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PDE's, motion analysisand 3D re
onstru
tion from moviesLionel MoisanCMLA, E
ole Normale Sup�erieure de Ca
han, Fran
ee-mail: moisan�
mla.ens-
a
han.frAbstra
t: We study a non-linear se
ond order PDE related to the image pro
essingproblem 
alled \stru
ture from motion". Its 
lose relation to the monodimensional heatequation permits to de�ne weak solutions and establish existen
e and uniqueness properties.We also point out a variational interpretation and present numeri
al simulations.Keywords : non-linear partial di�erential equations, variational methods, weak solutions,image pro
essingAMS subje
t 
lassi�
ation : 35K55, 35D05. 35A15, 68U101 Introdu
tionThroughout this paper, we study the partial di�erential equationut = u�� � 2u�uxu�x + �u�ux�2 uxx; (DCMA)where u(x; �; t) is a real-valued fun
tion depending on three s
alar variables x (spa
e), �(time) and t (s
ale), and submitted to some boundary 
onditions. This is a degenerateparaboli
 equation whi
h des
ribes an anisotropi
 di�usion pro
ess : the left term isthe se
ond derivative of u evaluated in the dire
tion (�u�=ux; 1). Equation (DCMA)was introdu
ed in [7℄ as the only multis
ale analysis of movies 
ompatible with thedepth re
overy (the so-
alled stru
ture from motion problem). Evans also studied itas a way to extend the heat equation to multi-valued fun
tions (see [6℄).The goal of stru
ture from motion is to 
ompute the tridimensional stru
ture ofobje
ts that are seen by a 
amera from di�erent points of view. In theory, two imagesare suÆ
ient to re
over the 3D stru
ture of observed parts (this is the prin
iple ofstereovision), but in pra
tive long sequen
es of images are used to guarantee robust-ness. Formally, this leads to 
onsider movies, represented as fun
tions u of two spatial
oordinates x, y and the time 
oordinate �. In the following, we shall only deal withgray-level movies, for whi
h the s
alar value u(x; y; �) measures the intensity re
eivedby the 
amera at point (x; y) of the image plane and at time �.



2 Pro
eedings of PDE Prague'98 : Partial Di�erential Equations - Theory and numeri
al solutionIf the 
amera is moving along the x axis, pointing in a perpendi
ular dire
tion Ztowards a lambertian �xed surfa
e, then it produ
es a movie u whi
h ideally satis�es�u�ux (x; y; �) = � V (�)Z(M) ; (1)where V (�) is the 
amera speed at time � and Z(M) the depth of the physi
al pointM proje
ted in (x; y) on the fo
al plane at time �. In pra
ti
e, the 
omputation ofthe left term �u�=ux (whi
h 
orresponds to the apparent velo
ity v indu
ed on theimage plane by the 
amera motion) requires some smoothing pro
ess, �rst be
ause thelow sampling rates in the digitization of real movies make the use of �nite di�eren
eestimations hazardous, se
ond in order to take advantage of the redundan
y of thedepth information 
ontained in the movie.The most relevant smoothing pro
ess found so far 
onsists pre
isely in the multi-s
ale representation u(x; y; �; t) of a raw movie u0, obtained as the solution u of the(DCMA) evolution satisfying the initial 
ondition u(x; y; �; 0) = u0(x; y; �). Noti
ethat the y variable is not involved in this equation and 
an be removed in its mathe-mati
al analysis. The following results justify in some way the use of the DCMA (see[8℄ or [9℄ for more pre
ise formulations).Theorem 1 The DCMA is the only regular semigroup Tt : u0(�) 7! u(�; t) whi
h is� monotone : if u1 6 u2, then Ttu1 6 Ttu2 at any s
ale t > 0,� 
ontrast invariant : if g : FR ! FR is 
ontinuous, then Tt g(u) = g(Ttu),� Galilean invariant : Tt 
ommutes with the 
hange of Galilean referential(x; �) 7! (x� �� + x0; � + �0),� zoom invariant : Tt 
ommutes with spatial homotheties (x; �) 7! (�x; �).Theorem 2 The Depth Compatible Multis
ale Analysis (DCMA) is the only regularmonotone semigroup preserving the depth map of ideal movies : if u0 has interpretationZ(X; Y ) (depth map) and V0(�) (
amera speed), then Ttu0 has interpretation Z(X; Y )(same depth map) and V (�; t), where V (�; 0) = V0(�) and Vt = V�� (that is, the 
ameraspeed interpretation is smoothed by the monodimensional heat equation).2 Classi
al and weak solutions of the DCMAEquation (DCMA) 
an be written under the form ut = F (D2u;Du), where Du andD2u are the �rst and se
ond derivatives of u and F is an ellipti
 operator (that is,nonde
reasing with respe
t withD2u for the natural order on symmetri
 2x2 matri
es).However, sin
e F is not 
ontinuous, the theory of vis
osity solutions of Crandall,Ishii and Lions (see [4℄) does not apply. Even known generalizations to dis
ontinuous
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tions F (e.g. Evans-Spru
k [5℄ and Chen-Giga-Goto [3℄ for the Mean CurvatureMotion) do not work for the DCMA, be
ause the singularity at points where ux = 0is too strong. However, it is possible to give a de�nition of weak solutions of (DCMA)ensuring uniqueness and existen
e for some 
lass of initial 
onditions by noti
ing (likeEvans in [6℄) that the DCMA is the level set formulation of the linear heat equation.More pre
isely, if u solves (DCMA) and if we parameterize a level 
urve u(x; �; t) = 
stunder the form x = '(�; t), then this level 
urve should evolve a

ording to the one-dimensional heat equation 't = '��.2.1 Classi
al solutions of the DCMAFor the reason we explained before, we forget the y variable in the following, and amovie is de�ned on FR � I, with either I =℄�1; �2[ or I = S1. In the spa
e variable, aperiodization has no meaning in terms of s
ene interpretation, so that we shall rathersuppose that u tends towards some 
onstant when x grows to in�nity (we shall saythat u is \
onstant at in�nity").De�nition 1 For 
 = (
�; 
+) 2 FR2 and n > 0, Cn
 is the spa
e of movies u 2Cn(FR� I) su
h thatsup�2I ju(�x; �)� 
�j+ ju(x; �)� 
+j ! 0 as x! +1: (2)From now on, we write 
 = FR�I�℄0;+1[, i.e. 
 is the domain of movie analyses.De�nition 2 For 
 2 FR2 and n; p > 0, Cn;p
 is the spa
e of movie analyses u 2 C0(
)su
h that1. 8T > 0; sup�2I;t6T ju(�x; �; t)� 
�j+ ju(x; �; t)� 
+j ! 0 as x! +1;2. on 
, (x; �; t) 7! u(x; �; t) is of 
lass Cn with respe
t to (x; �) and Cp with respe
tto t.De�nition 3 Given u0 2 C0
 , we say that u is a 
lassi
al solution of the DCMAasso
iated to the initial datum u0 if(i) u 2 C2;1
 ,(ii) on 
 = FR� I�℄0;+1[; 8>><>>: ut = u�� � 2u�uxu�x + (u�ux )2uxx when ux 6= 0;ut = 0 when ux = 0:(iii) 8(x; �; t) 2 �
; u(x; �; t) = u0(x; �):
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al solutionThis de�nition ensures the uniqueness result thanks to the followingProposition 1 (
omparison prin
iple) Let u and ~u be 
lassi
al solutions of theDCMA asso
iated to initial data u0 and ~u0 respe
tively. If u0 6 ~u0, then u 6 ~u on 
.The proof is rather 
lassi
al : it 
onsists to show that for any �; T; R > 0, themap (x; �; t) 7! u(x; �; t) � ~u(x; �; t) � �t attains its max value on the boundary of[�R;R℄� I � [0; T ℄, and then to send � to zero and R to in�nity.Corollary 1 (uniqueness) A 
lassi
al solution of the DCMA asso
iated to a giveninitial datum u0 2 C2
 is unique.In order to ensure the existen
e of 
lassi
al solutions of the DCMA, we now restrainthe spa
e of initial data.De�nition 4 For n > 1, we write Vn
 the spa
e of movies u 2 Cn
 for whi
h thereexists a movie v 2 Cn�10 su
h thatu� + vux = 0 on FR� I: (3)v is 
alled a velo
ity map of u. In addition, the spa
e Vn;p
 is de�ned as elements ofCn;p
 admitting a velo
ity map v 2 Cn�1;p0 .Remark : Consider a movie u 2 Vn
 . When ux(x; �) = 0, (3) implies u�(x; �) = 0, andif n > 2, di�erentiating (3) with respe
t to � and x shows that u��+2vu�x+ v2uxx = 0as soon as ux = 0. A 
onsequen
e is that if u 2 V2;1
 is a 
lassi
al solution of theDCMA, then any velo
ity map v of u satis�es on 
( u� + vux = 0ut = u�� + vu�x + v2uxx: (4)We now build expli
it solutions of the DCMA. As we said before, the main ideais to noti
e that the traje
tories (i.e. the 
urves x(�) along whi
h u is 
onstant)are smoothed by the monodimensional heat equation. For that purpose, we need tointrodu
e the natural domain I? for su
h traje
tories. If I =℄�1; �2[ then I? = I, andif I = S1, then I? = FR (the natural inje
tion S1 ,! [0; 2�[� FR being impli
it). Tosimplify the notations, we suppose in the following that 0 2 I.De�nition 5 A map ' 2 Cn(FR� I?) (n > 0) is a �-graph of u 2 Cn
 if1. for any � 2 I?, the map x 7! '(x; �) is in
reasing and bije
tive (and 'x does notvanish if n > 1).
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s, vol. 406, pp. 273-282, 1998. 52. for any (x; �) 2 FR� I?, u('(x; �); �) = u(x; 0); (5)3. for any x 2 FR, '(x; 0) = x, and if I = S1, then for any (x; �) 2 FR� I?,'(x; � + 2�) = '('(x; 2�); �); (6)4. supjxj>R;�2I j'�(x; �)j ! 0 as R! +1 (in a generalized sense if n = 0).
Remark : Noti
e that in Condition 4, the sup is taken for � 2 I and not for � 2 I?.If n = 0, the term j'�(x; �)j must be repla
ed bylim suph!0 �����'(x; � + h)� '(x; �)h ����� :Proposition 2 A movie u 2 Cn
 (n > 2) belongs to Vn
 if and only if it admits a�-graph of 
lass Cn.Proposition 3 Let u0 2 Vn
 (n > 2), and '0 be a �-graph of u0 of 
lass Cn. De�ne(x; �; t) 7! '(x; �; t) as the unique solution of the monodimensional heat equation�'�t = �2'��2 (7)on 
? = FR� I?�℄0;+1[ submitted to the boundary 
ondition8(x; �; t) 2 �
?; '(x; �; t) = '0(x; �): (8)Then, the unique map u : 
! FR de�ned by8(x; �; t) 2 
; u('(x; �; t); �; t) = u0(x; 0) (9)belongs to Vn;n
 and is a 
lassi
al solution of the DCMA asso
iated to the initial datumu0.We think it is worth explaining here the link between the (DCMA) and the monodi-mensional heat equation stated in Proposition 3. Let us note z1 = ('(z); �; t) for agiven z 2 
. If ux(z1) = 0, di�erentiating (9) with respe
t to t yields't(z)ux(z1) + ut(z1) = ut(z1) = 0as expe
ted. If ux(z1) 6= 0, we obtain ut(z1) = �'t(z)ux(z1),dd� �u0(x; 0)� = 0 = '�(z)ux('(z); �; t) + u�('(z); �; t); and
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eedings of PDE Prague'98 : Partial Di�erential Equations - Theory and numeri
al solutiond2d�2 (u0(x; 0)) = 0 = dd� �'�(z)ux('(z); �; t) + u�('(z); �; t)�= '��(z)ux(z1) + '2�(z)uxx(z1) + 2'�(z)ux�(z1) + u��(z1)= ��ut + u�� � 2u�uxu�x + (u�ux )2uxx� (z1):Hen
e, u is a 
lassi
al solution of the DCMA asso
iated to the initial datum u0. Wenow have theProposition 4 (existen
e) Given an initial datum u0 2 Vn
 (n > 2), there exists aunique 
lassi
al solution of the DCMA, and it belongs to Vn;n
 .Proposition 3 proves that the DCMA Equation is a s
alar formulation of themonodimensional heat equation (7), like two other important equations of image pro-
essing : the Mean Curvature Motion and the AÆne Morphologi
al S
ale Spa
e, whi
h
an be obtained by axiomati
 formulations as well (see [1℄). The di�eren
e betweenthem only 
omes from the intrinsi
 parameter of the level lines : the Eu
lidean ab-s
issa for the Mean Curvature Motion, the aÆne abs
issa for the AÆne S
ale spa
e.For the DCMA, the natural parameter is the time �, whi
h means that level lines arenot 
onsidered as 
urves but as graphs. This remark allowed us to prove the existen
eof weak solutions for the DCMA, but in 
ertain 
ases only : pre
isely, when the levellines of the initial datum 
an be des
ribed by graphs.2.2 Weak solutions of the DCMAWe de�ne weak (only 
ontinuous) solutions of the DCMA as uniform limits of 
lassi
alsolutions.De�nition 6 Given a movie u0 2 C0
 , we say that a map u 2 C0;0
 is a weak solutionof the DCMA asso
iated to the initial datum u0 if8(x; �; t) 2 �
; u(x; �; t) = u0(x; �)and if there exists a sequen
e (u")">0 of 
lassi
al solutions of the DCMA asso
iated tothe initial datum u0 su
h that u" ! u uniformly on 
 when "! 0.Proposition 5 (uniqueness) A weak solution of the DCMA asso
iated to a giveninitial datum is unique.Proposition 6 (existen
e) Call V
 the topologi
al 
losure of V2
 with respe
t to thek � k1 norm. Then, given u0 2 V
, there exists a unique weak solution u of the DCMAasso
iated to the initial datum u0.
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e again, the uniqueness property results from a 
omparison prin
iple. Theexisten
e 
an be shown using the approximation of the initial datum by elements ofV2
 and the existen
e property for regular solutions. One 
an also build an expli
it weaksolution, using the 
onstru
tion (the monodimensional heat equation) of Proposition3.De�nition 7 We write V0
 the spa
e of movies u 2 C0
 whi
h admit a 
ontinuous�-graph.Proposition 7 Let u0 2 V0
 , and '0 be a �-graph of u0. De�ne (x; �; t) 7! '(x; �; t) asthe unique solution of the monodimensional heat equation (7) submitted to the boundary
ondition (8). Then, the unique map u de�ned from ' by (9) is a weak solution of theDCMA.A 
onsequen
e of this 
hara
terization of weak solutions is that a weak solution ofthe DCMA asso
iated to an initial datum u0 2 Vn
 admits a kind of velo
ity movie assoon as t > 0, as stated byCorollary 2 Let u be the weak solution of the DCMA asso
iated to an initial datumu0 2 V0
 . If u is lo
ally Lips
hitz in the x variable, then there exists a 
ontinuous mapv de�ned on 
 = FR� I�℄0;+1[ su
h that on 
,u(x+ �v(x; �; t); � + �; t) = u(x; �; t) + o(�)and u(x+ �v(x; �; t); � + �; t� � 22 ) = u(x; �; t) + o(� 2):Noti
e that this property is a generalization of (4).2.3 Further existen
e propertiesIn the previous se
tions, we did not prove the existen
e of (weak or 
lassi
al) solutionsof the DCMA in the general 
ase, that is to say when the initial datum admits no�-graph. In fa
t, we do not believe that the DCMA admits a solution in general, atleast a solution in the sense we de�ned. When the initial datum u0 admits a �-graph,the DCMA is obtained by applying the linear monodimensional heat equation to thelevel lines of u0. For an ordinary 
ontinuous map u0, the level lines have no reasonto be graphs in the � variable, sin
e to a given value of �, several values of x will
orrespond in general. Hen
e, de�ning general solutions of the DCMA is somewhatequivalent to de�ning solutions of the heat equation for multi-valued data. It is inthat spirit that in [6℄ Evans studied (DCMA) as the limit when " ! 0 of the moreregular equation ut = u2xu�� � 2uxu�ux� + u2�uxxu2x + "2u2� : (10)
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al solutionEquation (10) admits vis
osity solutions be
ause it is more or less the Mean CurvatureMotion (a
tually, the 
ase " = 1 is exa
tly the Mean Curvature Motion). He noti
edthat in the general 
ase (that is, when the level lines of the initial datum are notgraphs), the regularizing e�e
ts of the heat equation are so strong that the limit ofapproximate solutions is not 
ontinuous at s
ale t = 0, be
ause the level lines are
onstrained to be
ome graphs instantaneously.3 Variational interpretation of the DCMAProposition 8 The DCMA indu
es on v a 
ow asso
iated to the minimization ofE(v) = 12 ZZ (v� + vvx)2 dxd�: (11)Let us 
onsider the fun
tional E(v) de�ned by (11) on 
ompa
tly supported moviesof 
lass C2. Di�erentiating E yields, after integrations by parts,DvE(h) = � ZZ D2vD�2h dxd�;where DD� = ��� + v ��x represents the total derivative operator. Then, for a 
lassi
alsolution of the DCMA u 2 V4;10 asso
iated to a 
ompa
tly supported initial datum andadmitting a velo
ity map v, one hasddt �E(v)� = � ZZ  D2vD�2!2 dxd�;whi
h means that the 
ow indu
ed on v by the DCMA is asso
iated to the minimizationof E . This mimimization property proves that the DCMA \idealizes" movies and tendto give them a 
oherent depth interpretation as s
ale in
reases, sin
e the apparenta

eleration Dv=D� = v� + vvx is globally de
reasing.4 Numeri
al s
hemeIn order to apply the DCMA evolution to real movies, we need to devise a numeri
als
heme. A \naive" dis
retization of the partial derivatives of u 
annot be used, be
ausein pra
ti
e it is well known that the time dis
retization is not thin enough. Moreover,su
h a dis
retization is not likely to satisfy the axioms that we imposed to the DCMA.This is the reason why we fo
us our attention on an inf-sup s
heme. To this end, givena movie u : FR2 � I ! FR, we de�neIShu(x0; y0; �0) = infv2FR sup�h6�6hu(x0 + v�; y0; �0 + �);SIhu(x0; y0; �0) = supv2FR inf�h6�6hu(x0 + v�; y0; �0 + �);and Thu = 12 (IShu+ SIhu) :
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onsisten
y result (see [9℄ for a proof) at points where ux does not vanish.Theorem 3 If u is a bounded movie lo
ally C3 near z0, with ux(z0) 6= 0, thenThu(z0) = u(z0) + 12h2u��(z0) +O(h3);and the O(h3) is uniform in a neighborhood of z0.Theorem 3 proves the 
onsisten
y of the numeri
al s
heme given by the iterationof Th with respe
t to the DCMA evolution. Due to the h2 
oeÆ
ient in the expansionof Th, it is natural to 
onsider the numeri
al s
heme whi
h asso
iates, to a given movieu0 and a s
ale t > 0, the sequen
e of movies (un;t)n>1 given byun = (Thn)n u0; with hn = q2t=n;and satisfying the boundary 
onstraint un(x; y; �) = u0(x; y; �) on �(FR2 � I). Thanksto Theorem 3, we know that su
h a s
heme is 
onsistent, and one 
ould prove that un
onverges towards the DCMA of u0 when the partial derivative of u0 with respe
t tox never vanishes. In the general 
ase, the existen
e of a solution is not guaranteed,even if numeri
ally the monotoni
ity of the s
heme ensures the 
onvergen
e of thealgorithm. In fa
t, at singular points where no velo
ity 
an be de�ned, the s
hemeshould produ
e an instantaneous evolution, as stated by the followingProposition 9 Let P (x; �) be a polynomial with degree at most two and su
h thatPx(x0; �0) = 0. Then, in (x0; �0) we have, as h! 0,ThP = P + h2 jP�j sgn(Pxx) +O(h2):Proposition 9 suggests that the numeri
al s
heme we proposed may indu
e a pro-je
tion of the initial datum from C0
 to V0
 , de�ned by the asymptoti
 state ofut = ( ju�jsgn(uxx) if ux = 0;0 else:Noti
e that if we follow Evans (see [6℄) and 
onsider the DCMA as the limit of (10),we obtain a di�erent proje
tion operator in general.One may noti
e the extreme simpli
ity of the algorithmwe presented : in parti
ular,it 
an be implemented very easily on a massive parallel ma
hine. Our optimized 
odein C language for one iteration 
onsists of only 23 instru
tions. Numeri
al simulationsrealized with this algorithm are presented in Figure 1.
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al solution5 Con
lusionWe presented a study of the DCMA equation, based on its interpretation as a levelset formulation of the monodimensional heat equation. When the initial 
onditionadmits traje
tories, we prove the existen
e and uniqueness of weak solutions. Forgeneral initial 
onditions, diÆ
ulties appear be
ause the time variable imposes to
onsider level 
urves as graphs. De�ning solutions in that 
ase would probably requirea weaker formulation of the DCMA allowing o

lusion fronts to arise an propagate.The variational interpretation we pointed out might then be helpful to build the properde�nition of solution in the 
ase of o

lusions. It is not sure, however, that an inf-sup-like s
heme would still exist then and allow to estimate indire
tly the velo
ity�eld.Referen
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Figure 1: Computation of the velo
ity �eld (minimum of 15 mat
hings).The following results were produ
ed from a real movie produ
ed by the SRI 
enter (see[2℄) and available with anonymous ftp at peris
ope.
s.umass.edu. The four images onthe �rst row are taken from four di�erent movies : ea
h image is the 20th image(over 64) of the movie it belongs to : 
olumn 1: original \TREES" movie, 
olumn 2:movie pro
essed with DCMA (5 iterations), 
olumn 3: pro
essed movie (15 iterations),
olumn 4: pro
essed movie (31 iterations). Then, the velo
ity �eld of ea
h moviewas 
omputed on the 20th image simply by looking for traje
tories with a mat
hing
onstraint of 15 images. These velo
ities are represented on row 2 : the white 
olormeans points where no mat
hing was found with respe
t to the 
onstraint, and the greys
ale (from light grey to bla
k) measures the velo
ity from 0.0 to 2.0 pixels per image.On the third row, the velo
ity images of row 2 were simply \dilated" to produ
e morereadable results. Noti
e how the velo
ity information, whi
h is almost inexistant onthe original movie (for the mat
hing 
onstraint we imposed), progressively appears onthe DCMA as the s
ale in
reases. Sin
e the distan
e of obje
ts to the image plane isinversely proportional to their velo
ity, 
losest points appear in bla
k and farthest onesin light grey. On the last image of row 3, we distinguish the foreground tree in bla
k,the ground from bla
k to middle grey, the ba
kground tree in middle grey, and the farba
kground in light grey.


