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Abstract

We propose a Non-Intrusive (or reference-free) Audio Clarity index (NIAC),

inspired from previous works on image sharpness and defined as the sensitivity

of the spectrogram sparsity to a convolution of the audio signal with a white

noise. A closed-form formula is provided, which only involves the signal itself

and very little parameter setting. Tested in various noise and reverberation con-

ditions, the NIAC exhibits a high correlation with the well-established Speech

Transmission Index, both for speech and music. It can also be used as a clarity

criterion to drive sound enhancement algorithms. We propose a NIAC-based

source separation algorithm, and show that its performance is comparable to

that of a state-of-the-art algorithm, FastICA.

Keywords: audio clarity; sparsity; blind source separation

1. Introduction

Audio clarity can be defined as the easiness to spot individual phonemes in

speech or individual notes in music [1]. Many objective measures have been pro-

posed to predict the perceived clarity, generally specifically dedicated to music

or to speech. In the latter case, clarity is generally equated to intelligibility.5

For speech, a first class of methods are intrusive or full-reference meth-

ods, based on a comparison between the distorted signal and a clean signal.
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Preprint April 7, 2021



Important examples are the Speech Intelligibility Index (SII [2]) and Speech

Transmission Index (STI [3]), and the recent Short-Time Objective Intelligibility

(STOI [4]) and intelligibility predictor based on mutual information (SIMI [5]).10

When the clean signal is not available, non-intrusive (or reference-free) mea-

sures are required. Most of them are based on machine-learning techniques and

derive indicators from a large set of signal parameters by maximizing the corre-

lation with reference indicators on a training corpus [6, 7, 8]. The drawback of

this approach is that the indicators depend on the training conditions and that15

they are blind to the physical grounds of intelligibility. Another approach, the

speech to reverberation modulation energy (SRMR) proposed by [9], stemmed

from the idea that the modulation energy tends to spread towards high modu-

lation frequencies in case of reverberation.

Less work is dedicated to music clarity, which assessment often relies on20

room acoustic parameters [10], especially the clarity index C80, defined as the

ratio between the energy within the first 80ms and the energy of the rest of the

room impulse response (RIR). Recent works replace the sound pressure energies

involved in this ratio by perceptually relevant quantities: nerve firing [11] or

perceived loudness [12]. A content-specific measure was proposed in [1], based25

on the perceived loudnesses of direct and reverberated components of a given

signal.

Two important remarks can be made here. Firstly, works on speech assimi-

late clarity and intelligibility, although the latter does not only rely on the easi-

ness to spot individual phonemes (clarity), but also on one’s cultural background30

which allows to ”fill the blanks”. Secondly, all measures consider clarity as the

non-alteration of the sound by noise, reverberation, and other impairments, or,

equivalently, as the quality of the transmission channel. This highlights the

need for a measure of intrinsic sound clarity that would be independent from

its high-level content (text or music notes).35

In the present paper, we propose a new measure of sound clarity inspired

by previous works on image quality assessment [13, 14]. Transposed to the field

of digital images, audio clarity could be compared to image sharpness. Several
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reference-free objective measures of sharpness are based on the importance of

Fourier (or wavelet) phase in the perception of blur [15]. In particular, the40

global phase coherence (GPC [13]) measures how the regularity of an image –

defined by its total variation (TV) – is affected by the destruction of the phase

information. The Sharpness Index (SI [14]) measures the sensitivity of the TV

to the convolution of the image with a white noise. It behaves similarly to the

GPC but is computationally simpler, and was successfully used as a criterion45

for blind image deblurring.

How could GPC or SI be transposed to audio signals? A sharp image has

a sparse gradient and this sparsity is reduced by phase randomization (GPC)

or white noise convolution (SI), which increases the TV. On the contrary, the

TV of a blurred or noisy image is much less sensitive to those operations. A50

similar behavior is found in audio signals: a clear sound has a sparse spectro-

gram, unlike a reverberated or noisy sound. Convolving the sound with a white

noise should reduce the spectrogram sparsity for a clear sound, while leaving it

almost unchanged for a reverberated or noisy sound. This leads us to propose

a Non-Intrusive Audio Clarity index (NIAC), defined as the sensitivity of the55

spectrogram sparsity to a convolution of the signal with a white noise.

Our goal is not to formally assess the NIAC as an objective measure of

clarity that would outperform state of the art indices in terms of correlation

with the perceived clarity, but to show that this approach provides a relevant

indicator of clarity, which can be used as an efficient criterion to drive audio60

enhancement algorithms. We shall illustrate this on Blind Source Separation

(BSS). The objective in BSS is to recover a set of source signals from a set of

observed signals (which are supposed to be mixtures of the sources), relying

on a minimum amount of prior information about the sources and the mixing

process [16, 17]. In the simplest scenario, the mixing process is modeled as65

a non-degenerate instantaneous linear system with the same number of inputs

and outputs, so that the sources can be recovered by a linear combination of

the mixtures.

A popular solution for source separation in this scenario is provided by In-
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dependent Component Analysis (ICA) [17], assuming that the sources are mu-70

tually independent and that at most one source has a Gaussian distribution. In

this case, since the distribution of the mixtures are closer to a Gaussian one than

the sources alone, signals can be recovered using a deflation approach [18], esti-

mating the sources one after another by finding linear combinations of the mix-

tures that maximize a non-Gaussianity measure, as implemented in the FastICA75

algorithm [19]. Here, following the idea that a source alone is clearer than a

mixture, we propose to extract a source by finding the combination of mixtures

that maximizes the NIAC.

The article is structured as follows. In Section 2 we define the NIAC through

the analogy with the image sharpness index. We assess its ability to measure80

audio clarity in Section 3. In Section 4, we propose a NIAC-based source sepa-

ration algorithm, which performances are evaluated in Section 5.

2. The Non-Intrusive Audio Clarity index (NIAC)

2.1. Spectrogram

Considering the time-frequency analysis of a finite-length discrete-time signal

s, with analysis windows of lengthN and an overlap of (1−λ)N samples between

consecutive windows (0 < λ < 1, λN ∈ N), we define the spectrogram of s as

S(f, t) =

N−1
∑

n=0

s(t+ n)h(n)C(f, n), f ∈ {0, 1, . . . , Nf − 1}, t ∈ λNZ, (1)

where the apodization function h, the base functions C, and the value of Nf

(N or N/2) depend on the real-valued transform used, denoted by T in the

following. For instance, for the Modified Discrete Cosine Transform (MDCT),

Nf = N/2 and

C(f, n) =
2√
N

cos

(

2π

N

(

n+
1

2
+

N

4

)(

f +
1

2

)

)

. (2)

The sparsity of the spectrogram will be measured by

‖S‖1 =
∑

f,t

|S(f, t)|. (3)
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2.2. Definition of the Non-Intrusive Audio Clarity index85

Inspired by the image Sharpness Index [14], we propose to measure the

audio clarity by the sensitivity of the spectrogram sparsity of a signal s to the

degradation caused by the convolution of s with a Gaussian white noise.

Let s′ = s ∗ w, where ∗ denotes the discrete convolution product and w :

Z → R is a white Gaussian noise with zero mean and variance σ2
w = 1/Ns, Ns90

being the number of samples of s. The expectation of ‖s′‖22 (written E
[

‖s′‖22
]

)

is equal to ‖s‖22. Let S and S′ be the spectrograms of s and s′ respectively, as

defined by Eq. (1), the support of S′ being truncated to Nt samples.

The aforementioned sensitivity can be expressed through the probability

that the convolution of s with a white noise does not increase the sparsity of its

spectrogram, that is,

p = Prob
[

‖S′‖1] ≤ ‖S‖1
]

. (4)

This probability p is expected to be very small for a clean (and informative)

audio signal, and not so small for a noisy and/or reverberated signal. Assuming

that ‖S′‖1 is nearly Gaussian (which is observed in practice), we can approxi-

mate the quantity − log p (more adapted than p to a computer scale since values

like p = 10−10000 could be easily observed) by

− log

(

Prob

[

X ≤ ‖S‖1
∣

∣

∣

∣

X ∼ N
(

E[‖S′‖1],Var[‖S′‖1]
)

])

. (5)

We define this quantity as the Non-Intrusive Audio Clarity index (NIAC)

C(s) , − log

(

Φ

(

E[‖S′‖1]− ‖S‖1
√

Var[‖S′‖1]

)

)

, (6)

where Var[X ] denotes the variance of a random variable X , and

Φ(t) =
1√
2π

∫ +∞

t

e−x2/2 dx (7)

is the tail of the standard normal distribution.

Note that the NIAC is invariant by scaling: ∀λ ∈ R, C(λs) = C(s).95
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2.3. Computation

Theorem 1. The expectation and the variance of ‖S′‖1 are

E[‖S′‖1] =
√

2

π
Nt

Nf−1
∑

f=0

σS′(f) (8)

Var[‖S′‖1] =
2

π

∑

0≤f,f ′≤Nf−1
1−Nt≤∆≤Nt−1

(Nt − |∆|)σS′ (f)σS′(f ′)ω

(

ΓS′(f, f ′,∆λN)

σS′(f)σS′(f ′)

)

, (9)

respectively, where

• Nt and Nf are the numbers of columns and lines of S;

• ΓS′(f, f ′, τ) , σ2
wT[R̃s,τ (n, n

′)];

• R̃s,τ (n, n
′) , Rs(τ + n − n′)h(n)h(n′), where Rs stands for the auto-100

correlation of s (finite and deterministic);

• σ2
S′(f) , ΓS′(f, f, 0);

• ∀x ∈ [−1, 1], ω(x) , x arcsinx+
√
1− x2 − 1.

According to Lemma 1 of [14], the function ω can be approximated by

ω(x) ≃ x2/2, leading to the following approximation of Eq. (9):

Var[‖S′‖1] ≃
1

π

∑

0≤f,f ′≤Nf−1
1−Nt≤∆≤Nt−1

(Nt − |∆|)Γ
2
S′(f, f ′,∆λN)

σS′(f)σS′(f ′)
(10)

Proof. Convolving the deterministic finite-length signal s with the white noise

w produces s′ stationary, Gaussian with zero mean. Hence, S′(f, t) is stationary105

too, and

E[S′(f, t)] = 0 (11)

Var[S′(f, t)] =

N−1
∑

m,n=0

E[s′(t+m)s′(t+ n)]h(m)h(n)C(f,m)C(f, n)

= σ2
w

N−1
∑

m,n=0

Rs(m− n)h(m)h(n)C(f,m)C(f, n)

, σ̃2
S′(f) (independent of t) (12)
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Since S′(f, t) is Gaussian and using Lemma 4 of [14],

E[|S′(f, t)|] = σ̃S′(f)

√

2

π
, (13)

so that

E[‖S′‖1] =
∑

f,t

E[|S′(f, t)|] =
√

2

π
Nt

Nf−1
∑

f=0

σ̃S′(f). (14)

To obtain E[‖S′‖21], we first compute

E[S′(f, t)S′(f ′, t′)] =
N−1
∑

n,n′=0

E[s′(t+ n)s′(t′ + n′)]h(n)h(n′)C(f, n)C(f ′, n′)

= σ2
w

N−1
∑

n,n′=0

Rs(t− t′ + n− n′)h(n)h(n′)C(f, n)C(f ′, n′)

= σ2
wT[R̃s,t−t′(n, n

′)]

= ΓS′(f, f ′, t− t′). (15)

Note that σ̃S′

2(f) = ΓS′(f, f, 0) = σ2
S′(f), so that Eq. (14) is equivalent to

Eq. (8). Moreover, using Lemma 5 of [14] with Z = [S′(f, t), S′(f ′, t′)]⊤, we

obtain

E[|S′(f, t)S′(f ′, t′)|] = 2

π
σS′(f)σS′(f ′)ω

(

ΓS′(f, f ′, t− t′)

σS′(f)σS′(f ′)

)

+
2

π
σS′(f)σS′(f ′).

(16)

E[‖S′‖21] =
∑

0≤f,f ′≤Nf−1

0≤k,k′≤Nt−1

E
[

|S′(f, kλN)S′(f ′, k′λN)|
]

=
2

π

∑

0≤f,f ′≤Nf−1

0≤k,k′≤Nt−1

σS′(f)σS′ (f ′)ω

(

ΓS′(f, f ′, (k − k′)λN)

σS′(f)σS′(f ′)

)

+N2
t

2

π

(

∑

0≤f≤Nf−1

σS′(f)

)2

(17)

Since the second term of Eq. (17) is equal to E[‖S′‖1]2, we deduce (9).

2.4. NIAC of a mixture

Theorem 2. Let y be linear combination of p signals x1 . . . xp, that is,

y =

p
∑

i=1

αixi. (18)
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The NIAC of y can be computed using Eg. (6) and Theorem 1, with

ΓY ′(f, f ′, τ) =
∑

1≤i,j≤p

αiαjΓX′

i
X′

j
(f, f ′, τ), (19)

where110

• ΓX′

i
X′

j
(f, f ′, τ) , σ2

wT[R̃xixj,τ (n, n
′)];

• R̃xixj ,τ (n, n
′) , Rxixj

(τ + n − n′)h(n)h(n′), where Rxixj
stands for the

inter-correlation between xi and xj (finite and deterministic).

Proof. The base of ΓY ′(f, f ′, τ) calculation is the deterministic auto-correlation

of y,

Ry(τ + n− n′) =
∑

1≤i,j≤p

αiαjRxixj
(τ + n− n′). (20)

Similarly,

R̃y,τ (n, n
′) =

∑

1≤i,j≤p

αiαjR̃xixj ,τ (n, n
′), (21)

and from ΓY ′(f, f ′, τ) , σ2
wT[R̃y,τ (n, n

′)] the linearity of the transform T yields

Eq. (19).115

2.5. Complexity of NIAC computation

We measure the complexity as the number of multiplications. The compu-

tation of the autocorrelation Rs requires Θ(Nf log2 Nf ) multiplications. The

construction of each matrix ΓS′(·, ·, τ) requires Θ(N2
f log2 Nf ) multiplications,

so that the computation of ΓS′ requires globally Θ(NtN
2
f log2 Nf ) multiplica-120

tions. The variance computation (9) performs Θ(NtN
2
f ) additional multiplica-

tions. Consequently, the NIAC has a computational cost of Θ(NtN
2
f log2 Nf )

multiplications.

For the NIAC of a mixture, we consider asymptotic equivalents, for further

use in Section 4. We suppose that the ΓX′

i
X′

j
(f, f ′, τ) values are already avail-125

able. Each ΓY ′(f, f ′, τ) requires O(p2) multiplications, so that O(p2NtN
2
f ) mul-

tiplications are necessary for ΓY ′ . The variance computation needs O(NtN
2
f )

additional multiplications. The global computational cost of the NIAC of a

mixture, given (ΓX′

i
X′

j
)i,j , is O(p2NtN

2
f ).
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2.6. Parameter setting130

For the spectrogram, we used the MDCT with 50% frame-overlapping (that

is, λ = 1
2 ) and a Kaiser-Bessel apodization function h. This choice is motivated

by (i) the fact that the complexity is a quadratic function of the number of

frequency bins Nf , which is only half of the window length N in the case of the

MDCT; (ii) the practicality of the MDCT for block-processing audio signals in135

the frequency domain, with a view to using the NIAC as a criterion to drive

audio-enhancement algorithms.

The window length N is set to around 20 ms times the sampling frequency,

as commonly used in audio processing to ensure a satisfactory trade-off between

time and frequency resolutions. Keeping in mind that we aim to measure the140

spectrogram sensitivity, longer windows make the spectrogram less sensitive

to smearing in the time dimension in case of reverberation and increase the

complexity, while shorter windows decrease the frequency resolution, especially

in the case of harmonic signals, so that the spectrogram is less sensitive to noise.

The choice of the analysis duration T must be driven by the criterion of145

NIAC stability across time, in the sense that it should not vary much across

time in constant conditions of noise, reverberation, etc. In addition to that,

the relevant value of T depends on the rhythm of the signal, as illustrated

by Fig. 1. The spectrogram is much more modified by the convolution with

a white noise if a strong non-stationarity occurs during the period T , like a150

syllable or a note change, leading to a higher NIAC. If T is lower than the

average period corresponding to the rhythm (syllables or notes per second),

some T -blocks contain a change, others not, leading to a low mean NIAC and

a strong variance. On the contrary, for higher T , each block is very likely to

contain a change, which makes the NIAC higher and more stable across time.155

Nonetheless, the NIAC can be averaged on long blocks of the same duration.

For example, averaging 2048ms blocks yields a stable indicator that does not

depend much on the choice of T , as illustrated in Fig. 2 for the same signals as in

Fig. 1. This is of great interest, since computational and storage costs increase

linearly with T . Additionally, T should be as small as possible in the foresight160
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of using the NIAC as a criterion for non-stationary enhancement algorithms.
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Figure 1: Top row: For speech (left) and piano (right), variations of NIAC across time for

different values of the spectrogram duration T . Bottom row: relative standard deviation of

the NIAC as a function of T . The average syllable duration is about 200 ms in the speech

signal; the average note duration is about 250 ms in the piano signal. The NIAC is higher and

more stable for T > 256 ms, that is, for T higher than the average syllable/note duration.
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Figure 2: For speech (left) and piano (right), temporal variations of the NIAC averaged on

blocks of 2048 ms, for different values of spectrogram duration T . The variability of the log

averaged NIAC is similar for all values of T . Consequently, if we average the NIAC over a

long duration, T can be set to any value convenient for the constraints given by the context.

3. How well does the NIAC measures audio clarity?

3.1. Sound material

We used a speech corpus and a music corpus. The speech corpus was created

from the TIMIT database [20], sampled at 16 kHz. We chose 16 speakers, one165

male and one female from each of the 8 dialect regions of the USA defined in

the documentation. For each speaker, the analyzed signal consists of the five

“SX” sentences concatenated and lasts 9 s to 18 s.
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The music corpus is a set of 5 extracts from the QUASI database [21, 22],

with a duration between 9 s and 16 s, totalling 33 mono-instrument tracks,170

re-sampled at 32 kHz, from which we processed each track independently.

3.2. Experiment

We computed the NIAC for each signal for various noise and reverberation

levels. For the reverberation, we considered a purely reverberant room impulse

characterized by its reverberation time T60 (the time it takes for the sound level175

to reduce by 60 dB). For each T60 value, we synthesized an impulse response by

multiplying a white Gaussian noise by an exponential envelope matching T60.

For the speech corpus, we tested 30 values of T60, logarithmically distributed

between 10 ms and 5 s, and 21 SNR values, linearly distributed between -30

and +30 dB, producing 30 × 21 = 630 (T60, SNR) conditions. Before NIAC180

computation, silence was suppressed in the signals. We computed the NIAC on

disjoint blocks of 512 ms and, for each speaker, the mean NIAC on the whole

signal. The spectrograms used in NIAC were based on 32 ms analysis windows.

For the music corpus, we tested 10 T60 values, logarithmically distributed

between 10 ms and 5 s, and 13 SNR values, linearly distributed between -30185

and +30 dB, producing 10 × 13 = 130 (T60, SNR) conditions. Before NIAC

computations, we suppressed the beginning and ending silences, but we kept the

small silences that are part of the signal. Again, the spectrograms were based

on 32 ms analysis windows. We considered 4 conditions in the foresight of using

the NIAC as a criterion for BSS: averaging time of 1 s and 4 s, with T = 256190

ms and 1024 ms (to check the independence on T indicated by Fig. 2).

In both experiments, for each (T60, SNR) condition we compared the average

NIAC to the STI, computed from the T60 and SNR parameters according to [23].

Although the STI is intended for speech intelligibility assessment, its principles

(measuring how the acoustic channel reduces the modulation index for various195

modulation frequencies in various frequency bands) make it appropriate for any

audio signal, provided that the range of modulation frequencies is within 0.63-

12.5 Hz, which holds for music instruments [24].
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Figure 3: (a) Iso-log(NIAC) lines in the SNR-T60 plane: for each (SNR,T60) condition, the

NIAC is averaged over the 16 speakers. These level lines are similar to the iso-STI lines,

suggesting that the NIAC could be used as an alternative to the STI; (b) Relation between

NIAC and STI: each point represents one (speaker, SNR, T60) condition, where speaker = 1

to 16, T60 takes 30 logarithmically distributed values between 10 ms and 5 s, and SNR takes

21 linearly distributed values between -30 and +30 dB. The high correlation (0.99) shows that

the NIAC (which is reference-free) can be used to predict the full-reference STI.

3.3. Results

For the speech corpus, for each (SNR, T60) condition, we computed the200

average NIAC over the 16 speakers. Fig. 3a represents the iso-log(NIAC) lines

in the SNR-T60 plane, which are very similar to the iso-STI lines (see [23]). To

explore this similarity further, we represented in Fig. 3b each triplet (speaker,

SNR, T60) as a point in the (log(NIAC), STI) plane. The log of the mean NIAC

is linearly correlated with the STI: the global correlation coefficient is 0.99, and205

the individual correlation coefficients of the speakers are between 0.98 and 0.99.

This shows that the NIAC can be considered as a reliable predictor of the STI,

and thus used as an intelligibility measure.

For each instrument of the music corpus, the equivalent figure also exhibits

a correlation between the log of the mean NIAC and the STI, but the value of210

the correlation coefficient depends on the instrument, on the averaging time, on

the averaging block, and on the spectrogram duration T . Fig. 4 shows how the

choice of these parameters influences the correlation. Choosing T = 256 ms and

12



1 4 7 10 13 16 19 22 25 28 31 1 4 7 10 13 16 19 22 25 28 31 1 4 7 10 13 16 19 22 25 28 31 1 4 7 10 13 16 19 22 25 28 31

0

1

−0.2

0.2

0.4

0.6

0.8

−0.1

0.1

0.3

0.5

0.7

0.9

sources

c
o

rr
e

la
ti
o

n
 N

IA
C

−
S

T
I

T=256ms

average on 1024ms

T=256ms

average on 4096ms

T=1024ms

average on 1024ms

T=1024ms

average on 4096ms

Figure 4: Dispersion of the correlations between log(NIAC) and STI. Each point represents

one averaging block. We considered successive disjoint blocks when averaging on 1024 ms,

and 75% overlapping blocks when averaging on 4096 ms. We can see that the second setting

(T = 256 ms, averaging on 4096 s) leads to a more systematically good correlation.

averaging the NIAC on 4096 ms ensures the best correlations and the lowest

dependence on the choice of the averaging block.215

4. NIAC-based blind source separation

4.1. Problem setting

We consider an instantaneous determined mixture of p signals. Denoting

by s the vector of p source signals, x the vector of p mixtures, and A the non-

singular p × p mixing matrix, the mixture can be written x = As. The goal of220

blind source separation (BSS) is to estimate s from x with A unknown.

The initial idea proposed in [25] is that a separated source is clearer than a

mixture, so that, under the assumption that the NIAC measures clarity, a source

separation algorithm could be driven by NIAC maximization. The experimental

results presented in [25] showed that this is only correct when all source signals

have a NIAC with the same order of magnitude. If this is not the case, the source

signals with the lower NIAC can end up with a higher NIAC when corrupted by

a signal with a much higher NIAC, so that their extraction actually corresponds

to NIAC minimization (instead of maximization). Thus, extracting one of the
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source signals means finding

α̂ ∈ argmax
α

C(yα) ∪ argmin
α

C(yα), with yα =

p
∑

i=1

αixi, α = [α1 . . . αp]
⊤ (22)

and C denotes the average of C over several blocks of duration T .

Since the NIAC is invariant under scaling, the solutions of Eq. (22) are

defined up to a scaling factor. We remove this degree of freedom by impos-

ing E[y2α] = 1, that is, α⊤Cxα = 1, where Cx = E[xx⊤] denotes the corre-

lation matrix of x. Since Cx is symmetric and non-negative, we can find a

(non-negative symmetric) matrix
√
Cx such that Cx =

√
Cx

√
Cx

⊤
. If we set

β =
√
Cx

⊤
α, the constraint E[y2α] = 1 becomes

p
∑

i=1

β2
i = 1. (23)

In addition to Eq. (23), p other constraints must be considered: the contri-

butions of yα to each component of x must have the same sign. Let â be the

vector of the estimated contributions:

â = argmin
a

E[‖x− yαa‖2] = E[yαx]/E[y
2
α]. (24)

The sign constraints are

±E[yαx] ≥ 0, (25)

which means that all components of E[yαx] have the same sign. Using Eq. (22)

leads to

±Cxα ≥ 0, that is ±
√

Cxβ ≥ 0. (26)

Hence, the optimization problem can be summarized as follows:

β̂ ∈ argmax
β

C(yβ) ∪ argmin
β

C(yβ) with yβ = x⊤
(

√

Cx

⊤)−1
β (27)

under the constraints







‖β‖ = 1

and ±√
Cxβ ≥ 0.

(28)

We have to optimize a function on a subregion of (p− 1)-dimensional sphere of

radius 1 defined by linear inequality constraints. Since each point β of the sphere
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is equivalent to its symmetric −β, only one hemisphere has to be explored. Note225

that for each evaluation of C(yβ), most of the calculations are avoided thanks

to Theorem 2 (all ΓX′

i
X′

j
are computed once at the beginning).

Since we know that the expected optimums respect the sign constraint

±√
Cxβ ≥ 0, we can just check it a posteriori, once the algorithm converged,

which simplifies the optimization process. In practice, this sign constraint was230

satisfied in all the numerical experiments we performed, so we never had to reset

the search with different initialization parameters.

Note that in the case of an iterative extraction/deflation process (see Sec-

tion 4.2), Eq. (26) is applicable only for the first extracted source signal. For

the ones that follow, since the extraction coefficients apply to a deflated version235

of x, another condition on β has to be derived from Eq. (25). For an a pos-

teriori checking, it is simpler to use directly Eq. (25) in all cases. In addition

to that, the constraint ‖β‖ = 1 may be satisfied by letting ‖β‖ free during the

optimization and normalizing the solution at the end, or when needed to control

the optimization algorithm (see Subsection 4.3).240

4.2. Optimization and separation scheme

A first idea could be to search for all local optima and to extract the source

corresponding to each of them. This search can be performed in parallel, using,

for example, the Multi-Optima Particle Swarm Optimization (MOPSO) [26], or

sequentially, with an inhibition of the successively found optima. The drawback245

of this solution is its computational cost, especially as the extrema of Eq. (27)

may not all correspond to an extraction (see the voice+voice example in [25]).

Another approach is to perform an iterative extraction-deflation process [17].

At each iteration, we first extract one source signal by maximizing or minimiz-

ing C(yβ), then we estimate its contribution to the mixture in order to subtract250

it, and finally we reduce the mixture dimension (see Algorithm 1). The succes-

sive dimension reductions decrease the computational cost all the more as the

complexity of the NIAC computation for a mixture is a quadratic function of

the number of sources (see Subsection 2.5).
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As a drawback, the separation quality may decrease across iterations and255

one bad extraction can jeopardize all the ones that follow. To limit this risk,

we take advantage of the possibility of maximizing or minimizing the NIAC to

extract a source. Consequently at each iteration, we keep the same optimization

direction as for the previous iteration to extract a signal, and we assess this ex-

traction through its independence from the residual signal. If the independence260

is sufficient and the solution fulfills the sign constraint (25), we keep this extrac-

tion and go further, otherwise we try the optimization in the other direction.

In this case, we keep the one that fulfills the sign constraint and yields the best

independence (see Algorithm 2).

The independence between two signals y and x can be evaluated through

|E[yφ(x)]|, which measures the nonlinear correlation between the signals, where

φ denotes a nonlinear function, e.g., cubic or hyperbolic [17]. In practice, the

lower the score, the better the independence. Hence, to measure the indepen-

dence of an extracted signal y relatively to the residual multi-channel signal

x = [x1 . . . xp]
⊤, we use the independence score

I(y, x) , max
1≤i≤p

|E[yφ(xi)]|. (29)

A classical continuous optimization method, such as Newton’s method, can265

perform fast and accurately if the gradient and the Hessian of the function to

be optimized can be calculated or estimated. But this type of optimization

is prone to being trapped in a local optimum. On the other hand, Particle

Swarm Optimization (PSO) [27] allows to find the global optimum thanks to

its ability to explore large domains but the particles converge slowly to the270

accurate optimal position. Consequently, we take advantage of both approaches

through a two-step optimization scheme: PSO allows to roughly search for the

global optimum, then its solution initializes a Newton-type algorithm close to

the optimum, which accelerates the convergence of this second optimization

and avoids the risk of being trapped in a local optimum. Both algorithms are275

described in more details in the next subsection.
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Algorithm 1 Iterative extraction/deflation process.

x̃← x

repeat

Extract ymax through NIAC maximization

Estimate the contribution âmax of ymax to x̃ (see Eq. (24))

Deflation: x̃← x̃− âmaxymax

Dimension reduction: write

Ã =



 âmax
Ip̃−1

01,p̃−1



 , where p̃ = dim(x̃)

Decompose Ã under the form Ã = QR, with Q orthogonal and R upper triangular

Q̃← Q without its first column

x̃← Q̃⊤x̃

until dim(x̃) = 1

Algorithm 2 Iterative extraction/deflation based on NIAC minimiza-

tion/maximization, with boolean sign constraint checking Sopt and signals inde-

pendence score Iopt. X stands for the opposite (negation or inverse optimization

direction) of X .

opt← max (that is, we look for a maximum)

repeat

opt(NIAC) −→ extraction and deflation −→ Iopt, Sopt

if Iopt > threshold or Sopt then

opt(NIAC) −→ extraction and deflation −→ Iopt, Sopt

if Sopt and Sopt then

error

else if (Sopt and Sopt) or (Sopt and Iopt < Iopt) then

keep result of opt(NIAC)

opt← opt

else

keep result of opt(NIAC)

end if

end if

until dim(x̃) = 1
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4.3. Optimization algorithms

First step: PSO algorithm.

PSO is a metaheuristic that has been successfully used in a wide range of

optimization problems. The basic idea is that a collection of particles, repre-280

senting solutions to the optimization problem, is scattered in the domain of the

function and, from simple update rules for each particle position and velocity,

the swarm is able to explore the search space and find the global optimum [27].

The velocity vt of each particle at the instant t of a PSO algorithm is influ-

enced by the best solution (position of the particle) found so far by the particle

itself (pbest) and the best solution found by the whole swarm (gbest), following

a simple update rule given by:

vt = w vt−1 + c1 r1 (pbest− xt−1) + c2 r2 (gbest− xt−1) , (30)

where the inertia weight w determines the contribution rate of previous velocity,

r1 and r2 are random factors (generated from a uniform distribution), and c1

and c2 are acceleration coefficients. The position of each particle is updated

from its previous position with

xt = xt−1 + vt . (31)

Even though PSO is frequently able to obtain the global solution, its conver-

gence speed can be very low. Nevertheless, for suitable parameter values, the285

algorithm is able to perform a fast, but rough, exploration of the search space.

In this case, an interesting stopping criterion for PSO is based on the swarm

inertia, defined as the mean squared distance between particles and the swarm

barycenter. In other words, if the particles become close to the barycenter, it

indicates that the swarm may be converging to a minimum, and provides a good290

initialization for more accurate search algorithms.

Second step: quasi-Newton.

We propose to use a continuous optimization method, of Newton type. To

simplify the calculations, we can notice that since the function t 7→ − logΦ(t) is
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increasing, the optimization of C(s) can be replaced by the optimization of the

operand of Φ in Eq. (6), that is, the pseudo-NIAC

pC(s) , E[‖S′‖1]− ‖S‖1
√

Var[‖S′‖1]
(32)

with the same notations as in Section 2.

The gradient calculation is presented in Appendix. Due to the L1-norm of

the spectrogram involved in the NIAC, the gradient is not defined everywhere,295

but almost everywherere in the Lebesgue measure sense. In practice, conver-

gence was observed despite these exceptional points.

To avoid the computation of the Hessian of pC, we decided to use a quasi-

Newton algorithm with the BFGS approach. The only parameter is the stop

criterion, set to

‖β(k) − β(k−1)‖ < ε, (33)

where β(k) and β(k−1) denote the values of β at iterations k and k − 1, respec-

tively, and ε is a small value. This threshold ε can be directly related to the

quality of the separation provided by the solution, as follows. Let β̂ be the

solution, α̂ = (
√
Cx

⊤
)−1β̂, and αref the closest optimal extraction coefficients

(corresponding to a line of A−1 for the first extraction). We denote by ŷ and

yref the corresponding respective extracted signals. Then

ŷ − yref = (α̂− αref )⊤x = (β̂ − βref )⊤
(

√

Cx

)−1
x, (34)

and since E[xx⊤] = Cx =
√
Cx

√
Cx

⊤
, the mean squared error is given by

E[(ŷ − yref )2] = E

[

(β̂ − βref )⊤
(

√

Cx

)−1
xx⊤

(

√

Cx

)−⊤
(β̂ − βref )

]

= ‖β̂ − βref‖2. (35)

Since we have the constraint E[y2] = 1, the signal-to-error ratio is

SER ,
E[y2]

E[(ŷ − yref)2]
=

1

‖β̂ − βref‖2
. (36)

Hence the threshold ε can be set according to the desired signal-to-error ratio.

This SER corresponds to the Signal-to-Interference Ratio (SIR) for the first300

extraction. In an iterative extraction/deflation process, Eq. (36) still holds but

19



may under-estimate the SIR, since the best extraction coefficients αref do not

avoid the residual interference resulting from the imperfect previous extractions.

Complexity comparison.

The Quasi-Newton algorithm requires the computation of the gradient of305

pC(s), which has the same complexity O(p2NtN
2
f ) as the NIAC itself (see Sub-

section 2.5). Indeed, for each αi,

•
∂

∂αi
ΓY ′(f, f ′,∆λN) requires p multiplications, so that the cost of ∂

∂αi
ΓY ′

is O(pNtN
2
f );

• the cost of ∂‖Y ‖1

∂αi
, ∂µ

∂αi
, and ∂σ2

∂αi
are O(NtNf), O(Nf ), and O(NtN

2
f ),310

respectively.

In practice, the cost of one iteration of PSO or Quasi-Newton is similar, and

the overall optimization time is shared equally among the two steps.

5. Experimental results and discussion

5.1. Sound material, parameters setting, and tools315

Following the discussion in Section 3, we used the same music corpus com-

posed of 5 multi-tracks extracts from the QUASI database [21, 22], with duration

9 to 16 s, resampled at 32 kHz. We set the spectrogram duration to T = 256 ms,

and we averaged the NIAC on 4096 ms.

PSO inertia and acceleration parameters are problem dependent, so choosing320

the parameters of this type of algorithm is an optimization problem itself [28, 29].

We empirically chose from preliminary simulations the acceleration coefficients

c1 = 0.5 and c2 = 0.8, and the inertia weight w = 0.4. The swarm generally

converges to the global optimal position even with slightly different coefficient

values. PSO was initialized with 10 particles in all simulations. The swarm325

inertia threshold (stop criterion) was set to 0.05. In the QN-BFGS algorithm,

the stop criterion was ε = 10−4, which corresponds to a target SER of 80 dB.

We evaluated the separation performance through the signal-to-distortion

ratio (SDR), the signal-to-interference ratio (SIR) and the signal-to-artifact ratio
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NIAC ICA SDR SIR SAR

guitar 28 38 28 38 73 71

voice 49 27 49 27 73 71

piano 30 44 30 44 74 71

Table 1: Signal-to-distortion ratio (SDR), signal-to-interference ratio (SIR) and signal-to-

artifact ratio (SAR) of a NIAC-based source separation example, compared to FastICA . For

each metric (SDR, SIR, SAR), the minimum and maximum values are approximately similar

for NIAC and ICA, but not necessarily obtained with the same instruments because the order

of extraction is different.

(SAR) [30]. We compared them to the values obtained with a state-of-the-330

art ready-to-use algorithm, FastICA [19], also using the deflation approach.

We fed the algorithm with the same data as the NIAC analysis, that is, the

spectrogram on 4096 ms with the same time-frequeny analysis. When running

FastICA , one has to chose a non-linear function used for an independence

score. As time-frequency samples of audio-signal have generally super-Gaussian335

distributions [17], the most convenient choice is the Gaussian non-linearity.

5.2. An example of NIAC-based BSS

We consider a mixture of three sources – acoustic guitar, voice, and piano.

The PSO approached the maximum in 4 iterations, and the result served as

initialization for QN-BFGS optimization, which converged in 10 iterations (16340

calls), with ‖β̂ − βref‖ = 3.5 × 10−3 and Imax = 4.1 × 10−2, where βref cor-

responds to voice extraction. Then, after extraction and deflation, the PSO

converged around the maximum in 3 iterations. Finally, the QN-BFGS algo-

rithm initialized by the maximum found by PSO converged in 4 iterations (10

calls), with ‖β̂ − βref‖ = 4.1 × 10−2 and Imax = 2 × 10−2, where βref corre-345

sponds to guitar extraction. The results in Table 1 show that the NIAC-based

separation performs as well as FastICA on this example.
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Figure 5: Means and standard deviations of the SIR from FastICA and NIAC-based BSS,

for 4 condition numbers. The results are presented by source and by extraction range. The

absence of point for a source at an extraction range r means that the source is never extracted

at range r, or in less than 10% of the cases. When the condition number increases, the values

decrease less and are less scattered with NIAC-BSS than with FastICA .

5.3. Robustness to ill-conditioned mixture matrix

For p sources, we explore the space of mixture matrices A with conditionning

number c as follows. We write A as in a singular value decomposition, that is350

A = PSQ with S a diagonal matrix and P,Q ∈ SO(p) (the special orthogonal

group). The diagonal of S is filled with the values 1, c, and p− 2 others values

drawn uniformly between 1 and c. P and Q are drawn uniformly in SO(p) using

the algorithm described in [31].

For p = 3, we evaluated the performance (measured by the SIR) of FastICA355

and NIAC-based BSS for c = 1, 10, 100 and 1000. For each value of c, we

processed FastICA and NIAC-based BSS with the previous sources for 100 and
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Figure 6: Histograms of SIRs resulting from FastICA and NIAC-based BSS, for mixtures of

3 to 6 sources.

25 mixture matrices, respectively1, randomly set as specified above. We chal-

lenged the robustness to ill-conditioning with a small perturbation, consisting

in adding on each mixture channel a noise with SNR of 50 dB. As indicated360

by Fig. 5, our method appears to be slightly more robust to an ill-conditioned

mixture matrix than FastICA .

5.4. Performance evaluation for various sets of sources

For each sources number p =3 to 6 and for each of the 5 extracts, we selected

6 sources that were active on nearly all the extract duration and we ran the365

NIAC-based BSS and FastICA for each combination of p sources among 6,

using the same mixture matrix as in Subsection 5.2. As illustrated by Fig. 6,

1The different number of trials is motivated by the fact that the results are analyzed by

source and by range of extraction. Whereas the extraction range is generally constant for

NIAC-based BSS, it depends on the random initialization for FastICA .
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the performance of both methods is similar, but the proportion of SIRs below

20dB is higher for the NIAC-based BSS. The detailed optimization results for

these cases show three types of explanation: (i) the choice between maximization370

and minimization is misled by the independence criterion; (ii) the topography

of the NIAC function is difficult (eg. maximum on a crest with local irrelevant

maxima); (iii) the optimum in the sense of NIAC is slightly different from the

optimum in the sense of separation.

5.5. Discussion375

Comparing the simulation results, we can observe that NIAC-based BSS

and FastICA have similar overall performances. In fact, for the determined

instantaneous mixture case, other popular methods such as Infomax or JADE

lead to similar separation results. Nevertheless, the choice for FastICA as a basis

for comparison is not only justified by its popularity but also by the existence of380

theoretical studies in the literature [32, 33] providing a very good understanding

about its features and limitations.

For example, according to [32], source extraction using FastICA with a gaus-

sian nonlinearity from a three-source mixture is able to achieve an SIR of approx-

imately 51.4 dB (for a mixture of Laplacian sources, considering N = 500000385

samples, which is roughly the same amount used in our simulations for music

signals). For each additional source in the mixture, the performance is reduced

by 3 dB. A similar behavior is observed in Fig. 6, and, as mentioned before, is

followed closely by the NIAC-based algorithm.

Another point mentioned before is related to the robustness to ill-conditioned390

mixing matrices, illustrated in Fig. 5. The order in which the sources are ex-

tracted by FastICA heavily depends on the initialization of the algorithm, and,

as discussed in [33], has an important impact on the quality of the subsequent

extracted sources. On the other hand, the NIAC-based algorithm seem to be

more robust to initialization, extracting the sources in a same order – which395

may explain the lower variability of the SIR results.

In addition to that, it is important to highlight some interesting features of
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the NIAC-based method. Firstly, it does not rely on the independence of the

sources. The independence is used as a secondary criterion to choose between

maximization and minimization, but it is not a requirement for the method,400

which means that even correlated sources could be extracted from the mixture.

Another important point is that it does not assume that the sources are

non-Gaussian, an existing limitation in ICA-based methods. As an illustration

of this, we ran both methods on the previous corpus with 2-sources mixtures,

where all sources were gaussianized according to [34]. While FastICA failed or405

reached an SIR below 10dB in 77% of the cases, the NIAC-based BSS yielded

a mean SIR of 47dB, with 8% of the SIRs below 10dB.

In this sense, one could compare NIAC-based method to other alternative

BSS algorithms exploring distinct characteristics of the sources, such as those

based on the time structure or the assumption that the sources have a sparse410

representation [17]. Nevertheless, since the NIAC-based methods explores a

criterion closely related to perceptual measures, we consider that it may be a

more interesting choice when dealing with audio or speech signal extraction.

6. Conclusion

We have designed the NIAC as a clarity measure that assesses the intrinsic415

clarity of any audio signal (not specifically speech or music). While highly cor-

related with STI, it has the advantage of being non-intrusive. Unlike machine-

learning-based non-intrusive measures, it does not require any learning and relies

on very few parameter settings, without need of fine tuning. It can be used as

a criterion to drive audio enhancement algorithms. In the case of blind source420

separation (BSS) of an instantaneous determined mixture, the NIAC-based BSS

exhibits performances similar to those of FastICA, with many advantages: it

does not rely on source-independence and non-Gaussianity hypotheses, and it is

robust to algorithm initialization and ill-conditioned mixture matrices. The low

amount of iterations needed to make the algorithm converge compensates for425

the complexity of NIAC computation. We have limited the study to a simple
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scenario, but the theoretical framework is easily extendable to convolutive mix-

ture separation or dereverberation of a single source recorded by one or several

sensors. Since the NIAC needs to be averaged on one to a few seconds, it may

however not be appropriate for the correction of non-stationary impairments.430

Note that the NIAC design does not restrict it to audio signals: any signal,

the cleanness of which is characterized by its time-frequency sparsity, may ben-

efit from this approach, both for quality assessment and enhancement purposes.

Scilab source code for NIAC and NIAC-BSS is freely available at

https://git.mi.parisdescartes.fr/mahe/niac435

Appendix: calculation of gradpC

Let y be a signal extracted from the p-mixture x with the extraction coef-

ficients α. In the following calculation, considering the notations introduced in

Section 2, we represent E[‖Y ′‖1] and
√

Var[‖Y ′‖1] by µ and σ, respectively. We

use the approximation (10) of Var[‖Y ′‖1]. For 1 ≤ i ≤ p,

∂pC(y)
∂αi

=
1

σ2

[

σ

(

∂µ

∂αi
− ∂‖Y ‖1

∂αi

)

−
(

µ− ‖Y ‖1
2σ

)

∂σ2

∂αi

]

(37)

In this formula, the following elements have to be further calculated: ∂‖Y ‖1/∂αi,

∂µ/∂αi, and ∂σ2/∂αi.

∂‖Y ‖1
∂αi

=
∑

f,t

∂

∂αi

∣

∣

p
∑

j=1

αjXj(f, t)
∣

∣ =
∑

f,t

sign
(

Y (f, t)
)

Xi(f, t) (38)

∂µ

∂αi
=

√

2

π
Nt

∑

f

1

2σY ′(f)

∂σ2
Y ′(f)

∂αi
(39)

∂σ2

∂αi
=

1

π

∑

f,f ′,∆

(Nt − |∆|)
{

2ρY ′(f, f ′,∆λN)
∂

∂αi
ΓY ′(f, f ′,∆λN)

−1

2
ρ2Y ′(f, f ′,∆λN)

(

σY ′(f)

σY ′(f ′)

∂σ2
Y ′

∂αi
(f ′) +

σY ′(f ′)

σY ′(f)

∂σ2
Y ′

∂αi
(f)

)}

,(40)

with ρY ′(f, f ′,∆λN) =
ΓY ′(f, f ′, N2 ∆)

σY ′(f)σY ′(f ′)
. (41)
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To conclude, we compute

∂

∂αi
ΓY ′(f, f ′,∆λN) =

p
∑

j=1

αj

(

ΓX′

i
X′

j
(f, f ′,∆λN) + ΓX′

j
X′

i
(f, f ′,∆λN)

)

(42)

from Theorem 2, and similarly,

∂σ2
Y ′(f)

∂αi
=

p
∑

j=1

αj

(

σ2
X′

i
X′

j
(f) + σ2

X′

j
X′

i
(f)
)

. (43)

Note that the gradient of the pseudo-NIAC relatively to β =
√
Cx

⊤
α is

∇βpC =
(

√

Cx

)−1

∇αpC. (44)
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