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PDE's, motion analysisand 3D reonstrution from moviesLionel MoisanCMLA, Eole Normale Sup�erieure de Cahan, Franee-mail: moisan�mla.ens-ahan.frAbstrat: We study a non-linear seond order PDE related to the image proessingproblem alled \struture from motion". Its lose relation to the monodimensional heatequation permits to de�ne weak solutions and establish existene and uniqueness properties.We also point out a variational interpretation and present numerial simulations.Keywords : non-linear partial di�erential equations, variational methods, weak solutions,image proessingAMS subjet lassi�ation : 35K55, 35D05. 35A15, 68U101 IntrodutionThroughout this paper, we study the partial di�erential equationut = u�� � 2u�uxu�x + �u�ux�2 uxx; (DCMA)where u(x; �; t) is a real-valued funtion depending on three salar variables x (spae), �(time) and t (sale), and submitted to some boundary onditions. This is a degenerateparaboli equation whih desribes an anisotropi di�usion proess : the left term isthe seond derivative of u evaluated in the diretion (�u�=ux; 1). Equation (DCMA)was introdued in [7℄ as the only multisale analysis of movies ompatible with thedepth reovery (the so-alled struture from motion problem). Evans also studied itas a way to extend the heat equation to multi-valued funtions (see [6℄).The goal of struture from motion is to ompute the tridimensional struture ofobjets that are seen by a amera from di�erent points of view. In theory, two imagesare suÆient to reover the 3D struture of observed parts (this is the priniple ofstereovision), but in prative long sequenes of images are used to guarantee robust-ness. Formally, this leads to onsider movies, represented as funtions u of two spatialoordinates x, y and the time oordinate �. In the following, we shall only deal withgray-level movies, for whih the salar value u(x; y; �) measures the intensity reeivedby the amera at point (x; y) of the image plane and at time �.



2 Proeedings of PDE Prague'98 : Partial Di�erential Equations - Theory and numerial solutionIf the amera is moving along the x axis, pointing in a perpendiular diretion Ztowards a lambertian �xed surfae, then it produes a movie u whih ideally satis�es�u�ux (x; y; �) = � V (�)Z(M) ; (1)where V (�) is the amera speed at time � and Z(M) the depth of the physial pointM projeted in (x; y) on the foal plane at time �. In pratie, the omputation ofthe left term �u�=ux (whih orresponds to the apparent veloity v indued on theimage plane by the amera motion) requires some smoothing proess, �rst beause thelow sampling rates in the digitization of real movies make the use of �nite di�ereneestimations hazardous, seond in order to take advantage of the redundany of thedepth information ontained in the movie.The most relevant smoothing proess found so far onsists preisely in the multi-sale representation u(x; y; �; t) of a raw movie u0, obtained as the solution u of the(DCMA) evolution satisfying the initial ondition u(x; y; �; 0) = u0(x; y; �). Notiethat the y variable is not involved in this equation and an be removed in its mathe-matial analysis. The following results justify in some way the use of the DCMA (see[8℄ or [9℄ for more preise formulations).Theorem 1 The DCMA is the only regular semigroup Tt : u0(�) 7! u(�; t) whih is� monotone : if u1 6 u2, then Ttu1 6 Ttu2 at any sale t > 0,� ontrast invariant : if g : FR ! FR is ontinuous, then Tt g(u) = g(Ttu),� Galilean invariant : Tt ommutes with the hange of Galilean referential(x; �) 7! (x� �� + x0; � + �0),� zoom invariant : Tt ommutes with spatial homotheties (x; �) 7! (�x; �).Theorem 2 The Depth Compatible Multisale Analysis (DCMA) is the only regularmonotone semigroup preserving the depth map of ideal movies : if u0 has interpretationZ(X; Y ) (depth map) and V0(�) (amera speed), then Ttu0 has interpretation Z(X; Y )(same depth map) and V (�; t), where V (�; 0) = V0(�) and Vt = V�� (that is, the ameraspeed interpretation is smoothed by the monodimensional heat equation).2 Classial and weak solutions of the DCMAEquation (DCMA) an be written under the form ut = F (D2u;Du), where Du andD2u are the �rst and seond derivatives of u and F is an ellipti operator (that is,nondereasing with respet withD2u for the natural order on symmetri 2x2 matries).However, sine F is not ontinuous, the theory of visosity solutions of Crandall,Ishii and Lions (see [4℄) does not apply. Even known generalizations to disontinuous



Chapman and Hall/CRC Researh Notes in Mathematis, vol. 406, pp. 273-282, 1998. 3funtions F (e.g. Evans-Spruk [5℄ and Chen-Giga-Goto [3℄ for the Mean CurvatureMotion) do not work for the DCMA, beause the singularity at points where ux = 0is too strong. However, it is possible to give a de�nition of weak solutions of (DCMA)ensuring uniqueness and existene for some lass of initial onditions by notiing (likeEvans in [6℄) that the DCMA is the level set formulation of the linear heat equation.More preisely, if u solves (DCMA) and if we parameterize a level urve u(x; �; t) = stunder the form x = '(�; t), then this level urve should evolve aording to the one-dimensional heat equation 't = '��.2.1 Classial solutions of the DCMAFor the reason we explained before, we forget the y variable in the following, and amovie is de�ned on FR � I, with either I =℄�1; �2[ or I = S1. In the spae variable, aperiodization has no meaning in terms of sene interpretation, so that we shall rathersuppose that u tends towards some onstant when x grows to in�nity (we shall saythat u is \onstant at in�nity").De�nition 1 For  = (�; +) 2 FR2 and n > 0, Cn is the spae of movies u 2Cn(FR� I) suh thatsup�2I ju(�x; �)� �j+ ju(x; �)� +j ! 0 as x! +1: (2)From now on, we write 
 = FR�I�℄0;+1[, i.e. 
 is the domain of movie analyses.De�nition 2 For  2 FR2 and n; p > 0, Cn;p is the spae of movie analyses u 2 C0(
)suh that1. 8T > 0; sup�2I;t6T ju(�x; �; t)� �j+ ju(x; �; t)� +j ! 0 as x! +1;2. on 
, (x; �; t) 7! u(x; �; t) is of lass Cn with respet to (x; �) and Cp with respetto t.De�nition 3 Given u0 2 C0 , we say that u is a lassial solution of the DCMAassoiated to the initial datum u0 if(i) u 2 C2;1 ,(ii) on 
 = FR� I�℄0;+1[; 8>><>>: ut = u�� � 2u�uxu�x + (u�ux )2uxx when ux 6= 0;ut = 0 when ux = 0:(iii) 8(x; �; t) 2 �
; u(x; �; t) = u0(x; �):



4 Proeedings of PDE Prague'98 : Partial Di�erential Equations - Theory and numerial solutionThis de�nition ensures the uniqueness result thanks to the followingProposition 1 (omparison priniple) Let u and ~u be lassial solutions of theDCMA assoiated to initial data u0 and ~u0 respetively. If u0 6 ~u0, then u 6 ~u on 
.The proof is rather lassial : it onsists to show that for any �; T; R > 0, themap (x; �; t) 7! u(x; �; t) � ~u(x; �; t) � �t attains its max value on the boundary of[�R;R℄� I � [0; T ℄, and then to send � to zero and R to in�nity.Corollary 1 (uniqueness) A lassial solution of the DCMA assoiated to a giveninitial datum u0 2 C2 is unique.In order to ensure the existene of lassial solutions of the DCMA, we now restrainthe spae of initial data.De�nition 4 For n > 1, we write Vn the spae of movies u 2 Cn for whih thereexists a movie v 2 Cn�10 suh thatu� + vux = 0 on FR� I: (3)v is alled a veloity map of u. In addition, the spae Vn;p is de�ned as elements ofCn;p admitting a veloity map v 2 Cn�1;p0 .Remark : Consider a movie u 2 Vn . When ux(x; �) = 0, (3) implies u�(x; �) = 0, andif n > 2, di�erentiating (3) with respet to � and x shows that u��+2vu�x+ v2uxx = 0as soon as ux = 0. A onsequene is that if u 2 V2;1 is a lassial solution of theDCMA, then any veloity map v of u satis�es on 
( u� + vux = 0ut = u�� + vu�x + v2uxx: (4)We now build expliit solutions of the DCMA. As we said before, the main ideais to notie that the trajetories (i.e. the urves x(�) along whih u is onstant)are smoothed by the monodimensional heat equation. For that purpose, we need tointrodue the natural domain I? for suh trajetories. If I =℄�1; �2[ then I? = I, andif I = S1, then I? = FR (the natural injetion S1 ,! [0; 2�[� FR being impliit). Tosimplify the notations, we suppose in the following that 0 2 I.De�nition 5 A map ' 2 Cn(FR� I?) (n > 0) is a �-graph of u 2 Cn if1. for any � 2 I?, the map x 7! '(x; �) is inreasing and bijetive (and 'x does notvanish if n > 1).



Chapman and Hall/CRC Researh Notes in Mathematis, vol. 406, pp. 273-282, 1998. 52. for any (x; �) 2 FR� I?, u('(x; �); �) = u(x; 0); (5)3. for any x 2 FR, '(x; 0) = x, and if I = S1, then for any (x; �) 2 FR� I?,'(x; � + 2�) = '('(x; 2�); �); (6)4. supjxj>R;�2I j'�(x; �)j ! 0 as R! +1 (in a generalized sense if n = 0).
Remark : Notie that in Condition 4, the sup is taken for � 2 I and not for � 2 I?.If n = 0, the term j'�(x; �)j must be replaed bylim suph!0 �����'(x; � + h)� '(x; �)h ����� :Proposition 2 A movie u 2 Cn (n > 2) belongs to Vn if and only if it admits a�-graph of lass Cn.Proposition 3 Let u0 2 Vn (n > 2), and '0 be a �-graph of u0 of lass Cn. De�ne(x; �; t) 7! '(x; �; t) as the unique solution of the monodimensional heat equation�'�t = �2'��2 (7)on 
? = FR� I?�℄0;+1[ submitted to the boundary ondition8(x; �; t) 2 �
?; '(x; �; t) = '0(x; �): (8)Then, the unique map u : 
! FR de�ned by8(x; �; t) 2 
; u('(x; �; t); �; t) = u0(x; 0) (9)belongs to Vn;n and is a lassial solution of the DCMA assoiated to the initial datumu0.We think it is worth explaining here the link between the (DCMA) and the monodi-mensional heat equation stated in Proposition 3. Let us note z1 = ('(z); �; t) for agiven z 2 
. If ux(z1) = 0, di�erentiating (9) with respet to t yields't(z)ux(z1) + ut(z1) = ut(z1) = 0as expeted. If ux(z1) 6= 0, we obtain ut(z1) = �'t(z)ux(z1),dd� �u0(x; 0)� = 0 = '�(z)ux('(z); �; t) + u�('(z); �; t); and



6 Proeedings of PDE Prague'98 : Partial Di�erential Equations - Theory and numerial solutiond2d�2 (u0(x; 0)) = 0 = dd� �'�(z)ux('(z); �; t) + u�('(z); �; t)�= '��(z)ux(z1) + '2�(z)uxx(z1) + 2'�(z)ux�(z1) + u��(z1)= ��ut + u�� � 2u�uxu�x + (u�ux )2uxx� (z1):Hene, u is a lassial solution of the DCMA assoiated to the initial datum u0. Wenow have theProposition 4 (existene) Given an initial datum u0 2 Vn (n > 2), there exists aunique lassial solution of the DCMA, and it belongs to Vn;n .Proposition 3 proves that the DCMA Equation is a salar formulation of themonodimensional heat equation (7), like two other important equations of image pro-essing : the Mean Curvature Motion and the AÆne Morphologial Sale Spae, whihan be obtained by axiomati formulations as well (see [1℄). The di�erene betweenthem only omes from the intrinsi parameter of the level lines : the Eulidean ab-sissa for the Mean Curvature Motion, the aÆne absissa for the AÆne Sale spae.For the DCMA, the natural parameter is the time �, whih means that level lines arenot onsidered as urves but as graphs. This remark allowed us to prove the existeneof weak solutions for the DCMA, but in ertain ases only : preisely, when the levellines of the initial datum an be desribed by graphs.2.2 Weak solutions of the DCMAWe de�ne weak (only ontinuous) solutions of the DCMA as uniform limits of lassialsolutions.De�nition 6 Given a movie u0 2 C0 , we say that a map u 2 C0;0 is a weak solutionof the DCMA assoiated to the initial datum u0 if8(x; �; t) 2 �
; u(x; �; t) = u0(x; �)and if there exists a sequene (u")">0 of lassial solutions of the DCMA assoiated tothe initial datum u0 suh that u" ! u uniformly on 
 when "! 0.Proposition 5 (uniqueness) A weak solution of the DCMA assoiated to a giveninitial datum is unique.Proposition 6 (existene) Call V the topologial losure of V2 with respet to thek � k1 norm. Then, given u0 2 V, there exists a unique weak solution u of the DCMAassoiated to the initial datum u0.



Chapman and Hall/CRC Researh Notes in Mathematis, vol. 406, pp. 273-282, 1998. 7One again, the uniqueness property results from a omparison priniple. Theexistene an be shown using the approximation of the initial datum by elements ofV2 and the existene property for regular solutions. One an also build an expliit weaksolution, using the onstrution (the monodimensional heat equation) of Proposition3.De�nition 7 We write V0 the spae of movies u 2 C0 whih admit a ontinuous�-graph.Proposition 7 Let u0 2 V0 , and '0 be a �-graph of u0. De�ne (x; �; t) 7! '(x; �; t) asthe unique solution of the monodimensional heat equation (7) submitted to the boundaryondition (8). Then, the unique map u de�ned from ' by (9) is a weak solution of theDCMA.A onsequene of this haraterization of weak solutions is that a weak solution ofthe DCMA assoiated to an initial datum u0 2 Vn admits a kind of veloity movie assoon as t > 0, as stated byCorollary 2 Let u be the weak solution of the DCMA assoiated to an initial datumu0 2 V0 . If u is loally Lipshitz in the x variable, then there exists a ontinuous mapv de�ned on 
 = FR� I�℄0;+1[ suh that on 
,u(x+ �v(x; �; t); � + �; t) = u(x; �; t) + o(�)and u(x+ �v(x; �; t); � + �; t� � 22 ) = u(x; �; t) + o(� 2):Notie that this property is a generalization of (4).2.3 Further existene propertiesIn the previous setions, we did not prove the existene of (weak or lassial) solutionsof the DCMA in the general ase, that is to say when the initial datum admits no�-graph. In fat, we do not believe that the DCMA admits a solution in general, atleast a solution in the sense we de�ned. When the initial datum u0 admits a �-graph,the DCMA is obtained by applying the linear monodimensional heat equation to thelevel lines of u0. For an ordinary ontinuous map u0, the level lines have no reasonto be graphs in the � variable, sine to a given value of �, several values of x willorrespond in general. Hene, de�ning general solutions of the DCMA is somewhatequivalent to de�ning solutions of the heat equation for multi-valued data. It is inthat spirit that in [6℄ Evans studied (DCMA) as the limit when " ! 0 of the moreregular equation ut = u2xu�� � 2uxu�ux� + u2�uxxu2x + "2u2� : (10)



8 Proeedings of PDE Prague'98 : Partial Di�erential Equations - Theory and numerial solutionEquation (10) admits visosity solutions beause it is more or less the Mean CurvatureMotion (atually, the ase " = 1 is exatly the Mean Curvature Motion). He notiedthat in the general ase (that is, when the level lines of the initial datum are notgraphs), the regularizing e�ets of the heat equation are so strong that the limit ofapproximate solutions is not ontinuous at sale t = 0, beause the level lines areonstrained to beome graphs instantaneously.3 Variational interpretation of the DCMAProposition 8 The DCMA indues on v a ow assoiated to the minimization ofE(v) = 12 ZZ (v� + vvx)2 dxd�: (11)Let us onsider the funtional E(v) de�ned by (11) on ompatly supported moviesof lass C2. Di�erentiating E yields, after integrations by parts,DvE(h) = � ZZ D2vD�2h dxd�;where DD� = ��� + v ��x represents the total derivative operator. Then, for a lassialsolution of the DCMA u 2 V4;10 assoiated to a ompatly supported initial datum andadmitting a veloity map v, one hasddt �E(v)� = � ZZ  D2vD�2!2 dxd�;whih means that the ow indued on v by the DCMA is assoiated to the minimizationof E . This mimimization property proves that the DCMA \idealizes" movies and tendto give them a oherent depth interpretation as sale inreases, sine the apparentaeleration Dv=D� = v� + vvx is globally dereasing.4 Numerial shemeIn order to apply the DCMA evolution to real movies, we need to devise a numerialsheme. A \naive" disretization of the partial derivatives of u annot be used, beausein pratie it is well known that the time disretization is not thin enough. Moreover,suh a disretization is not likely to satisfy the axioms that we imposed to the DCMA.This is the reason why we fous our attention on an inf-sup sheme. To this end, givena movie u : FR2 � I ! FR, we de�neIShu(x0; y0; �0) = infv2FR sup�h6�6hu(x0 + v�; y0; �0 + �);SIhu(x0; y0; �0) = supv2FR inf�h6�6hu(x0 + v�; y0; �0 + �);and Thu = 12 (IShu+ SIhu) :



Chapman and Hall/CRC Researh Notes in Mathematis, vol. 406, pp. 273-282, 1998. 9We have a onsisteny result (see [9℄ for a proof) at points where ux does not vanish.Theorem 3 If u is a bounded movie loally C3 near z0, with ux(z0) 6= 0, thenThu(z0) = u(z0) + 12h2u��(z0) +O(h3);and the O(h3) is uniform in a neighborhood of z0.Theorem 3 proves the onsisteny of the numerial sheme given by the iterationof Th with respet to the DCMA evolution. Due to the h2 oeÆient in the expansionof Th, it is natural to onsider the numerial sheme whih assoiates, to a given movieu0 and a sale t > 0, the sequene of movies (un;t)n>1 given byun = (Thn)n u0; with hn = q2t=n;and satisfying the boundary onstraint un(x; y; �) = u0(x; y; �) on �(FR2 � I). Thanksto Theorem 3, we know that suh a sheme is onsistent, and one ould prove that unonverges towards the DCMA of u0 when the partial derivative of u0 with respet tox never vanishes. In the general ase, the existene of a solution is not guaranteed,even if numerially the monotoniity of the sheme ensures the onvergene of thealgorithm. In fat, at singular points where no veloity an be de�ned, the shemeshould produe an instantaneous evolution, as stated by the followingProposition 9 Let P (x; �) be a polynomial with degree at most two and suh thatPx(x0; �0) = 0. Then, in (x0; �0) we have, as h! 0,ThP = P + h2 jP�j sgn(Pxx) +O(h2):Proposition 9 suggests that the numerial sheme we proposed may indue a pro-jetion of the initial datum from C0 to V0 , de�ned by the asymptoti state ofut = ( ju�jsgn(uxx) if ux = 0;0 else:Notie that if we follow Evans (see [6℄) and onsider the DCMA as the limit of (10),we obtain a di�erent projetion operator in general.One may notie the extreme simpliity of the algorithmwe presented : in partiular,it an be implemented very easily on a massive parallel mahine. Our optimized odein C language for one iteration onsists of only 23 instrutions. Numerial simulationsrealized with this algorithm are presented in Figure 1.



10 Proeedings of PDE Prague'98 : Partial Di�erential Equations - Theory and numerial solution5 ConlusionWe presented a study of the DCMA equation, based on its interpretation as a levelset formulation of the monodimensional heat equation. When the initial onditionadmits trajetories, we prove the existene and uniqueness of weak solutions. Forgeneral initial onditions, diÆulties appear beause the time variable imposes toonsider level urves as graphs. De�ning solutions in that ase would probably requirea weaker formulation of the DCMA allowing olusion fronts to arise an propagate.The variational interpretation we pointed out might then be helpful to build the properde�nition of solution in the ase of olusions. It is not sure, however, that an inf-sup-like sheme would still exist then and allow to estimate indiretly the veloity�eld.Referenes[1℄ L. Alvarez, F. Guihard, P.L. Lions, J.M. Morel, \Axioms and fundamental e-quations of image proessing", Arh. for Rational Mehanis 123, pp. 199-257,1993.[2℄ R.C. Bolles, H.H. Baker, D.H. Marimont, \Epipolar-Plane Image Analysis : AnApproah to Determining Struture from Motion", International Journal of Com-puter Vision 1, pp. 7-55, 1987.[3℄ Y.G. Chen, Y. Giga, S. Goto, \Uniqueness and existene of visosity solutions ofgeneralized Mean Curvature ow Equations", Journal of Di�erential Geometry33, pp. 749-786, 1991.[4℄ M.G. Crandall, H. Ishii,P.-L. Lions, \User's guide to visosity solutions of seondorder partial di�erential equations", Bulletin of Amerian Mathematial Soiety27, pp. 1-67, 1992.[5℄ L.C. Evans, J. Spruk, \Motion of Level Sets by Mean Curvature I", Journal ofDi�erential Geometry 33, pp. 635-681, 1991.[6℄ L.C. Evans, \A geometri Interpretation of the Heat Equation with MultivaluedInitial Data", SIAM Journal of Mathematial Analysis 27:2, pp. 932-958, 1996.[7℄ L. Moisan, \Analyse multi�ehelle de �lms pour la reonstrution du relief", Noteau ompte rendu de l'Aad�emie des sienes, Paris, tome 320, s�erie I, pp. 279-284,feb. 1995.[8℄ L. Moisan, \A Depth-Compatible Multisale Analysis of Movies", preprint CM-LA, 1998.



Chapman and Hall/CRC Researh Notes in Mathematis, vol. 406, pp. 273-282, 1998. 11[9℄ L. Moisan, \Traitement num�erique d'images et de �lms : �equations aux d�eriv�eespartielles pr�eservant forme et relief", PhD dissertation, Ceremade, 1997.



12 Proeedings of PDE Prague'98 : Partial Di�erential Equations - Theory and numerial solution

Figure 1: Computation of the veloity �eld (minimum of 15 mathings).The following results were produed from a real movie produed by the SRI enter (see[2℄) and available with anonymous ftp at perisope.s.umass.edu. The four images onthe �rst row are taken from four di�erent movies : eah image is the 20th image(over 64) of the movie it belongs to : olumn 1: original \TREES" movie, olumn 2:movie proessed with DCMA (5 iterations), olumn 3: proessed movie (15 iterations),olumn 4: proessed movie (31 iterations). Then, the veloity �eld of eah moviewas omputed on the 20th image simply by looking for trajetories with a mathingonstraint of 15 images. These veloities are represented on row 2 : the white olormeans points where no mathing was found with respet to the onstraint, and the greysale (from light grey to blak) measures the veloity from 0.0 to 2.0 pixels per image.On the third row, the veloity images of row 2 were simply \dilated" to produe morereadable results. Notie how the veloity information, whih is almost inexistant onthe original movie (for the mathing onstraint we imposed), progressively appears onthe DCMA as the sale inreases. Sine the distane of objets to the image plane isinversely proportional to their veloity, losest points appear in blak and farthest onesin light grey. On the last image of row 3, we distinguish the foreground tree in blak,the ground from blak to middle grey, the bakground tree in middle grey, and the farbakground in light grey.


