (5) are discarded, so
that the only boundary conditions considered here are the Dirichlet constraints of (16). Let us
denote by v̇ the image v continued by 0 on the plane Z2. If u is the solution of (16), then u is
also the solution of the following problem: minimize Eλ(u) for u ∈ �2(Z2) under the constraint

(17) ∀x ∈ (Z2 \Ω1) ∪ ∂Ω1, u(x) = 0,

with Eλ(u) =
∑

x∈Z2(u(x) − v̇(x))2 + λTV (u). Now consider the solution u′ = T (v) of
problem (14), that is, the minimizer of Eλ over �2(Z2). Since Eλ(u

′) ≤ Eλ(u) and u′ satisfies
(17) thanks to Proposition 1 (because v = 0 on (Z2 \ Ω1) ∪ ∂Ω1 ⊃ Ωc

0), we necessarily have
u′ = u and consequently supp(u) = supp(u′) ⊂ Ω0.

A consequence of the two results above is that in both cases (infinite domain or Dirichlet
boundary conditions), the TV-denoising of the impulse image (12) remains an impulse image,
and the pixels apart from x0 never change.

More generally, if v is finitely supported, then the influence of a pixel x ∈ supp(v) is
limited to a rectangle Ω0 (the smallest rectangle containing supp(v)), in the sense that for
any y ∈ Ωc

0, T (v)(y) does not depend on v(x). This is a first result in favor of the locality of
TV-denoising.
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2.2. Locality for explicit solutions (continuous domain). The literature about exact
solutions of TV-denoising in its continuous version (i.e., when Ω is an open subset of R2)
provides valuable examples of locality in TV-denoising. First, Strong and Chan [60] provide
exact solutions to the problem stated in one dimension and also in two dimensions for radially
symmetric images, for either piecewise constant images or piecewise constant images with
little noise added and small level of denoising λ. In each of these cases, it is notable that
changing the (constant) value of a region can have repercussions on this region and on its
immediate neighboring regions only. The propagation of the values change cannot go further.

Another case, more interesting here, is treated in [12]. The authors still assume that the
images are defined on a continuous space, and consider an image v that is a linear combination
of characteristic functions of convex sets Ci, i.e.,

(18) v =
n∑

i=1

bi1Ci ,

where (bi)1≤i≤n is a sequence of arbitrary real numbers, the sets Ci are assumed to be regular
enough and spaced out enough (see [12] for the exact technical assumptions), and each function
1Ci is defined as in (15). Then they prove that the associated denoised image can be written
as

T (v) =
n∑

i=1

fCi(bi)1Ci ,

where fCi is a soft-thresholding function (i.e., an odd function defined by fCi(x) = max(x−
τCi , 0) for x ≥ 0) whose threshold τCi depends only on Ci. This means that for such images,
the convex sets (Ci) evolve independently of each other.

As the operator T is monotone in this continuous framework (see [23] and references
therein), we can state a more general property: assume that the image v is null outside
convex sets Ci, i.e.,

v =

n∑
i=1

vi,

where each vi is a bounded image supported by Ci, and the Ci’s are regular and spaced out
enough as in (18) [12]. The monotony of T implies that

T

(
n∑

i=1

(min vi)1Ci

)
≤ T (v) ≤ T

(
n∑

i=1

(max vi)1Ci

)
,

where both the leftmost and rightmost terms are exactly computable because the arguments
of T are in the general form (18). Then T (v) satisfies

n∑
i=1

fCi(min vi)1Ci ≤ T (v) ≤
n∑

i=1

fCi(max vi)1Ci ,

which ensures that T (v) vanishes outside from the sets Ci. Hence the minimization of the ROF
energy relative to v holds on the set of images u written as u =

∑n
i=1 ui with supp(ui) ⊂ Ci.
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On such images, the ROF energy can be decomposed into

‖u− v‖2 + λTV (u) =
n∑

i=1

(‖ui − vi‖2 + λTV (ui)
)
,

which is a sum of independent ROF energies, showing that a change in vi will affect only the
component of the energy corresponding to Ci, and that T (v) will then be changed on Ci at
most: the components of v evolve independently.

2.3. Locality for natural images: Influence map of a pixel. Here we focus on real-life
natural images and show locality properties of TV-denoising. To investigate the locality issue
precisely, we shall say that a pixel y is influenced by a pixel x if T (v)(y) depends on v(x), and
we measure this dependency by

(19) Cx(y) = sup
δ �=0

∣∣∣∣T (v + δ1{x})(y)− T (v)(y)

δ

∣∣∣∣ .
This number measures the maximum relative impact on T (v)(y) caused by a distortion of
v(x). Several properties of the influence map Cx are gathered in the following theorem.

Theorem 1 (properties of the influence map). Let Ω be a bounded subset of Z2, and let v :
Ω → R. If TV is computed with the �1-scheme (6) and T is the associated TV-denoising
operator, then for any x ∈ Ω, the influence map Cx defined by (19) satisfies

(i) Cx(x) = 1,
(ii) for every y �= x, Cx(y) < 1.
(iii) for any δ �= 0, ∑

y∈Ω

(
T (v + δ1{x})(y) − T (v)(y)

δ

)2

≤ 1.

Theorem 1 tells us that a distortion of v(x) cannot be amplified by T , and that it is indeed
attenuated for all pixels except x (as we shall see in the experiments, Cx(y) decreases very
quickly when y goes away from x). Property (3) does not bring a direct estimate of the total
influence of a pixel x but shows that any given distortion δ on v(x) causes a total distortion
on T (v) smaller than |δ| (in �2-norm), since

‖T (v + δ1{x})− T (v)‖2 ≤ |δ|.
Proof of Theorem 1. Let x ∈ Ω. For every δ ∈ R, we set ûδ = T (v + δ1{x}), so that

Cx(y) = sup
δ �=0

|(ûδ(y)− û0(y))/δ|.

We first prove that for every y ∈ Ω, Cx(y) ≤ 1. Indeed, if δ �= 0,

v − |δ| ≤ v + δ1{x} ≤ v + |δ|,
and the monotony of T , combined with shift invariance (11), implies that

û0 − |δ| ≤ ûδ ≤ û0 + |δ|.
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Hence for any pixel y ∈ Ω, ∣∣∣∣ ûδ(y)− û0(y)

δ

∣∣∣∣ ≤ 1,

and Cx(y) ≤ 1 by considering the supremum on δ.
Now we come to the very proof of the theorem, beginning with (i), then (iii), and finally (ii).

(1) The Euler equation corresponding to the TV-denoising of image v + δ1{x} is

ûδ − (v + δ1{x}) +
λ

2
∂TV (ûδ) � 0,

where ∂TV denotes the subdifferential of TV , defined by

w ∈ ∂TV (u) ⇐⇒ ∀v ∈ RΩ, TV (v) ≥ TV (u) + 〈w, v − u〉
(see [56] for instance). Let sign be the set-valued function defined by

sign(x) =

⎧⎪⎨
⎪⎩
{1} if x > 0,

{−1} if x < 0,

[−1, 1] if x = 0.

The subdifferential of TV , for the �1-norm of the gradient, is given by

∀u ∈ RΩ, ∀x ∈ Ω, ∂TV (u)(x) =
∑

y∈Ω,|y−x|1=1

sign(u(x) − u(y)),

and is hence included in [−4, 4]. This implies that for each pixel y ∈ Ω, the gray level
ûδ(y) satisfies

ûδ(y) ∈ [v(y) + δ1{x}(y)− 2λ, v(y) + δ1{x}(y) + 2λ].

For y = x, we get
ûδ(x) ∈ [v(x) + δ − 2λ, v(x) + δ + 2λ],

which yields, when δ goes to +∞,

ûδ(x)− û0(x)

δ
≥ v(x)− û0(x)− 2λ

δ
+ 1 −−−−→

δ→+∞
1,

so that Cx(x) ≥ 1. Now as Cx(x) ≤ 1 (as shown above), we get the desired result.
(3) As T is a proximity operator associated to the convex function TV , it is nonexpansive

[30, 56]; that is,

(20) ∀v1, v2 ∈ RΩ, ‖T (v2)− T (v1)‖2 ≤ ‖v2 − v1‖2.
Applying this inequality to v1 = v and v2 = v + δ1{x} yields∑

y∈Ω
(ûδ(y)− û0(y))

2 ≤ δ2,

which proves the desired result.
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(2) Again because T is a proximity operator, it is maximal-monotone [56], which means that

∀v1, v2 ∈ RΩ, 〈T (v2)− T (v1), v2 − v1〉 ≥ 0,

where 〈f, g〉 =∑x∈Ω f(x)g(x) denotes the usual inner product. Let b be an arbitrary
real number, and set v1 = v and v2 = v+ δ1{x} + b. The maximal-monotone property
and the shift-invariance of T (11) yield〈

ûδ + b− û0, δ1{x} + b
〉 ≥ 0.

Expanding the inner product leads to〈
b1Ω, δ1{x} + b

〉
+ 〈ûδ − û0, b1Ω〉+ δ(ûδ(x)− û0(x)) ≥ 0,

and thanks to the average conservation property (10) of T we get

|Ω|b2 + 2δb+ δ(ûδ(x)− û0(x)) ≥ 0.

This inequality is true for any value of b; hence the discriminant of the quadratic
polynomial is nonpositive, which leads, after simplifications, to

∀δ �= 0,

∣∣∣∣ ûδ(x)− û0(x)

δ

∣∣∣∣ ≥ 1

|Ω| .

Now using item (3) of the theorem, we can write for any δ �= 0

∑
y �=x

(
ûδ(y)− û0(y)

δ

)2

≤ 1−
(
ûδ(x)− û0(x)

δ

)2

≤ 1− 1

|Ω|2 .

This implies that, for any y �= x,

Cx(y)
2 ≤ 1− 1

|Ω|2 ,

which ends the proof.

2.4. Experiments. Using numerical experiments, we can investigate some properties of
the influence map that are not considered in Theorem 1. To compute Cx numerically on 8-bit
images, we use the approximation

Cx(y) � max
δ∈{±2n,0≤n≤9}

∣∣∣∣T (v + δ1{x})(y)− T (v)(y)

δ

∣∣∣∣ ,
where the TV-denoising operator T is estimated with a very high precision using Chambolle’s
dual algorithm (the “max” version of [22], mentioned in [23]).

A striking property of the influence map, visible in Figure 1, is the fast decrease of Cx(y)
as y moves away from x. For typical values of λ and most pixels x, Cx(y) is below 0.01 as soon
as ‖y − x‖ is larger than 15 pixels. At this point, a natural question arises: is the support of
an influence map much smaller than the image domain in general? Following the discussion
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Figure 1. Influence maps of 5 pixels of Lena image after denoising. The two columns correspond to slightly
different pixel positions, whereas each row corresponds to different noise and denoising levels (top row: σ = 10,
λ = 20; bottom row: σ = 25, λ = 40). On each image, the 5 considered pixels are marked in black, and the
boundary of their significant support (ε = 0.01) is marked in red. As we can see, the influence map of each
pixel is very concentrated, which suggests that TV-denoising is not far from being a local operator. The precise
shape of the influence map, however, seems difficult to predict as it may vary a lot with respect to the point
position.

just before section 2.1, it is reasonable to think that the answer is no for Neumann boundary
conditions (used in practice), due to the average-preserving property of TV-denoising in that
case. However, in the case of an infinite domain or Dirichlet boundary conditions (section 2.1),
there are good reasons to think that, in general, most (it not all) influence maps have a small
support. Since the exact support of Cx is difficult to compute in numerical experiments, and
in order to neglect the slight global effect resulting from the average preservation induced by
Neumann boundary conditions, we propose considering a significant support of Cx, defined by

suppε(Cx) = {y ∈ Ω, Cx(y) > ε},

where ε is a small positive threshold (ε = 0.01 in practice). The boundary of this significant
support is displayed in Figure 1 (red curves) for some pixels (in black) of the Lena image.

One could wonder whether the support of the influence map could implicitly define a kind
of adaptive neighborhood for each pixel. Apart from the fact that the support seems in general
larger in flat zones, and partly correlated to the level lines of the denoised images, the level
of adaptivity seems to be small in comparison, for example, to the adaptive neighborhoods
used in the shape-adaptive discrete cosine function (DCT) (SA-DCT) filter [41, Fig. 2] or in
steering kernel regression [61, Fig. 11]. Moreover, the shape of the influence map appears
to vary a lot from one pixel to another, even for very near positions, as illustrated by the
comparison of the two columns in Figure 1. It is likely that the reciprocal influence map (that
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Figure 2. Given a (randomly chosen) pixel x, we numerically compute the significant support suppε (ε =
0.01) of the influence map Cx and measure its radius, that is, the maximum Euclidean distance from x to a point
of suppε(Cx). This operation is performed on 100 random pixels of a noisy Lena image (σ = 10) and yields
a histogram of the 100 observed radii for 3 different values of the denoising level (left column: λ = 8; middle
column: λ = 20; right column: λ = 80). We can notice that as λ increases, most pixels increase their influence
zone (the significant support of Cx gets larger), but the influence never propagates beyond 15 pixels. Moreover,
for λ = 80 (right column), 9% of the pixels have an influence map with a 1-pixel significant support (radius 0),
which means that these pixels do not significantly influence pixels other than themselves. This phenomenon is
likely to be a consequence of the staircasing effect discussed in section 6.3.

is, the function x �→ Cx(y) for a given y, which measures the influence of all pixels x on a
given pixel y) would behave in the same way, though we did not test this numerically.

For a more systematic statistical evaluation, we computed the significant support of 100
random pixels of a Lena image and reported in Figure 2 the histograms of their associated
radii (maximum distance from x to a point of the significant support suppε(Cx)) for three
different values of the regularization parameter λ. As we can see, all significant supports are
small, and they tend to grow when λ increases (as for an averaging filter, whose smoothing
effect increases with the size of the neighboring window).

In this section, we have given theoretical and numerical evidence that TV-denoising is
very near to being a local operator. In particular, we observed that for usual values of the
denoising parameter λ, the influence of a given pixel was generally limited to a range of 10–15
pixels. It could be interesting to further study the locality of TV-denoising and, in particular,
possibilities of computing exactly the true support of the influence map of a given pixel for
appropriate boundary conditions. However, since there probably exists no uniform bound
(with respect to pixels and images) on the maximal influence range, it becomes logical at
this point, considering the discussion made in the introduction, to reformulate the original
variational formulation of TV-denoising in the context of local filters, leading to the next
section to what we call local TV-denoising.

3. Local TV-denoising.

3.1. Motivation and definition. In this section, we build a purely local filter inspired
from TV-denoising: each pixel is processed using the pixels lying in its neighborhood. As we
shall see, this construction opens interesting possibilities, such as deriving specific properties
of local filters for an operator close to classical TV-denoising (section 4), obtaining a TV-
denoising method avoiding the “staircasing” artifact (section 6), and prefiltering the patches
of an image efficiently before a patch-based denoising method (section 7).
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Figure 3. Effect of local TV-denoising on the chirp. A chirp signal (left) is denoised with the local TV-
filter associated to a neighborhood of size 13 (discrete interval), with λ = 500 (middle). Contrary to what
could be legitimately expected, frequencies are not attenuated in a monotone way, and low-frequency “waves”
(interferences) can be observed on the right part of the signal. This aliasing-like phenomenon, which would
appear in a similar way with a boxcar convolution, can be strongly reduced by using an appropriate weight
function in the fidelity term (L2-norm) of the variational formulation. This improvement can be observed on
the right, where the weighted local TV-denoising introduced in this section has been applied to the chirp signal
with a Gaussian weight function of variance a2 = 14 (same variance as the hard window) truncated to a large
enough window (21 pixels).

Definition 1. We shall denote as neighborhood shape any finite subset W of Z2 that con-
tains 0.

The most usual neighborhood shapes will be connected sets and in particular rectangles
or discrete balls, but it is interesting to notice that the construction we make here does not
require any particular geometric assumption on the neighborhood used.

For any pixel x ∈ Ω, we denote Wx = (x+W) ∩ Ω as the neighborhood of x and denote
v(Wx) ∈ RWx as the image v restricted to this neighborhood. We propose considering the
denoising operator TW

λ defined by

∀v ∈ RΩ, ∀x ∈ Ω, TW
λ (v)(x) = ux(x),(21)

where ∀x ∈ Ω, ux ∈ RWx minimizes ‖ux − v(Wx)‖2 + λTV (ux).(22)

Of course here, if w ∈ RWx , ‖w‖ denotes the restricted �2-norm (
∑

y∈Wx
w(y)2)

1
2 , and TV (w)

is defined from (5) with the boundary conditions arising from the fact that w is defined on
Wx. Hence, TW

λ is a local filter, as it amounts to minimizing a local ROF energy on every
neighborhood Wx and keeping the central pixel value ux(x) only. It is also associated to
TV-denoising because letting W = Z2 leads to the classical global TV-denoising.

3.2. Window weighting for artifact-free local TV-denoising. Experiments carried out on
local TV-denoising with large regularizing parameters λ immediately reveal serious aliasing-
like artifacts, that is, the artificial emergence of low frequencies. This phenomenon is partic-
ularly visible on signals (which can be considered as images made of a single row to extend
previous notation). For instance, in Figure 3, a chirp signal (left) is denoised using local
TV-denoising and the result (middle) dramatically suffers from this artifact.

This aliasing-like artifact can be explained by the convergence of local TV-denoising to-
wards linear filtering as the regularity parameter λ tends to infinity. Indeed, as will be seen
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in Proposition 2 at the end of this section,

TW
λ (v)(x) −−−→

λ→∞
1

|W|
∑
y∈Wx

v(y),

so that TW ,λ is asymptotically equivalent to a discrete convolution with a boxcar function,
whose Fourier transform (cardinal sine function) is very oscillating. This explains the aliasing-
like artifact for large λ (we use the term “aliasing-like” because it is the interference between
the boxcar fundamental frequency and the chirp local frequency that creates a low-frequency
envelope).

By analogy to linear filtering, we propose introducing weights on the window W to atten-
uate this artifact.

Definition 2 (local weighted TV-denoising). Let ω = (ωx) ∈ RW be positive weights associ-
ated to the neighborhood shape W, and let ‖ · ‖ω denote the weighted Euclidean norm defined
by

(23) ∀u ∈ RWx , ‖u‖2ω =
∑
y∈Wx

ωy−x u(y)
2.

Then, the local weighted TV-denoiser Tω,λ is an operator on RΩ defined by

∀v ∈ RΩ, ∀x ∈ Ω, Tω,λ(v)(x) = ux(x),

where ux ∈ RWx minimizes Eλ,ω,x(ux) = ‖ux − v(Wx)‖2ω + λTV (ux).(24)

Proposition 2 below gives the asymptotic behavior of the local weighted TV-denoiser when
λ goes to +∞.

Proposition 2. For any positive weight function ω ∈ RW , one has

(25) ∀v ∈ RΩ, ∀x ∈ Ω, Tω,λ(v)(x) −−−−→
λ→+∞

∑
y∈Wx

ωy−xv(y)∑
y∈Wx

ωy−x
.

Proof. A point x ∈ Ω being fixed, we denote ū as the local weighted average around x of
an image u, that is,

(26) ∀u ∈ RWx , ū =

∑
y∈Wx

ωy−xu(y)∑
y∈Wx

ωy−x
.

If uλ is the minimizer of Eλ,ω,x, then 0 is the minimizer of J : R → R defined by

J(t) = Eλ,ω,x(uλ + t1) = ‖uλ + t1− v(Wx)‖2ω + λTV (uλ),

(where 1 denotes the constant image equal to 1 everywhere), and writing J ′(0) = 0 immedi-
ately leads to ūλ = v̄, which proves that T preserves average. Now, denoting by C the constant
Eλ,ω,x(0) independent of λ, we have, for any λ > 0, λTV (uλ) ≤ C and ‖uλ − v(Wx)‖2ω ≤ C.
Hence the sequence (uλ) is uniformly bounded, and the limit u∞ of any of its subsequences
satisfies TV (u∞) = 0 and thus is a constant. Now, as Tω,λ preserves the average, we have
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ūλ = v̄ for every λ > 0, and passing to the limit (in finite dimension), it follows that u∞ = v̄,
which is the only possible limit; this proves that (uλ) converges to v̄.

Proposition 2 states that Tω,λ is asymptotically equivalent (when λ goes to +∞) to a
linear convolution by the finitely supported kernel ω̃ : x �→ ω−x. Another viewpoint is to let
the global contrast of the image go to 0 (which is equivalent to the case λ → +∞ thanks to
the change of variable v �→ αv), and this leads, for a fixed λ, to

(27) Tω,λ(αv)(x) ∼
α→0

α

∑
y∈Wx

ωy−xv(y)∑
y∈Wx

ωy−x
.

Hence, we expect the local TV-denoising to behave like a linear filter in low-contrasted regions
or when λ is large (indeed, we shall see later in section 4.4.1 that this linear regime is actually
attained for a finite λ).

Now, coming back to the aliasing-like artifacts noticed earlier, it is well known that a
linear convolution will avoid aliasing-like artifacts for smooth kernels that have a nonoscillating
(unimodal) Fourier transform, and in particular for Gaussian weights defined by

(28) ∀x ∈ W, ωx = exp

(
−|x|2
2a2

)
(with a > 0).

Figure 3 (right) shows the result obtained after applying local weighted TV-denoising (with
the Gaussian weights given by (28)) on the chirp signal, with an algorithm that will be detailed
in section 5. As expected, the aliasing-like artifacts are removed: the signal envelope, which
presented artificial oscillations after local TV-denoising with a hard window, has a regular
decay when a smooth window is used.

Notice, however, that the aliasing artifacts we mentioned above are probably not so fre-
quent, and avoiding them may not be the most desirable strategy for certain signal or image
processing tasks. In particular, the use of a smooth window significantly increases the compu-
tational cost of local TV-denoising (see Theorem 4 in section 5.2). It is also worth mentioning
that the boxcar filter corresponding to the linear regime of local TV-denoising with a hard win-
dow achieves optimal signal denoising in locally constant regions (in terms of signal-to-noise
ratio, and among linear convolutions with fixed support kernel).

4. Properties. In this section, we investigate several properties of the aforementioned
local TV-denoising filter, in particular local and global comparison principles and asymptotic
behaviors.

4.1. Local comparison. An important reason to want a local filter instead of a global
minimization process is to be able to control the denoising process more locally and more
accurately. Among interesting properties is the local comparison principle, which offers a
guarantee of local stability. This principle does not always hold for global TV-denoising, but
the following proposition states that it does for local TV-denoising (weighted or unweighted).

Proposition 3 (local comparison principle). Let TV be defined in (3) with either an �1- or an
�2-norm of the gradient ((6) or (9)). Then the local filter Tω,λ applied on an image v satisfies

∀x ∈ Ω, min
y∈Wx

v(y) ≤ Tω,λ v(x) ≤ max
y∈Wx

v(y).
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The value of the denoised image hence lies in the local dynamic range of the noisy image.
This stability property also echoes the fact that the local TV-denoiser has a more limited
denoising level (when λ → +∞, see (25)) than global TV-denoising (for which the most
denoised image is a global constant).

Proof. Assume that there exists x ∈ Ω such that Tω,λ(v)(x) �∈ [m,M ], where m =
miny∈Wx v(y) and M = maxy∈Wx v(y). Let ux ∈ RWx be the patch associated to the de-
noising of v(Wx), i.e., minimizing (24). Now let u′x be the patch with saturated values defined
by

∀y ∈ Wx, u′x(y) =

⎧⎨
⎩
m if ux(y) ≤ m,
ux(y) if m ≤ ux(y) ≤ M,
M if M ≤ ux(y).

Then ‖u′x− v(Wx)‖2ω < ‖ux− v(Wx)‖2ω since the gray levels ux(y) lying away from [m,M ] are
changed into values which are closer to the noised value v(y). Besides, as

∀y, z ∈ Wx, |u′x(z)− u′x(y)| ≤ |ux(z)− ux(y)|,
(because ux �→ u′x is 1-Lipschitz), we have TV (u′x) ≤ TV (ux). This implies that Eλ,ω,x(u

′
x) <

Eλ,ω,x(ux), which contradicts the minimality of Eλ,ω,x(ux).

4.2. Monotony. A global comparison principle that is desirable for general image denois-
ing is the following: if two noisy images v1 and v2 satisfy the (pointwise) inequality v1 < v2,
then it would be expected that the related denoised images satisfy a similar large inequality
T (v1) ≤ T (v2). This so-called monotony property is an interesting property, since it ex-
tends the stability behavior from smooth (say, Lipschitz or more) to nonsmooth images, as a
nonsmooth image can always be bounded from below and above by two smooth images.

A convolution filter is monotone as soon as its convolution kernel is nonnegative. Local
filters such as the bilateral filter or NL-means, according to our experiments, are generally
not monotone (some asymptotic behaviors can be monotone, though). Now for global TV-
denoising, it has been shown that the monotony property is true in the continuous framework
[4, 5, 20] and in the discrete framework with an �1-scheme for the gradient norm [23, 35].
However it seems that the monotony does not hold any longer in the discrete framework with
an �2-scheme for the gradient norm (9). This can be seen in the following numerical example
made of 3× 3-pixel images: if we take

v1 =

42 94 254

76 178 18

0 0 0

and v2 =

43 95 255

77 179 19

60 69 105

,

then after a global TV-denoising with an �2-scheme (λ = 30), we obtain

T (v1) ≈
60.81 98.68 224.78

72.73 140.87 27.89

12.08 12.08 12.08

and T (v2) ≈
63.29 100.49 225.65

83.12 138.65 60.74

76.69 76.69 76.69

.

Hence we have v1 < v2 but T (v1) � T (v2) (because of the central pixel). This counterexample
still holds when the same little images are included in larger constant images set to 0.
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Unweighted local TV-denoising directly inherits the possible monotony property of global
TV-denoising, as the next proposition states.

Proposition 4 (global comparison principle). Assume that the global TV-denoising is mono-
tone. Then the local TV-denoising is monotone. In particular, local TV-denoising defined
with an �1-scheme for the gradient norm (6) is monotone.

Proof. Let v1 < v2, and let x ∈ Ω. Let p1 and p2 denote the patches that minimize the
local ROF energies associated to v1(Wx) and v2(Wx), respectively. The monotony property
of the global TV-denoising operator on v1(Wx) < v2(Wx) implies that p1 ≤ p2. Hence, de-
noting pi(0) as the central gray level of the patch pi, we get TW ,λv1(x) = p1(0) ≤ p2(0) =
TW ,λv2(x).

Note that it is not difficult to prove that TW ,λ is continuous, so that v1 ≤ v2 (without a
strict inequality) is sufficient to ensure that TW ,λ(v1) ≤ TW ,λ(v2).

The proposed local TV-denoising essentially depends on two parameters: the regulariza-
tion coefficient λ and the weights (ωy) which in particular control the locality. As we shall
see in the following sections, ω and λ behave in opposite directions. More specifically, when
λ → 0, the denoising becomes equivalent to the global denoising, and when the neighborhood
becomes infinitely small, the denoising becomes equivalent to a linear filtering, as if λ → +∞.

4.3. Asymptotics for λ → 0.

4.3.1. Asymptotic equivalence to global TV-denoising when λ → 0. In this section we
show that local and global TV-denoising have the same asymptotic behavior when λ → 0.

Theorem 2. Let W be a neighborhood shape and ω ∈ RW a positive weight function. For
any image v ∈ RΩ and any x ∈ Ω such that Wx contains x and its 8 nearest neighbors, and
such that TV is continuously differentiable in the neighborhood of v(Wx), we have

(29) Tω,λv(x) = v(x)− λ

2ω0
∇TV (v)(x) + o

λ→0
(λ).

Proof. Tω,λv(x) is the central gray level of the patch u ∈ RWx which minimizes the energy
Eλ,ω,x in (24) and whose subdifferential then satisfies

(30) ∀y ∈ Wx, 2ωy−x(u(y)− v(y)) + λ∂TV (u)(y) � 0.

Let us introduce

wλ =
u− v(Wx)

λ
.

Since Eλ,ω,x(v(Wx)) = λTV (v(Wx)) → 0 when λ → 0, we have ‖u − v(Wx)‖2ω → 0 and thus
λwλ → 0 since the weight function ω is positive. Now (30) can be written, for y = x,

2ω0wλ(x) + ∂TV (v(Wx) + λwλ)(x) � 0.

As TV is assumed to be continuously differentiable at the neighborhood of v(Wx), when λ is
small enough, ∂TV (v(Wx) + λwλ)(x) is equal to {∇TV (v(Wx) + λwλ)(x)}, and

∇TV (v(Wx) + λwλ)(x) −→
λ→0

∇TV (v(Wx))(x).
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Now since the window Wx contains x and its 8 nearest neighbors (actually 6 neighbors are
enough), the restriction toWx and the boundary conditions used in (5) have no influence on the
terms that depend on x in TV (v(Wx)) and TV (v) (these terms are the same). Consequently,
∇TV (v(Wx)) and ∇TV (v) have the same value at point x, and

wλ(x) = − 1

2ω0
∇TV (v)(x) + o

λ→0
(1)

so that u(x) = v(x)− λ
2ω0

∇TV (v)(x) + o
λ→0

(λ), and the theorem is proved.

Remark. In Theorem 2, TV needs to be continuously differentiable in the neighborhood
of v(Wx). As TV is smooth almost everywhere, this is not a strong assumption in practice,
since this is true for almost every noisy image v (provided that the noise process admits a
density with respect to Lebesgue measure).

In a continuous framework, −∇TV corresponds to the curvature operator

curv (u) = div

( ∇u

|∇u|
)
,

and in this case the result of Theorem 2 would be

Tω,λv(x) = v(x) +
λ

2ω0
curv (v)(x) + o

λ→0
(λ).

This implies that the limiting PDE associated to iterated Tω,λ is

∂u

∂t
= curv u,

which is the PDE associated to global TV-denoising [7, 57], which also corresponds to a
degenerate case of the Perona–Malik equation [54].

4.3.2. Application to the normalization of weights. If we want to compare the respective
influence of two weight functions ω and ω′ for a fixed value of the parameter λ, we need to
impose a normalization procedure for the weight functions. In particular, all weight functions
αω (for α > 0) must be normalized into the same weight function, since the local TV-denoising
obtained with (ω, λ) and (αω, λ/α) is exactly the same. Several constraint equations could
be used for weight normalization, for example,

∑
y ωy = 1,

∑
y ω

2
y = 1, 1

|W|
∑

y ωy = 1, or

maxy ωy = 1. A particular normalization is suggested by (29). Indeed, since the asymptotic
behavior of the local TV-denoising of a given patch depends only (at first order) on λ/ω0 and
not on the other weight coefficients (ωy)y �=0, it is natural to impose a fixed value of ω0 as a
weight normalization, so that the asymptotic behavior of local TV-denoising depends only on
λ (as is the case for global TV-denoising). Hence, in the following all weight functions will be
normalized according to the constraint ω0 = 1, as was done in (28).
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4.4. Asymptotics for λ → +∞.

4.4.1. Linear regime reached for finite λ. Here we extend Proposition 2 by showing that
the limiting linear regime is reached for a finite λ. This can be seen as the finite counterpart
of [24, Lemma 2.3] with an elementary proof.

Proposition 5. Let W be a neighborhood shape and ω ∈ RW a positive weight function. For
any image v ∈ RΩ and any x ∈ Ω, there exists a critical value denoted by λc(x) such that

∀λ ≥ λc(x), Tω,λ(v)(x) =

∑
y∈Wx

ωy−xv(y)∑
y∈Wx

ωy−x
.

Proof. Let v̄ =
∑

y∈Wx
ωy−xv(y)∑

y∈Wx
ωy−x

. We prove that the constant image v̄ achieves the minimum

of Eλ,ω,x (defined in (24)) by considering the behavior of Eλ,ω,x at the neighborhood of v̄. Let
u ∈ RWx ; it can be decomposed into u = δu+ v̄+α, where δu is an image with zero weighted
mean and α is a scalar.

First, denoting 〈·, ·〉ω as the inner product associated to the Hilbert norm ‖ · ‖ω, and 1 as
the constant image equal to 1 everywhere on Nx, notice that

(31) Eλ,ω,x(δu+ v̄ + α)− Eλ,ω,x(δu + v̄) = ‖α1‖2ω + 2 〈α1, δu+ v̄ − v〉ω = ‖α1‖2ω

since δu+ v̄ − v has zero weighted mean. Second,

(32) Eλ,ω,x(δu+ v̄)− Eλ,ω,x(v̄1) = ‖δu‖2ω + 2 〈v̄ − v, δu〉ω + λTV (δu),

and setting m(w) = 1
|W|

∑
x∈W w(x) yields

(33) 2 〈v̄ − v, δu〉ω = 2 〈v̄ − v, δu −m(δu)〉ω ≥ −2‖ω(· − x)(v − v̄)‖∞‖δu−m(δu)‖1.

Now, as all the norms are equivalent in finite dimension, there exists C > 0 such that

(34) ∀w ∈ RWx , |m(w)|+ TV (w) ≥ C ‖w‖1.

Applying this inequality to w = δu−m(δu), we get TV (δu) ≥ C‖δu−m(δu)‖1, so that with
(32) and (33) we obtain

(35) Eλ,ω,x(v̄ + δu) − Eλ,ω,x(v̄1) ≥ ‖δu‖2ω + (Cλ− 2‖ω(· − x)(v − v̄)‖∞) ‖δu −m(δu)‖1.

Last, adding (31) to (35) yields

Eλ,ω,x(u)− Eλ,ω,x(v̄1) ≥ ‖α1‖2ω + ‖δu‖2ω + (Cλ− 2‖ω(· − x)(v − v̄)‖∞) ‖δu−m(δu)‖1,
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and the right-hand term is nonnegative for any u ∈ RW as soon as λ ≥ 2‖ω(·−x)(v− v̄)‖∞/C.
It means that for large enough values of λ, v̄1 reaches the minimum of Eλ,ω,x.

4.4.2. Asymptotic behavior for small neighborhoods. Here we show that in a continuous
setting, letting the size of the neighborhood W go to 0 (while keeping λ constant) is equivalent
to letting λ → +∞, hence asymptotically leading to linear filtering.

We first define local TV-denoising in a continuous setting. Let Ω denote an open subset
of R2, and let W be a bounded convex open subset of R2 containing 0, weighted by a positive
function ω ∈ L∞(W). If x ∈ Ω, the set Wx = (x+W) ∩ Ω is a neighborhood of x. The total
variation of a patch u ∈ L2(Wx) is defined by duality by

(36) TV (u) = sup

{∫
Wx

udiv p, p ∈ C∞
c (Wx,R

2), ‖p‖∞ ≤ 1

}

(see [8]), and its weighted norm ‖u‖ω by

(37) ‖u‖2ω =

∫
Wx

ω(y − x)u(y)2 dy.

Given W and λ > 0, we consider the unique function u belonging to

BV (Wx) = {u ∈ L2(Wx), TV (u) < +∞}

that minimizes

(38) Eλ,ω,x(u) = ‖u− v(Wx)‖2ω + λTV (u),

where v(Wx) denotes the restriction of v on the subdomain Wx. Then, the local TV-denoising
operator TW ,λ at point x is defined by

(39) TW ,λv(x) = lim
r→0+

1

|B(x, r)|
∫
B(x,r)

u

when the limit exists (B(x, r) is the Euclidean open ball with center x and radius r, and
|B(x, r)| is its Lebesgue measure).

Note that in (39), we need to consider a limit (the mean value of u at point x) because the
value u(x) has no meaning by itself (u is defined up to a Lebesgue-negligible function). Since
u ∈ BV (Wx), this limit exists almost surely (that is, for almost any point of Wx), which does
not prove that TW ,λ is defined almost everywhere though (even if we believe that it is the
case). In the following, the existence of TW ,λv(x) will always be ensured in the asymptotic
frameworks we consider.

Now, in order to make the neighborhood W shrink to a singleton, we consider a dilation
parameter h > 0 and the dilated set hW, associated to the weight function ω(·/h), in agree-
ment with the normalization suggested in section 4.3.2. The following theorem describes the
asymptotic behavior of ThW ,λ when h goes to 0.



672 CÉCILE LOUCHET AND LIONEL MOISAN

Theorem 3. Let Ω be an open subset of R2 and v ∈ C3(Ω). Let W be a bounded convex
open neighborhood of 0 in R2 and let ω ∈ L∞(W) satisfy

ω > 0,

∫
W

ω(x)x dx = 0, and

CovW(ω) :=
1∫
W ω

( ∫
W x21 ω(x) dx

∫
W x1x2 ω(x) dx∫

W x1x2 ω(x) dx
∫
W x22 ω(x) dx

)
= σ2Id

(with the usual convention x = (x1, x2)). For each x ∈ Ω, when h is small enough, the
denoising operator ThW ,λ considered by (39) is well defined and satisfies

(40) ThW ,λv(x) = v(x) +
h2σ2

2
Δv(x) + O

h→0
(h3),

where Δv = ∂2v
∂x2

1
+ ∂2v

∂x2
2
denotes the Laplacian of v.

It is quite surprising that a restoration method based on TV, which assigns a finite cost to
contrasted edges but favors piecewise constant structures more than smooth structures (stair-
casing effect), could be associated to an isotropic diffusion through the Laplacian operator.
Indeed, local TV-denoising is equivalent to global TV-denoising for large enough neighbor-
hoods (see section 6.1), but Theorem 3 points out that it is equivalent to Gaussian filtering
for very small neighborhoods. This can be linked to the linear behavior of local TV-denoising
in low-contrasted regions (27). Local TV-denoising with middle-sized neighborhoods hence
reaches a compromise between global TV-denoising and Gaussian filtering.

Lemma 1. Let v ∈ L2(Ω) and x ∈ Ω. Assume that W is an open subset of R2 such
that Wx is bounded and convex, and consider a positive weight function ω ∈ L∞(W). Let

v̄x =

∫
Wx

ω(y−x)v(y) dy
∫
Wx

ω(y−x) dy
. If

(41) λ ≥ diam(Wx) · ‖ω(· − x)(v(Wx)− v̄x)‖L∞(Wx)

(where diam(Wx) denotes the diameter of Wx), then the constant image v̄x minimizes Eλ,ω,x.

Remark. The existence of such a bound on λ (41) above which the constant image min-

imizes Eλ,ω,x is proved in [24, Lemma 2.3] in a slightly different framework (the authors
consider the eventuality of a blurring operator, but ω = 1). Here we derive an explicit upper
bound and propose a proof directly inspired from the discrete framework.

Proof of Lemma 1. The proof is similar to that of the discrete framework in Proposition 5.
Only (34) has to be justified, with C = 2/diam(Wx). Actually, in a continuous framework,
the Poincaré inequality [8] states that for some constant γ > 0, one has

∀u ∈ L1(Wx), ‖u−m(u)‖L1(Wx) ≤ γ TV (u),

where m(u) = 1
|W|

∫
W u(y) dy. In [1], it is shown that if Wx is bounded and convex, the

previous inequality holds with γ = diam(Wx)/2 = 1/C, which completes the proof.
Proof of Theorem 3. For any h > 0 and x ∈ Ω, let Wh,x = (x+ hW) ∩ Ω and

v̄h,x =

∫
W ω(y) v(x + ht) dt∫

W ω(t) dt
.



TOTAL VARIATION AS A LOCAL FILTER 673

Consider h0 > 0 such that for any h < h0, Wh,x ⊂ Ω (and hence is convex). By Lemma 1,

λc
h,x = diam(Wh,x) · ‖ω((· − x)/h)(v(Wh,x)− v̄h,x)‖L∞(Wh,x)

is a critical value of λ, that is, a value above which the denoised version of v(Wh,x) is constant,
equal to v̄h,x. Now we have

λc
h,x ≤ hdiam(W) · 2‖ω‖L∞(W)‖v(Wx)‖L∞(Wh0,x

) −−−→
h→0

0;

hence there exists h1 ∈ (0, h0] such that λ ≥ λc
h,x as soon as h < h1. Thus, for any h < h1,

the denoising is linear at point x, and ThW ,λv(x) = v̄h,x.
We end the proof by deriving an asymptotic development of v̄h,x when h → 0. As v is C3,

we can write for any h ∈ (0, h1),

(42) ∀t ∈ W, −Mh3 ≤ v(x+ ht)− v(x)− h∇v(x) · t− h2

2
D2v(x)(t, t) ≤ Mh3,

where M = 1
6 suph1W ‖D3v‖ · suph1W |t|3 (notice that M < +∞ because D3v is continuous

on the closed set h1W). Multiplying all terms of (42) by ω(t) and integrating on W, we then
obtain∣∣∣∣(v̄h,x − v(x))

∫
W

ω − h∇v(x) ·
∫
W
ω(t)t dt− h2

2

∫
W

ω(t)D2v(x)(t, t) dt

∣∣∣∣ ≤ Mh3
∫
W
ω.

Using the fact that CovW(ω) = σ2Id and
∫
W ω(t)t dt = 0, we get∫

W
ω(t)D2v(x)(t, t) dt = σ2Δv(x)

∫
W

ω

and finally

v̄h,x = v(x) +
h2σ2

2
Δv(x) + O

h→0
(h3)

with ThW ,λv(x) = v̄h,x for h small enough, as noticed above.

5. Algorithm. In this section, we propose a dual algorithm based on Chambolle’s work
[22] that achieves the minimization of the weighted energy

(43) Eλ,ω,v(u) =
∑
x∈W

ωx(u(x)− v(x))2 + λTV (u),

where W is a finite arbitrary domain of Z2, u, v are in RW , and (ωx) ∈ RW are positive
weights.

5.1. Characterization of the minimizer. Let W be an arbitrary subset of Z2 (not neces-
sarily a rectangular domain). We assume as in [22] that the TV is discretized according to
(5), using the �2-norm (9). In particular, if y = (y1, y2) ∈ R2, |y| will denote its modulus, i.e.,
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|y| = √
(y1)2 + (y2)2. In order to introduce the discrete divergence operator, let 〈·, ·〉 denote

the usual inner product on RW , and 〈·, ·〉Y the inner product on (R2)W defined by

∀p = (p1, p2) ∈ (R2)W , ∀q = (q1, q2) ∈ (R2)W , 〈p, q〉Y =
∑
x∈W

(p1xq
1
x + p2xq

2
x),

the associated Euclidean norms being written as ‖ · ‖ and ‖ · ‖Y , respectively. Let δWi,j denote

the real 1 if (i, j) ∈ W and 0 otherwise. If p ∈ (R2)W , the discrete divergence of p is an image
div p defined by

(44) ∀(i, j) ∈ W, (div p)(i, j) = p1i,jδ
W
i+1,j − p1i−1,jδ

W
i−1,j + p2i,jδ

W
i,j+1 − p2i,j−1δ

W
i,j−1

(note that this formulation holds regardless of convention used to define px when x /∈ W).
This divergence operator div is dual to the gradient in the sense that

∀u ∈ RW , ∀p ∈ (R2)W , 〈div p, u〉 = −〈p,∇u〉Y .
We also write ‖p‖∞ = maxx∈W |px| and consider the (invertible) diagonal operator D defined
by

(45) ∀u ∈ RW , ∀x ∈ W, (Du)(x) = ωxu(x),

so that for any u ∈ RW we have ‖u‖ω =
√∑

x∈W ωxu(x)2 = ‖D1/2u‖. The next proposition
characterizes the minimizer of (24) as the projection on a convex set.

Proposition 6. The minimizer of (43) can be written as

Tωv = v − πλ
2
K(v),

where

(46) K =
{
D−1(div p), p ∈ (R2)W , ‖p‖∞ ≤ 1

}
is closed and convex, and πλ

2
K denotes the projection operator on λ

2K = {λ
2k, k ∈ K}.

Furthermore, if p ∈ (R2)W is such that πλ
2
K(v) = λ

2D
−1(div p), then p is characterized by

(47) ∀x ∈ W,

∣∣∣∣
(
∇
(
λ

2
D−1(div p)− v

))
x

∣∣∣∣ px =

(
∇
(
λ

2
D−1(div p)− v

))
x

.

For the sake of completeness, a proof derived from [22] is detailed in Appendix A. Again
following [22], we can now derive an iterative scheme for the numerical minimization of (43)
by considering a semi-implicit gradient descent with step τ > 0, given by

(48) ∀x ∈ W, pn+1
x = pnx + τ

[
∇
(
D−1div pn − v

λ/2

)
−
∣∣∣∣∇
(
D−1div pn − v

λ/2

)∣∣∣∣ pn+1

]
x

,

which leads to

(49) ∀x ∈ W, pn+1
x =

pnx + τ(∇(D−1div pn − v
λ/2 ))x

1 + τ |∇(D−1div pn − v
λ/2 )x|

.
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5.2. Convergence.

5.2.1. Main result. When W is a rectangle and ωx = 1 for all x ∈ W (i.e., D = Id), the
iterative scheme (49) converges, provided that τ ≤ 1/8 [22, Theorem 3.1]. In the case of an
arbitrary domain W and arbitrary positive weights (ωx)x∈W , convergence still holds with an
adequate bound on the time step given by the following theorem.

Theorem 4. Let (ωx)x∈W be positive weights on W, and let

(50) τmax =
1

4max
{
max∗i,j

(
1

ωi,j
+ 1

ωi+1,j

)
,max∗i,j

(
1

ωi,j
+ 1

ωi,j+1

)} ,
with the ∗ symbol in max∗i,j f(i, j) meaning that only the indices (i, j) for which f(i, j) is defined

are considered. Let D be the linear diagonal invertible operator defined by (45), v ∈ RW , and
λ > 0. For any τ ∈ (0, τmax], if (p

n) is arbitrarily initialized (with ‖p0‖∞ ≤ 1) and recursively
defined by (49), then v − λ

2D
−1(div pn) converges to the minimizer of Eλ,ω,v (43).

This result is a small refinement of a particular case of [3, Theorem 1], itself derived from
[22, Theorem 3.1]. The improvements we bring concern the convergence bound τmax and the
domain (not constrained to be a rectangle). We give a self-contained proof in Appendix B for
completeness.

Remark 1 (maximum upper bound). If the maximum weight is set to 1 (which is relevant
with the normalization we propose in section 4.3.2 when ω0 = 1), then minx ωx/8 ≤ τmax ≤
1/8. Note that the equality τmax = 1/8 (which is the bound given in [22]) is reached only for
uniform weights (ω ≡ 1).

Remark 2 (practical convergence). In numerical experiments where ω ≡ 1, the effective
maximal step size allowing convergence is 1/4 [22], that is, twice the limit τmax predicted
by the theory (Aujol [9] gives an explanation for this, derived from the Bermúdez–Moreno
algorithm). For Gaussian weights (28), we observed that the effective maximum step size τ effmax

satisfied

(51) τ effmax ∈ [2τmax, 4τmax].

The value τ effmax � 4τmax is found when W is much larger than the kernel’s bandwidth, so that
the Gaussian kernel is hardly truncated by the boundary of W. Conversely, when W is much
smaller than the kernel bandwidth, the weights are virtually uniform on W, and τ effmax � 2τmax.
In the latter case, however, the aliasing-like effect is to be expected (as shown in section 3.2),
so that a trade-off has to be found between the complete removal of the artifact and the speed
of the algorithm. Note that for the projection variant of (49),

(52) pn+1
x =

pnx + τ(∇(D−1div pn − v
λ/2 ))x

max
(
1, |pnx + τ(∇(D−1div pn − v

λ/2 ))x|
)

which generalizes a scheme proposed in [23] to the weighted case, it is not difficult to prove
that convergence holds as soon as τ < minx ωx/4, which is twice the bound given in [3] (see
[9] for a proof derived from the Bermúdez–Moreno algorithm in the nonweighted case).
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5.2.2. Pointwise convergence control. Adapting Chambolle’s criterion [23] to our case,
we are able to explicitly control the weighted L2-distance between the optimum denoised patch
and the patch coming from the iterations of the algorithm. Indeed, let un = v − λ

2D
−1div pn

be the image obtained after the nth iteration. Let also p̄ denote the limit of pn, and ū =
v − λ

2D
−1div p̄. Then,

‖un − ū‖2ω =

〈
λ

2
D−1(div p̄− div pn),D(un − ū)

〉
=

λ

2
〈div p̄− div pn, un − ū〉

=
λ

2
〈pn − p̄,∇un −∇ū〉Y .

Now | 〈p,∇u〉Y | ≤ TV (u) for every u ∈ RW and for every p ∈ (RW)2 satisfying ‖p‖∞ ≤ 1.
But as 〈p̄,∇ū〉Y = −TV (ū) (consider (47) with λ

2D
−1div p̄ = v − ū), we get

‖un − ū‖2ω ≤ λ

2
(TV (un) + 〈pn,∇un〉Y ) ,

which is a computable local convergence bound (the right-hand term going to 0 as n → +∞)
that entails the pointwise convergence criterion

(53) ∀x ∈ W, |un − ū|2(x) ≤ λ

2
(TV (un) + 〈pn,∇un〉Y )

since ω0 = 1.

5.2.3. Usefulness of an arbitrary neighborhood shape. The first main benefit of an
arbitrary neighborhood shape is to speed up the algorithm. Indeed, the pixels x corresponding
to negligible values of the weight ωx can be removed from the neighborhood shape without
much change in the associated local TV-filter, and this results in an arbitrary neighborhood
shape with an increased value of τmax (which speeds up the algorithm).

A second important benefit is to be able to deal with adaptive neighborhoods. A typical
shape to be used for W is a discrete ball with a fixed radius, so that the algorithm becomes
more isotropic. But the neighborhoods can also be designed adaptively with respect to the
image: not only can the radius be adapted to the local scale of the image, but the shape
could also be distorted along the geometry of the image as in [43]. We shall focus on different
applications in the remaining part of this paper, but these ideas could be interesting directions
to explore.

6. Experiments with local TV-denoising. In this section, the local TV-filter considered
in Definition 2 is directly used as a denoising filter. All denoising experiments that follow are
computed with the iterative algorithm described in section 5. Basically, this algorithm is not
very fast because it requires the minimization of a local energy for each pixel. Hopefully, we
can take advantage of the photometric similarity between successive image patches (according
to the lexicographic order on pixels) to speed up the minimization process. Indeed, as TV-
denoising is nonexpansive (20), the spatial coherence of the image implies that the solution
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Figure 4. From local to global denoising. For each of the 4 classical images Cameraman, Lena, Barbara,
and Goldhill, degraded by an additive white Gaussian noise (σ = 10), the graph shows the quick decrease of
the L2-distance between the globally denoised image and the locally denoised one using increasing window sizes
(hard window and constant λ = 20). Despite the fact that the image contents are very different (miscellaneous
textures and different scales), the convergence curves above seem to be quite independent of the image.

associated to a given pixel is necessarily close to the solution associated to its four adjacent
pixels. Thus, by initializing the algorithm for each pixel with the solution found for the
previous pixel, we start the iterative process with a much better initial guess than a classical
initialization (e.g., a constant image), and the convergence is attained much more quickly.

Concerning the processing of image borders, we adopted a classical solution that consists
of extending the image domain with a symmetry convention. This permits us to maintain,
for each pixel of the original image domain, the same neighborhood shape. Another solution
would have been to intersect the theoretical neighborhood of each pixel with the image domain,
but such a process is likely to artificially favor a linear denoising near the image borders due
to the decrease of the neighborhood area (see section 4.4.2).

6.1. Locality of global TV. Now that a local version of TV-denoising has been proposed,
we are able to confirm by numerical experiments that global TV-denoising is mainly ruled by
local interactions (see section 2). In Figure 4, several images denoised by local TV are com-
pared using the L2-norm to those denoised by global TV, for all sizes of square neighborhoods
W smaller than 19 × 19 (and constant weight functions in all neighborhoods). As predicted
in section 2, the locally denoised images quickly converge to the globally denoised ones when
the neighborhood size increases: in practice an 11 × 11 patch is sufficient to capture most of
the interactions, which means that long-range interactions caused by global TV-denoising are
globally negligible in these ordinary images. It is also interesting to notice that the curves



678 CÉCILE LOUCHET AND LIONEL MOISAN

-20

 0

 20

 40

 60

 80

 100

 120

 140

 0  50  100  150  200  250  300
-20

 0

 20

 40

 60

 80

 100

 120

 140

 0  50  100  150  200  250  300
-20

 0

 20

 40

 60

 80

 100

 120

 140

 0  50  100  150  200  250  300

noisy triangle global TV (λ = 4000) global TV (λ = 1000)

-20

 0

 20

 40

 60

 80

 100

 120

 140

 0  50  100  150  200  250  300
-20

 0

 20

 40

 60

 80

 100

 120

 140

 0  50  100  150  200  250  300
-20

 0

 20

 40

 60

 80

 100

 120

 140

 0  50  100  150  200  250  300

Gaussian filtering (a = 15) local TV (a = 15, λ = 4000) local TV (a = 15, λ = 1000)

-20

 0

 20

 40

 60

 80

 100

 120

 140

 0  50  100  150  200  250  300
-20

 0

 20

 40

 60

 80

 100

 120

 140

 0  50  100  150  200  250  300
-20

 0

 20

 40

 60

 80

 100

 120

 140

 0  50  100  150  200  250  300

Gaussian filtering (a = 10) local TV (a = 10, λ = 4000) local TV (a = 10, λ = 1000)

Figure 5. A triangle signal corrupted by an additive white Gaussian noise with σ = 10 (top left) is denoised
by three different algorithms, which all correspond to particular cases of local TV-denoising. The global TV
method (top row), which corresponds to a = +∞, preserves the original “discontinuity” (that is, the presence
of an intensity gap) but largely destroys the maximum intensity zone and creates staircasing artifacts. The
Gaussian filtering (first column), which corresponds to λ = +∞, avoids staircasing and extrema killing but
introduces a lot of blur that completely loses the original intensity gap. An interesting compromise between
these two methods can be obtained by using local TV-denoising with finite values of a and λ, as can be seen in
the four bottom right images (2× 2 square) and in particular the two rightmost images (λ = 1000).

in Figure 4 more or less coincide. This relative stability among images is likely to make the
choice of the window size easier.

6.2. Local versus global denoising, bias-variance trade-off. Consider the local TV-filter
associated to a Gaussian weight function with standard deviation a (written ωa), as in (28).
When the locality parameter a is small, local TV-denoising is approximately equivalent to
linear filtering; inversely, it is equivalent to global TV-denoising when a is large (see paragraph
at the end of section 4.2). For intermediate values of a, local TV-denoising may achieve an
interesting compromise between these two extreme behaviors, as illustrated in Figure 5 on a
synthetic triangle signal. Indeed, the intermediate local TV-denoising model is able to combine
a good restoration of intensity gaps (edges) with a regular smoothing of the regular parts while
limiting the cropping of the extrema. It also avoids the staircasing artifact occurring in global
TV-denoising, as we shall see more precisely in section 6.3.

From a statistical viewpoint, this compromise can be seen as a bias-variance trade-off
with respect to the locality parameter a ∈ (0,∞), the regularization parameter λ being fixed.
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Indeed, if ε is a (white) noise process, the mean-square error made by local TV-denoising can
be classically decomposed into

Eε‖Tωa,λ(u+ ε)− u‖2
= ‖Eε[Tωa,λ(u+ ε)]− u‖2︸ ︷︷ ︸ + Eε‖Tωa,λ(u+ ε)− Eε[Tωa,λ(u+ ε)]‖2︸ ︷︷ ︸ .

squared bias variance

When a is close to 0, local TV-denoising is close to the identity operator, whose bias is zero
but whose variance is equal to the noise variance. Conversely, when a is large, local TV-
denoising is close to global TV-denoising, which has a much smaller variance but a large bias
(in particular because it kills extrema, as shown in Figure 5, top right). The bias and variance
terms do not seem to follow a simple law with respect to a, but in general the best compromise
is found for a finite (nonzero) value of a, as illustrated in Figure 5.

6.3. Reduction of the staircasing effect. In this section we show how local TV-denoising
is able to circumvent a strong drawback of global TV-denoising. Indeed, an image denoised by
global TV-denoising tends to contain blocks with constant gray level, separated by intensity
gaps (edges), even in what should be smooth areas. This so-called staircasing effect also
occurs in other methods, such as denoising by neighborhood filters [18], and in image or video
compression methods.

The staircasing effect in global TV-denoising was first reported by Dobson and Santosa [36]
and used to denoise piecewise constant images. The first mathematical proofs for its existence
were successively given by Nikolova [50, 51] and Ring [55] in different contexts. Theoretical
research on the staircasing artifact is active, as shown by [49] and [21], for instance. Several
methods have been proposed to address this issue: Chambolle and Lions [24], Blomgren et al.
[15], and Levine, Chen, and Stanich [46] propose considering modifications of TV for small
gradient intensities. Chan, Marquina, and Mulet [25] and Chan, Esedoglu, and Park [29]
propose using higher-order terms to capture the smooth regions. In [47], the authors propose
using the ROF energy in a mean-square error sense, which annihilates the staircasing effect.

The local TV-filter we propose here is naturally free from staircasing because, thanks
to Proposition 5 (section 4.4.1), when v is locally flat enough, local TV-denoising is equiv-
alent to a blur by a low-pass filter, which naturally avoids the creation of spurious edges in
smooth regions. In Figure 6, we can observe in the denoised images that contrasted edges
are well preserved as in global TV-denoising, while smooth regions are much more faithfully
reconstructed.

Despite the fact that local TV-denoising visually improves global TV-denoising in a sig-
nificant way, it still suffers from the inability of total variation to cope with textures that are
not distinguished from noise and hence systematically “washed out” by TV-based methods.
Even if this drawback can be ignored for some kinds of images (in particular scientific im-
ages aiming at measuring geometrical features), it puts TV-based denoising methods a step
behind state-of-the-art denoising methods. However, as we shall see now, having transformed
TV-denoising into a local filter opens interesting perspectives for efficient image denoising,
particularly in combination with the recent NL-means algorithm [17].
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Figure 6. Removal of the staircasing artifact. On each column, the noisy image (σ = 10) of the first row is
denoised using global TV (second row) and local TV (third row) with a = 2 (smooth 13× 13 window), both for
λ = 40. As we can see, the staircasing effects (artificial edges) that appear with global TV-denoising completely
disappear with local TV. This is confirmed in rows 4 and 5 (which display the level lines of the images of rows 2
and 3, respectively): instead of being artificially grouped together due to the staircasing effect (row 4), the level
lines in smooth areas are much more regularly spaced in the case of local TV-denoising (row 5).
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7. Application to a hybrid TV–NL-means denoising filter. In this part, we show how
the local TV-filter we studied and the NL-means denoising algorithm [17] can be combined
together to build a new denoising filter that significantly improves the two methods taken
separately. The NL-means algorithm, recently introduced in the continuity of the bilateral
filter [62, 65] and patch-based models for inpainting or texture synthesis [31, 38], has shown
how the redundancy of image patches could be used to achieve very interesting denoising per-
formances, especially in textured areas. For this reason, its combination with TV-denoising,
whose principal drawback is its inability to deal with textures, seems natural. Note that our
goal here is simply to show that the combination of two very different principles (patch-based
denoising and TV-regularization) can lead to interesting new denoising algorithms; finding
the best possible combination would require a dedicated study that cannot be done here.

7.1. NL-means. Whereas classical local filters build an estimate of the true (that is, noise-
free) gray level at a given pixel x by averaging gray levels of pixels y that are located near x
(that is, for which |y − x| is small), the NL-means algorithm uses pixels y that are similar to
x, in the sense that the image patches u(Nx) and u(Ny) are similar (here N is a fixed patch
shape, typically a 7× 7 square). More precisely, an image v ∈ RΩ is denoised by

(54) NLmeans(v)(x) =

∑
y∈Ω ωx,yv(y)∑

y∈Ω ωx,y
,

where each weight

(55) ωx,y = exp

(
−d(v(Nx), v(Ny))

2

2h2

)
is a similarity measure between the patches v(Nx) and v(Ny), based on the Gaussian-weighted
Euclidean distance

(56) d(v(Nx), v(Ny)) =

(∑
k∈N αk (v(x+ k)− v(y + k))2∑

k∈N αk

) 1
2

with αk = e−|k|2/(2a2) and a ∈ (0,+∞] (the case a = ∞ corresponds to the unweighted case).
Using a weighted norm in the patch comparisons is a small improvement that permits us
to give more importance to values in the center of the patch. A reasonable choice for a is
a = s−1

4 for an s × s patch, so that the Gaussian weight varies in [e−4, e−2] � [0.018, 0.05]
on the patch boundary. For computational reasons, the exploration domain of y occurring
in the sums of (54) is generally restricted to a (not so large) neighborhood Wx of x. This
makes the NL-means algorithm less “nonlocal”, but brings a significant improvement in terms
of computational time and denoising performances.

The efficiency of the NL-means method comes from the fact that in a natural image, most
patches are close to several other patches (in the sense defined above). Let us be a little more
precise and say that a patch v(Ny) is a replica of v(Nx) if they both come from the same
original (noise-free) patch to which independent noises have been added. If the patch v(Ny)
is a replica of v(Nx) and Nx ∩ Ny = ∅, then we have

(57) d(v(Nx), v(Ny))
2 = 2σ2

∑
k∈N αkZ

2
k∑

k∈N αk
,
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15 × 15 search window 15 × 15 search window global search
n = 6 n = 10 n = 10

Figure 7. Location of rare patches. On the noisy Lena image (σ = 20), the central pixels of 11×11 patches
that have fewer than n replicas are represented in black (on a light gray background showing the original Lena
image). In the left and middle images, a local 15 × 15 search window is used, whereas the search for replicas
is performed on the whole domain in the right image. Replicas of a patch v(Nx) are patches v(Ny) such that
d(v(Nx), v(Ny))

2 < τ with τ = 2σ2 · 1.392 (which corresponds to the threshold defined by (60) for 11 × 11
patches). As we can see, “rare patches” mostly consist of singular points like T-junctions or more generally
special edge points, and occur in complex textured zones where no local autosimilarity can be found. The use of
a global search window is not interesting in practice, because even if it decreases the number of rare patches (as
shown in the right image), it also reduces the efficiency of NL-means denoising. A similar effect is observed
with the UINTA method and is discussed in [11].

where (Zk) are i.i.d. random variables with distribution N (0, 1). In particular we have

E
[
d(v(Nx), v(Ny))

2
]
= 2σ2,

and the classical choice h = σ ensures that most replicas have a nonnegligible weight ωx,y.
The main weakness of NL-means denoising is probably the way it handles “rare” patches,

that is, image patches v(Nx) for which d(v(Nx), v(Ny))
2 � 2σ2 for almost all pixels y (ex-

amples of such rare patches are shown in Figure 7). Due to the definition of the weights ωx,y

(55) and the fact that ωx,x = 1, the NL-means algorithm will either leave a lot of noise (for
small values of h) or produce an exaggerated blur (for larger values of h). This last effect
comes from the fact that the averaging is done with pixel values coming from quite different
patches, leading to a “patch jittering” blur effect. In practice, this phenomenon is commonly
observed on images processed with the NL-means algorithm: a significant amount of noise
is left on some particular image structures such as corners, T-junctions, and rare texture
patches, and several image parts suffer from a noticeable blur effect. An appropriate choice of
the parameter h permits us to reduce either of these two effects, but not both simultaneously.
Another consequence of this “patch jittering” blur effect is the fact that when the patch size
gets larger, the NL-means filter tends to produce more blurry images (see Figure 8, right
column), although intuitively, the decreasing number of similar patches should lead to a lower
level of denoising, producing a noise effect.
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noisy TV-means (11 × 11) NL-means (11 × 11)

global TV (ROF) aggregated TV-means (11 × 11) NL-means (7 × 7)

Figure 8. Denoising of Barbara image (detail). The classic Barbara image, corrupted with a Gaussian white
noise with standard deviation σ = 20 (top left), is denoised using several methods compared in this paper. The
ROF method (bottom left) does not manage to handle well the smooth and textured parts: most textured parts
(scarf, basket chair) are poorly reconstructed, while a nonnegligible amount of noise remains in the originally
smooth regions (cheek, hand). The NL-means method (right column, top and bottom rows) performs better,
but some regions are oversmoothed (eye, basket chair) due to the patch-jittering effect mentioned at the end of
section 7.1. This effect is particularly strong for 11 × 11 patches (top row); it can be reduced by using smaller
patches (7 × 7 in bottom row), which leads to a better image but with a noticeable loss of denoising in some
parts (hand, cheek). The TV-means algorithm we propose (middle column) manages to find an interesting
compromise: it avoids the patch-jittering effect without reducing too much the amount of denoising in other
regions, thanks to the use of local TV-denoising. The aggregated version (middle column, bottom row) yields a
balanced restoration, visually nicer and significantly better than other methods in terms of the peak signal-to-
noise ratio (PSNR) (see Table 1). Note that all images above were enhanced by a same affine contrast change
for an easier visualization.

7.2. A new filter: TV-means. In order to take care of rare patches, we propose changing
the NL-means strategy in two ways:

(A) select only patches that could be a replica of the current patch;
(B) if the number of selected patches is too small, apply TV-regularization.

Step (A) was proposed before in [16, 32, 48, 52] and, in a different way, in [45]. Notice that
the strategy (A) + (B) we propose simply consists of smoothing rare patches with a well-
established method (TV-denoising) instead of using the indirect “patch-jittering” smoothing
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effect. This combination of local (patch) TV-denoising and NL-means yields the following
algorithm called TV-means.

For a given patch shape N , a given search window W (as in NL-means), and a threshold
τ (which will be specified afterwards), let us define, for every λ ≥ 0, the set

(58) Ω(x, λ) =

{
y ∈ Wx, d

(
Tλ(v(Nx)), Tλ(v(Ny))

)2
< τ

}
,

estimating the location of possible replicas of v(Nx) after TV-filtering with parameter λ. Now
let (nλ)λ≥0 denote a nonincreasing sequence (this sequence controls the level of denoising and
will be discussed afterwards). To every x ∈ Ω, we associate

λ̂(x) = min{λ ≥ 0, |Ω(x, λ)| ≥ nλ},

which represents the minimal TV-filtering parameter for which Tλ(v(Nx)) has enough (that
is, at least nλ) replicas. Finally, we denoise the pixel x by averaging the local TV-denoising
estimates, that is,

TVmeans(v)(x) =
1

|Ω(x, λ̂(x))|
∑

y∈Ω(x,λ̂(x))

TN
λ̂(x)

v(y).

Threshold on the patch distance. The threshold τ is chosen such that a patch v(Nx) and
one of its replicas v(Ny) have a probability of 0.99 of being considered as similar. Remembering
that v(Ny) − v(Nx) is a Gaussian random variable and assuming that the patch size is large
enough, we can use a result from Fisher [40] giving a central limit theorem on weighted i.i.d.
random variables and use, as (Z2

x−1)/
√
2 are centered and normalized i.i.d. random variables,

the approximation

(59)

∑
x∈N αx

Z2
x−1√
2√∑

x∈N α2
x

∼ N (0, 1).

Hence, combining (57) and (59) yields

d(v(Nx), v(Ny))
2 ∼ 2σ2

(
1 +

√
2s2
s1

N (0, 1)

)
, where sp =

∑
k∈N

αp
k (p = 1, 2).

A look at the cumulative function of the normal distribution tables gives

(60) P(d(v(Nx), v(Ny))
2 < τ) = 0.99 ⇐⇒ τ ≈ 2σ2

(
1 + 2.33

√
2s2
s1

)
,

which is the value of τ that we choose to define Ω(x, λ) (58).
Required number of patches for each scale. Here we explain how the sequence (nλ)λ≥0 (the

minimum number of replicas required for a TV-filtering scale λ) can be defined in a generic
way. The first term n0 represents the minimal number of replicas to be found in order to avoid
TV-filtering. It is a parameter of the TV-means algorithm that sets the balance between the
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TV and NL-means combination. In practice a small value is convenient, and we chose n0 = 10
in all experiments (and n0 = 6 in the aggregated case presented in the next section).

Then, we set the other terms nλ (λ > 0) in order to approximately keep the same level of
denoising, for any λ; that is,

∀λ ≥ 0,
1

n0
E

[(
v(x)− u(x)

)2]
=

1

nλ
E

[(
TN
λ v(x) − u(x)

)2]
,

where u denotes the original noise-free image (recall that averaging n replicas divides the noise
variance by n). Now, simulations show that the approximation

E

[(
TN
λ v(x)− u(x)

)2] ≈ σ2(1− rλ),

where r ∈ [0.05, 0.1], usually holds for relatively small values of λ and is quite stable with
respect to σ. This justifies the choice of

nλ = n0(1− rλ),

with r = 0.1, since we do not want to oversmooth rare patches. This formula was taken in all
experiments of section 7.4.

7.3. Aggregated TV-means. A very simple improvement that can be brought to the TV-
means algorithm consists of taking advantage of the fact that for each pixel x, we can use the
algorithm described in section 5 to estimate not only a value for the pixel x but a complete
denoised patch

ûx : k ∈ N �→ 1

|Ω(x, λ̂(x))|
∑

y∈Ω(x,λ̂(x))

Tλ̂(x)(v(Ny))(y + k).

All of these estimates of u0(x) (the nonobserved noise-free image at point x), obtained for all
patches containing the pixel x, can then be aggregated to define the denoised image

x �→
∑

k∈N αk ûx+k(−k)∑
k∈N αk

,

which significantly improves the denoising process. We call this variant “aggregated TV-
means.”

At this point, we hence have three kinds of weights: the weights arising in local TV-
denoising (Definition 2), those used in the patch distance (56), and those used in the ag-
gregation process we just mentioned. In the experiments that follow, we made the simplest
choice and took all weights equal to 1 in the three cases. For local TV-denoising, since the
maximum time step ensuring convergence is proportional to the minimum weight, any other
choice would slow down the algorithm. For the two other weight functions (patch distance
and aggregation), we observed little effect on the results when taking identical functions made
of nonconstant and nonadaptive weights. Hence the choice of equal weights seems reasonable
in a nonadaptive strategy, avoiding in particular the need for extra parameters.
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However, it is important to mention here that interesting improvements could certainly
be obtained by using a weight function adapted to each patch. Indeed, such adaptive weights
(based on inverse variances or on Stein’s unbiased risk estimate [63], for instance) have been
proved to be efficient for the kind of aggregation procedure we consider here (see [44] for a
recent review). The use of an adaptive weight strategy is beyond the scope of this work but
could deserve further study.

7.4. Experiments. The TV-means and aggregated TV-means methods are straightfor-
ward to implement. However, it is worth mentioning that a considerable acceleration can be
obtained by avoiding redundant computations of local TV-filtering. For a given patch Nx and
a given scale λ, the computation of Tλ(v(Nx)) is done at most once, and the smoothed patch
is stored until it is out of range of the remaining potential patches (the image is processed
by increasing line numbers, so that the pixel x cannot be part of a search window after a
certain line index is reached). Using this implementation (in C language), the application of
the aggregated TV-means filter takes 12 seconds on a standard PC desktop for a 256 × 256
image (for the patch and search window sizes specified below).

We tested the effect of TV-means denoising (in both original and aggregated variants) on
the five classical images used in [45]: Barbara, Lena, Boats, House, and Peppers. These five
images were corrupted with a white Gaussian noise (standard deviation σ = 20) and then
processed with the algorithms considered above. Concerning the choice of the parameters, we
tried to find, for each algorithm, a set of values that yielded good results (in terms of the peak
signal-to-noise ratio (PSNR)) for all five images:

• for global TV (ROF) denoising, we used the value λ = 28;
• for NL-means, we used 7 × 7 patches on an 11 × 11 search window, a patch norm

coefficient a = s−1
4 = 1.5, and a weight decay h = 18;

• for TV-means (without aggregation), we used 11 × 11 patches on a 15 × 15 search
window, with n = 10;

• for aggregated TV-means, we used n = 6 (since the aggregation process is a smoothing
process, it is logical to be less demanding on n) and the other parameters as in the
nonaggregated case.

Note that the “optimal” parameters (patch size and search window size) found for NL-
means and TV-means significantly differ. With an equal set of parameters, TV-means would
regularize the images more than NL-means, thanks to the additional TV-regularization pro-
cess. Hence TV-means can be more restrictive on the choice of patches, which explains why
the patch size is found to be larger for TV-means. Further, as TV-means uses 0-1 weights
on the patch distances, it is able to eliminate spurious patches more easily than NL-means,
which explains its ability to deal with larger search windows.

The four algorithms above are compared visually in Figure 8 and 9, where parts of the im-
ages Barbara and Lena are shown.1 The benefit of the combination of global TV-denoising and
NL-means denoising clearly appears: the TV-means method, in both variants, manages to cap-
ture the best features of its two basic components—the patch redundancy used in NL-means
and the nice denoising of edges of global TV-denoising. Figure 10 more specifically compares
the NL-means and aggregated TV-means algorithms using close-ups on zones that include

1Other examples can be found at http://www.mi.parisdescartes.fr/∼moisan/tvmeans/.

http://www.mi.parisdescartes.fr/$\sim $moisan/tvmeans/
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noisy TV-means (11 × 11) NL-means (11 × 11)

global TV (ROF) aggregated TV-means (11 × 11) NL-means (7 × 7)

Figure 9. Denoising of Lena image (detail). As in Figure 8, global TV-denoising simultaneously leaves
noise (and staircasing) on the smooth parts and erases some texture (hat, feathers). The NL-means method
performs better, but either leaves noticeable noise ( 7×7 patches) or introduces too much blur ( 11×11 patches).
A more balanced treatment of edges, flat areas, and textures is obtained with aggregated TV-means, yielding a
better global impression and a more precise recovery of textures (see, e.g., the feathers and the thin stripes of
the hat).

rare patches (see Figure 7). These zones are precisely the ones where the TV-regularization
process is the most active.

We also systematically evaluated the algorithms in terms of their ability to restore the
original image. In each case, we computed the PSNR between the groundtruth image u0 and
the denoised image v, defined by

PSNR = 10 log10

(
2552∑

x

(
v(x) − u0(x)

)2
)
.

The values are reported in Table 1. As we can observe, in terms of denoising efficiency (high
PSNR), the aggregated TV-means method performs significantly better than global TV (ROF)
and NL-means, and yields performances similar to the results of Kervrann and Boulanger [45]
(better for Lena and Boats). Knowing that, contrary to the Kervrann–Boulanger algorithm,
the method we propose does not try to optimize the search window size locally, this is a
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Figure 10. Close-ups of some images in Figure 9, corresponding to zones including rare patches (see
Figure 7), represented by white boxes on the noisy image in Figure 9. Row 1: aggregated TV-means ( 11 × 11
patches). Row 2: NL-means ( 7× 7 patches). Row 3: NL-means ( 11× 11 patches). As can also be observed in
Figure 8 and 9, the TV-regularization operated by TV-means permits us to significantly improve the quality of
the restoration of rare patches, compared to NL-means that either leaves noise (row 2) or introduces undesirable
blur (row 3). In the two rightmost images of row 1, we can observe that TV-means restoration sometimes
causes a slight ringing artifact near contrasted edges, which seems to be caused (at least, partly) by the hard
thresholding used to select replicas.

promising result, since there probably are several interesting ways to combine in a more
sophisticated manner the local TV and NL-means filtering. For example, we could use a
two-pass scheme as in the recent state-of-the-art denoising method BM3D [32]. Another
interesting perspective would be to use the idea of shape-adaptive patches as in SA-DCT [41]
or SA-PCA BM3D [33]. Local TV-denoising could be easily carried out on such patches, since
the algorithm we propose is not restricted to particular domain shapes (thus we can still use
uniform weights to maintain the computational efficiency). It is not clear, however, whether
such a combination would be really efficient, in particular because the adaptive neighborhoods
could interfere (or be redundant) with the local adaptivity of TV-denoising that we observed
at the end of section 2 (see in particular the influence maps in Figure 1).
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Table 1
PSNR values obtained with different denoising algorithms. We can observe that the aggregated TV-means

algorithm (in bold) shows a performance similar to that of the Kervrann–Boulanger method and systematically
improves both TV and NL-means filtering. Note, however, that the simple combination of TV and NL-means
we propose cannot directly compete with recent sophisticated methods like BM3D (in italic).

Barbara Lena Boats House Peppers
512× 512 512× 512 512× 512 256× 256 256× 256

Noisy (σ = 20) 22.1 22.1 22.1 22.1 22.1

TV (ROF) [58] 26.69 30.89 29.21 31.22 29.62

NL-means [17] 29.59 31.50 29.32 32.05 30.12

TV-means 29.94 31.80 29.34 32.34 29.73

agg. TV-means 30.93 32.48 30.00 33.10 30.63

Kervrann–Boulanger [45] 30.37 32.64 30.12 32.90 30.59

BM3D [32] 31.78 33.05 30.88 33.77 31.29

8. Conclusion. The aim of this work was to transform the well-known ROF (TV-L2) fil-
ter into a local filter. This transformation is interesting for several reasons and in particular
because, as we showed, most image pixels have a very limited influence zone in the ROF
model, so that such a local filter is expected to inherit the good behavior of the ROF model.
We built a local TV-filter with an arbitrary neighborhood shape, and discovered that the
introduction of an appropriate weight function (typically Gaussian) was necessary to avoid
aliasing effects, which is quite intuitive considering the linear regime in which the local TV-
filter falls for large values of the scale λ. Aside from interesting properties of this new local
TV-filter (in particular a limiting PDE, allowing weight normalization), we established con-
vergence conditions for the algorithms we built, inspired from Chambolle’s previous works.
We illustrated the interest of local TV-denoising in two directions. First, we showed that it
brings an interesting bias-variance trade-off, compared to its linear regime (Gaussian filtering)
and global TV-denoising. One illustration of this is the fantastic reduction of the well-known
staircasing effect, which makes ROF-processed images look like oil paintings. Second, we
used local TV-filtering to build a new filter that combines TV-denoising and NL-means into
a simple but efficient denoising method called aggregated TV-means. This new filter brings
interesting perspectives, in particular because it shows that although the ROF model is no
longer a state-of-the-art denoising algorithm for most images, the idea of TV-denoising can
still be used to build efficient denoising filters.

Appendix A. Proof of Proposition 6. We follow Chambolle’s proof [22] and generalize
it to the case of a nonrectangular and weighted domain. The fact that the domain W is
not supposed to be rectangular is handled in the definition of the gradient and divergence
operators given at the beginning of section 5.1.

(i) First, we prove that the minimizer u ∈ RW of Eλ,ω,v(u) = ‖D1/2(u − v)‖2 + λTV (u)
(43) satisfies u = v − πλ

2
K(v). Euler’s equation for the minimization of Eλ,ω,v(u) reads as

2D(u− v) + λ∂TV (u) � 0,

that is,
D(v − u)

λ/2
∈ ∂TV (u).
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Denoting TV ∗ as the Legendre–Fenchel transform of TV , we get, thanks to the Moreau
decomposition (see [56]),

u ∈ ∂TV ∗
(
D(v − u)

λ/2

)
.

Now setting w = v−u
λ/2 , this yields

(61) w − 2

λ
v +

2

λ
∂TV ∗(Dw) � 0,

whose left-hand term is the subdifferential of the energy Ẽλ,ω,v(w) =
1
2‖w− 2

λv‖2+ 2
λTV

∗(Dw),

and (61) implies that w minimizes Ẽλ,ω,v. Moreover, if K is defined by (46), which makes
sense since D is invertible, from [22] we have

TV ∗(Dw) =

{
0 if w ∈ K,

+∞ else,

which holds whatever the domain W as the operators ∇ and div are dual to each other.
Hence the minimization of Ẽλ,ω,v amounts to projecting v onto λ

2K, which is closed and
convex because p �→ D−1p is linear. This completes the first part of the proof.

(ii) Recalling the definition of K (46), step (1) enables us to write w = D−1div p, where
p minimizes ‖ 2

λv −D−1div p‖2 among all p such that ‖p‖∞ ≤ 1. The necessary and sufficient
Karush–Kuhn–Tucker conditions hold, and there exists α ∈ RW such that

(62) ∀x ∈ W, −∇(
λ

2
D−1div p− v)x = αxpx

with αx ≥ 0 and αx(|px|2 − 1) = 0 for all x ∈ W. Then either αx > 0 and |px| = 1, or |px| < 1
and αx = 0. In both cases αx = |∇(λ2D

−1div p − v)|x, and replacing this value of αx in (62)
concludes the proof of (47).

Appendix B. Proof of Theorem 4. We follow the proof of [22, Theorem 3.1] in the case
of a nonrectangular domain (see Appendix A).

For convenience, let L denote the linear operator L = D−1/2div , and L∗ = −∇D−1/2 the
dual operator. Letting X = RW and Y = (R2)W , note that L ∈ L(Y,X) (linear operators
mapping Y into X) and that L∗ ∈ L(X,Y ).

First, notice that ‖pn‖∞ ≤ 1 for all n ∈ N, by induction on n in (49). Now, denoting

v = D1/2v
λ/2 , we prove that the sequence ‖Lpn − v‖2 is decreasing for a certain range of values

of τ . Writing η = (pn+1 − pn)/τ , we have

‖Lpn+1 − v‖2 − ‖Lpn − v‖2
= 2τ 〈Lη,Lpn − v〉+ τ2‖Lη‖2
≤ −2τ 〈η,−L∗(Lpn − v)〉Y + τ2κ2‖η‖2Y ,(63)

where κ denotes the operator norm of L (an upper bound for κ will be given at the end of the
proof). Since ∇(D−1div pn − v

λ/2) = −L∗(Lpn − v), we get from (48) that

(64) ∀x ∈ W, ηx = − (L∗ (Lpn − v))x − |(L∗ (Lpn − v))x| pn+1
x ,
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and, consequently, for any pixel x, the splitting

2ηx · (−L∗(Lpn − v))x

= |ηx|2 + |(L∗(Lpn − v))x|2 − |ηx + (L∗(Lpn − v))x|2
= |ηx|2 + |(L∗(Lpn − v))x|2 − |(L∗(Lpn − v))x|2 |pn+1

x |2,
implies that

(65) 2 〈η,−L∗(Lpn − v)〉Y ≥ ‖η‖2Y ,
because ‖pn+1‖∞ ≤ 1. Thus, gathering (63) and (65) yields∥∥Lpn+1 − v

∥∥2 − ‖Lpn − v‖2 ≤ −τ
(
(1− τκ2)‖η‖2Y

)
which is negative as soon as τ < 1/κ2. This proves that the sequence ‖Lpn−v‖2 is decreasing
unless η = 0, which in any case ensures that pn+1 = pn. When τ = 1/κ2, the result remains
true, because if ‖Lpn+1 − v‖ = ‖Lpn − v‖, then (65) is an equality, which requires that

∀x ∈ W, |(L∗(Lpn − v))x||pn+1
x | = |(L∗(Lpn − v))x|,

so that for a given x ∈ W, either |pn+1
x | = 1 or (L∗(Lpn − v))x = 0. In both cases, pn+1 = pn

thanks to (49).
Let m be the limit of ‖Lpn − v‖, and let p̄ be the limit of a converging subsequence (pnk)

of (pn). Then by (49), (pnk+1) converges to a certain p̄′ such that

∀x ∈ W, p̄′x =
p̄x + τ(L∗(Lp̄− v))x
1 + τ |(L∗(Lp̄− v))x| ,

and repeating the former computations leads, thanks to the fact that m = ‖Lp̄ − v‖ =
‖Lp̄′ − v‖, to η̄ = (p̄′ − p̄)/τ = 0, that is, p̄ = p̄′. Thus, taking the limit (n = nk, k → +∞)
in (64), we get

∀x ∈ W, −(L∗(Lp̄− v))x = |(L∗(Lp̄− v))x| p̄x,
which precisely characterizes the minimizer of (43), as shown in Proposition 6. Hence,
λ
2D

−1div p̄ is the projection πλ
2
K(v). Since this projection is unique, we deduce that the

whole sequence (λ2D
−1div pn)n tends to the desired projection, and consequently, thanks to

Proposition 6, that (v − λ
2D

−1div pn)n converges towards the minimizer of (43).
Now we compute an upper bound for the norm κ of L. We have, for any η,

‖Lη‖2 = ‖D−1/2div η‖2

=
∑

(i,j)∈W

1

ωi,j
(η1i,jδ

W
i+1,j − η1i−1,jδ

W
i−1,j + η2i,jδ

W
i,j+1 − η2i,j−1δ

W
i,j−1)

2

≤
∑

(i,j)∈W

4

ωi,j

[
(η1i,jδ

W
i+1,j)

2 + (η1i−1,jδ
W
i−1,j)

2 + (η2i,jδ
W
i,j+1)

2 + (η2i,j−1δ
W
i,j−1)

2
]

≤ 4
∑
i,j

∗
(

1

ωi,j
+

1

ωi+1,j

)
(η1i,j)

2 + 4
∑
i,j

∗
(

1

ωi,j
+

1

ωi,j+1

)
(η2i,j)

2,
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where the notation
∑∗

i,j f(i, j) means, as in Theorem 4, that only the indices (i, j) for which
f(i, j) is defined are considered. This provides the upper bound

κ2 ≤ 4max

{
max
i,j

∗
(

1

ωi,j
+

1

ωi+1,j

)
,max

i,j

∗
(

1

ωi,j
+

1

ωi,j+1

)}
,

so that taking τ ≤ τmax (with τmax as in (50)) yields the announced result.
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blurred, and noisy images by accurate total variation minimization with local constraints, Multiscale
Model. Simul., 5 (2006), pp. 235–272.

[4] F. Alter, V. Caselles, and A. Chambolle, Evolution of characteristic functions of convex sets in the
plane by the minimizing total variation flow, Interfaces Free Bound., 7 (2005), pp. 29–53.

[5] F. Alter, V. Caselles, and A. Chambolle, A characterization of convex calibrable sets in Rn, Math.
Ann., 332 (2005), pp. 329–366.

[6] L. Alvarez, F. Guichard, P.-L. Lions, and J.-M. Morel, Axioms and fundamental equations of image
processing, Arch. Rational Mech. Anal., 123 (1993), pp. 199–257.

[7] F. Andreu, V. Caselles, J. I. Diaz, and J. M. Mazón, Some qualitative properties for the total variation
flow. J. Funct. Anal., 188 (2002), pp. 516–547.

[8] L. Ambrosio, N. Fusco, and D. Pallara, Functions of Bounded Variation and Free Discontinuity
Problems, Oxford University Press, New York, 2000.

[9] J.-F. Aujol, Some first-order algorithms for total-variation based image restoration, J. Math. Imaging
Vision, 34 (2009), pp. 307–327.
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