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Abstract: We study a non-linear second order PDE related to the image processing
problem called “structure from motion”. Its close relation to the monodimensional heat
equation permits to define weak solutions and establish existence and uniqueness properties.
We also point out a variational interpretation and present numerical simulations.
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1 Introduction

Throughout this paper, we study the partial differential equation

Uy = Ugy — 2“4‘971,9ﬂE + <U—6>2 Ugy (DCMA)
Uy Uy

where u(z, 6, t) is a real-valued function depending on three scalar variables x (space),
(time) and ¢ (scale), and submitted to some boundary conditions. This is a degenerate
parabolic equation which describes an anisotropic diffusion process : the left term is
the second derivative of u evaluated in the direction (—ug/u,,1). Equation (DCMA)
was introduced in [7] as the only multiscale analysis of movies compatible with the
depth recovery (the so-called structure from motion problem). Evans also studied it
as a way to extend the heat equation to multi-valued functions (see [6]).

The goal of structure from motion is to compute the tridimensional structure of
objects that are seen by a camera from different points of view. In theory, two images
are sufficient to recover the 3D structure of observed parts (this is the principle of
stereovision), but in practive long sequences of images are used to guarantee robust-
ness. Formally, this leads to consider mouvies, represented as functions u of two spatial
coordinates x, y and the time coordinate 6. In the following, we shall only deal with
gray-level movies, for which the scalar value u(z,y,#) measures the intensity received
by the camera at point (z,y) of the image plane and at time .
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If the camera is moving along the x axis, pointing in a perpendicular direction Z
towards a lambertian fixed surface, then it produces a movie u which ideally satisfies

Up

L0 = G ()
where V() is the camera speed at time  and Z(M) the depth of the physical point
M projected in (x,y) on the focal plane at time 6. In practice, the computation of
the left term —ugy/u, (which corresponds to the apparent velocity v induced on the
image plane by the camera motion) requires some smoothing process, first because the
low sampling rates in the digitization of real movies make the use of finite difference
estimations hazardous, second in order to take advantage of the redundancy of the
depth information contained in the movie.

The most relevant smoothing process found so far consists precisely in the multi-
scale representation u(z,y,0,t) of a raw movie ug, obtained as the solution u of the
(DCMA) evolution satisfying the initial condition u(x,y,#0,0) = wuy(z,y,0). Notice
that the y variable is not involved in this equation and can be removed in its mathe-
matical analysis. The following results justify in some way the use of the DCMA (see
[8] or [9] for more precise formulations).

Theorem 1 The DCMA is the only regular semigroup Ty : ug(-) — u(-,t) which is
e monotone : if uy < us, then Tyuy < Tyus at any scale t > 0,
e contrast invariant : if g : R — R is continuous, then T, g(u) = g(Tyu),

e Galilean invariant : T, commutes with the change of Galilean referential
(2,0) = (x — ab + x0,0 + 6y),

e zoom invariant : Ty commutes with spatial homotheties (x,0) — (Az,0).

Theorem 2 The Depth Compatible Multiscale Analysis (DCMA) is the only regular
monotone semigroup preserving the depth map of ideal movies : if ug has interpretation
Z(X,Y) (depth map) and Vy(0) (camera speed), then Tyug has interpretation 7 (X,Y)
(same depth map) and V (0, t), where V(0,0) = V4(0) and V; = Vyy (that is, the camera
speed interpretation is smoothed by the monodimensional heat equation).

2 Classical and weak solutions of the DCMA

Equation (DCMA) can be written under the form u; = F(D*u, Du), where Du and
D?u are the first and second derivatives of v and F is an elliptic operator (that is,
nondecreasing with respect with D?u for the natural order on symmetric 2x2 matrices).
However, since F' is not continuous, the theory of viscosity solutions of Crandall,
Ishii and Lions (see [4]) does not apply. Even known generalizations to discontinuous



Chapman and Hall/CRC Research Notes in Mathematics, vol. 406, pp. 273-282, 1998. ]

functions F' (e.g. Evans-Spruck [5] and Chen-Giga-Goto [3] for the Mean Curvature
Motion) do not work for the DCMA, because the singularity at points where u, = 0
is too strong. However, it is possible to give a definition of weak solutions of (DCMA)
ensuring uniqueness and existence for some class of initial conditions by noticing (like
Evans in [6]) that the DCMA is the level set formulation of the linear heat equation.
More precisely, if u solves (DCMA) and if we parameterize a level curve u(x,0,t) = cst
under the form z = ¢(#,t), then this level curve should evolve according to the one-
dimensional heat equation ¢; = @yy.

2.1 Classical solutions of the DCMA

For the reason we explained before, we forget the y variable in the following, and a
movie is defined on R x I, with either I =];,6,[ or I = S'. In the space variable, a
periodization has no meaning in terms of scene interpretation, so that we shall rather
suppose that u tends towards some constant when x grows to infinity (we shall say
that u is “constant at infinity”).

Definition 1 For ¢ = (¢7,c¢*) € R* and n > 0, C" is the space of movies u €
C™(R x I) such that

sup |u(—z,0) — ¢ | + |u(x,0) — c"| >0 as x — +oo. (2)
0el

From now on, we write = R x I x]0, +oc], i.e. Q is the domain of movie analyses.

Definition 2 Forc € R? and n,p > 0, C™P s the space of movie analyses u € C°(Q)
such that

1.YT >0, sup |u(—z,0,t)—c |+ |u(z,0,t)—c"| -0 as z — +oo,
0T t<T

2. onQ, (x,0,t) — u(z,0,t) is of class C™ with respect to (x,0) and CP with respect
to t.

Definition 3 Given uy € C°, we say that u is a classical solution of the DCMA
associated to the initial datum ug if

(i) ueC,

Uy = gy — 2—Luug, + (E)Qum when  u, # 0,
(ii) on Q=R x Ix]0, +o0, (o Uy

u; =0 when wu; =0.

(111) ¥(z,0,t) € 0, u(x,0,t) = ug(z,0).
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This definition ensures the uniqueness result thanks to the following

Proposition 1 (comparison principle) Let u and @ be classical solutions of the
DCMA associated to initial data ug and tg respectively. If ug < g, then u < u on €.

The proof is rather classical : it consists to show that for any o, T, R > 0, the
map (z,0,t) — u(z,0,t) — u(x,0,t) — at attains its max value on the boundary of
[—R,R] x I x [0,T], and then to send « to zero and R to infinity.

Corollary 1 (uniqueness) A classical solution of the DCMA associated to a given
initial datum ug € C2 is unique.

In order to ensure the existence of classical solutions of the DCMA, we now restrain
the space of initial data.

Definition 4 For n > 1, we write V! the space of movies u € C] for which there
ezists a movie v € Cy ' such that

ug +vu, =0 on R x 1. (3)

v 1s called a velocity map of w. In addition, the space VI'P is defined as elements of
CIP admitting a velocity map v € Cg‘fl’p.

Remark : Consider a movie u € V. When u,(z,60) = 0, (3) implies ug(z, ) = 0, and
if n > 2, differentiating (3) with respect to # and x shows that ugg + 2vug, + v’ Uye = 0
as soon as u, = 0. A consequence is that if u € V*' is a classical solution of the
DCMA, then any velocity map v of u satisfies on €2
ug +vu, =0
_ 2 (4)
Uy = Ugg + VUgy + V Ugy.

We now build explicit solutions of the DCMA. As we said before, the main idea
is to notice that the trajectories (i.e. the curves z(f) along which u is constant)
are smoothed by the monodimensional heat equation. For that purpose, we need to
introduce the natural domain I* for such trajectories. If I =], 0, then I* = I, and
if I = S', then I* = R (the natural injection S* < [0, 27[C R being implicit). To
simplify the notations, we suppose in the following that 0 € I.

Definition 5 A map ¢ € C"(R x I*) (n > 0) is a 6-graph of u € C? if

1. for any 0 € I*, the map x — ¢(x,0) is increasing and bijective (and @, does not
vanish if n > 1).
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2. for any (z,0) € R x I*,

u(p(x,0),0) = u(zx,0), (5)
3. for any v € R, p(x,0) =z, and if [ = S, then for any (z,0) € R x I*,
p(x, 0 +2m) = p(p(z, 27), 0), (6)

4. sup |pp(zr,0)] >0 as R — +oo (in a generalized sense if n =0).
|z|>R,0€1

Remark : Notice that in Condition 4, the sup is taken for § € T and not for 0 € T*.
If n =0, the term |py(z, 0)| must be replaced by

lim sup .
h—0 h

Proposition 2 A movie u € C» (n > 2) belongs to V? if and only if it admits a
0-graph of class C".

Proposition 3 Let ug € V7 (n > 2), and ¢y be a 0-graph of uy of class C™. Define
(x,0,t) — ¢(x,0,t) as the unique solution of the monodimensional heat equation

2
Loz )
on O = R x I*x]0, +o0[ submitted to the boundary condition
V(z,0,t) € 0%, p(x,0,t) = ¢o(x,0). (8)
Then, the unique map u : Q — R defined by
V(z,0,t) € Q, u(o(z,0,t),0,t) = ug(z,0) 9)

belongs to V™ and is a classical solution of the DCMA associated to the initial datum
Uq.

We think it is worth explaining here the link between the (DCMA) and the monodi-
mensional heat equation stated in Proposition 3. Let us note z; = (¢(z),0,t) for a
given z € Q. If u,(z,) = 0, differentiating (9) with respect to ¢ yields

pr(z)uz(21) + ur(z1) = wi(z1) = 0
as expected. If u,(z;) # 0, we obtain u(z1) = —p;(2z)us(z1),

d

% <11,0(.T, O)) =0= QDG(Z)U‘I(QD(Z)a Ha 7L) + “‘9(@0(Z)7 95 f)a and
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di;(uo(x,o)) =0 = d_dﬁ (@9(z)um(<p(z),9,t) + ua(gp(z)Jgjt)>

= po0(2)us(21) + 95 (2)Uae(21) + 20(2)tzp(21) + gy (21)
= <ut + gy — 2Uiugw + (“49)27%) (z1).
u u

‘T &4
Hence, u is a classical solution of the DCMA associated to the initial datum wug,. We
now have the

Proposition 4 (existence) Given an initial datum uy € VI (n > 2), there exists a
unique classical solution of the DCMA, and it belongs to VI'".

Proposition 3 proves that the DCMA Equation is a scalar formulation of the
monodimensional heat equation (7), like two other important equations of image pro-
cessing : the Mean Curvature Motion and the Affine Morphological Scale Space, which
can be obtained by axiomatic formulations as well (see [1]). The difference between
them only comes from the intrinsic parameter of the level lines : the Euclidean ab-
scissa for the Mean Curvature Motion, the affine abscissa for the Affine Scale space.
For the DCMA, the natural parameter is the time #, which means that level lines are
not considered as curves but as graphs. This remark allowed us to prove the existence
of weak solutions for the DCMA, but in certain cases only : precisely, when the level
lines of the initial datum can be described by graphs.

2.2 Weak solutions of the DCMA

We define weak (only continuous) solutions of the DCMA as uniform limits of classical
solutions.

Definition 6 Given a movie uy € C2, we say that a map u € C*° is a weak solution
of the DCMA associated to the initial datum g if

V(z,0,t) € 09, u(x,0,t) =ug(x,0)

and if there exists a sequence (u®).sq of classical solutions of the DCMA associated to
the wnitial datum wuy such that u* — u uniformly on Q) when ¢ — 0.

Proposition 5 (uniqueness) A weak solution of the DCMA associated to a given
initial datum is unique.

Proposition 6 (existence) Call V. the topological closure of V? with respect to the
I |lcc morm. Then, given uy € V,, there exists a unique weak solution u of the DCMA
associated to the initial datum uy.
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Once again, the uniqueness property results from a comparison principle. The
existence can be shown using the approximation of the initial datum by elements of
V? and the existence property for regular solutions. One can also build an explicit weak
solution, using the construction (the monodimensional heat equation) of Proposition

3.

Definition 7 We write V? the space of movies u € C° which admit a continuous
0-graph.

Proposition 7 Let ug € V?, and pq be a O-graph of ug. Define (x,0,t) — o(x,0,t) as
the unique solution of the monodimensional heat equation (7) submitted to the boundary
condition (8). Then, the unique map u defined from ¢ by (9) is a weak solution of the
DCMA.

A consequence of this characterization of weak solutions is that a weak solution of
the DCMA associated to an initial datum uy € V! admits a kind of velocity movie as
soon as t > 0, as stated by

Corollary 2 Let u be the weak solution of the DCMA associated to an initial datum
ug € V2. If u is locally Lipschitz in the x variable, then there exists a continuous map
v defined on Q = R x Ix]0, +o0[ such that on €2,

u(r +7o(r,0,t),0 +7,t) = u(zr,0,t)+ o(7)
2

and u(m+7v(m,9,t),9+7,t—%) = u(z,0,t) + o(T?).

Notice that this property is a generalization of (4).

2.3 Further existence properties

In the previous sections, we did not prove the existence of (weak or classical) solutions
of the DCMA in the general case, that is to say when the initial datum admits no
f-graph. In fact, we do not believe that the DCMA admits a solution in general, at
least a solution in the sense we defined. When the initial datum uy admits a #-graph,
the DCMA is obtained by applying the linear monodimensional heat equation to the
level lines of uy. For an ordinary continuous map ug, the level lines have no reason
to be graphs in the # variable, since to a given value of 6, several values of x will
correspond in general. Hence, defining general solutions of the DCMA is somewhat
equivalent to defining solutions of the heat equation for multi-valued data. It is in
that spirit that in [6] Evans studied (DCMA) as the limit when £ — 0 of the more
regular equation

2 2
U UG — 2UgUgUgg + Uglyy

10
u? + £%uf (10)

Uy =
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Equation (10) admits viscosity solutions because it is more or less the Mean Curvature
Motion (actually, the case ¢ = 1 is exactly the Mean Curvature Motion). He noticed
that in the general case (that is, when the level lines of the initial datum are not
graphs), the regularizing effects of the heat equation are so strong that the limit of
approximate solutions is not continuous at scale ¢ = 0, because the level lines are
constrained to become graphs instantaneously.

3 Variational interpretation of the DCMA

Proposition 8 The DCMA induces on v a flow associated to the minimization of
1
Ew) =3 //(w + vu,)? ddf. (11)

Let us consider the functional £(v) defined by (11) on compactly supported movies
of class C2. Differentiating £ yields, after integrations by parts,

DQ
D.E(h) = — // D—GZh, dzdf,

D — % + va—i represents the total derivative operator. Then, for a classical

Do
solution of the DCMA u € Vg’l associated to a compactly supported initial datum and
admitting a velocity map v, one has

4 ()~ (35w

which means that the flow induced on v by the DCMA is associated to the minimization
of £. This mimimization property proves that the DCMA “idealizes” movies and tend
to give them a coherent depth interpretation as scale increases, since the apparent
acceleration Dv/D6 = vy + vv, is globally decreasing.

where

4 Numerical scheme

In order to apply the DCMA evolution to real movies, we need to devise a numerical
scheme. A “naive” discretization of the partial derivatives of u cannot be used, because
in practice it is well known that the time discretization is not thin enough. Moreover,
such a discretization is not likely to satisfy the axioms that we imposed to the DCMA.
This is the reason why we focus our attention on an inf-sup scheme. To this end, given
a movie u : R? x T — R, we define

ISyu(wo, yo,00) = inf sup wu(zg+ v0,yo, 0 + 0),
velR —hgogh
STyu(xg, yo,00) = sup inf u(xg+ v0,yg, 0+ 6),

velR ~hsOsh
1
and Thu = 5 (ISpu+ STyu).
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We have a consistency result (see [9] for a proof) at points where u, does not vanish.

Theorem 3 If u is a bounded movie locally C* near zq, with u,(zo) # 0, then
Ly 3
Thu(zg) = u(zg) + ih uge(zo) + O(R7),

and the O(h*) is uniform in a neighborhood of z.

Theorem 3 proves the consistency of the numerical scheme given by the iteration
of T}, with respect to the DCMA evolution. Due to the h? coefficient in the expansion
of T}, it is natural to consider the numerical scheme which associates, to a given movie
ug and a scale ¢ > 0, the sequence of movies (u,+),>1 given by

tup = (Th,)" ug, with h, = /2t/n,

and satisfying the boundary constraint w, (z,y, 0) = ug(z,y,0) on d(R* x I). Thanks
to Theorem 3, we know that such a scheme is consistent, and one could prove that u,
converges towards the DCMA of ug when the partial derivative of ug with respect to
x never vanishes. In the general case, the existence of a solution is not guaranteed,
even if numerically the monotonicity of the scheme ensures the convergence of the
algorithm. In fact, at singular points where no velocity can be defined, the scheme
should produce an instantaneous evolution, as stated by the following

Proposition 9 Let P(z,0) be a polynomial with degree at most two and such that
P.(x9,0y) = 0. Then, in (x¢,0y) we have, as h — 0,

h
T.P =P+ 3 | Pyl sgn(Py,) + O(h?).

Proposition 9 suggests that the numerical scheme we proposed may induce a pro-
jection of the initial datum from C? to VY, defined by the asymptotic state of
_— luglsgn(ug,) if  wu, =0,
K 0 else.

Notice that if we follow Evans (see [6]) and consider the DCMA as the limit of (10),
we obtain a different projection operator in general.

One may notice the extreme simplicity of the algorithm we presented : in particular,
it can be implemented very easily on a massive parallel machine. Our optimized code
in C language for one iteration consists of only 23 instructions. Numerical simulations
realized with this algorithm are presented in Figure 1.
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5 Conclusion

We presented a study of the DCMA equation, based on its interpretation as a level
set formulation of the monodimensional heat equation. When the initial condition
admits trajectories, we prove the existence and uniqueness of weak solutions. For
general initial conditions, difficulties appear because the time variable imposes to
consider level curves as graphs. Defining solutions in that case would probably require
a weaker formulation of the DCMA allowing occlusion fronts to arise an propagate.
The variational interpretation we pointed out might then be helpful to build the proper
definition of solution in the case of occlusions. It is not sure, however, that an inf-
sup-like scheme would still exist then and allow to estimate indirectly the velocity

field.
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Figure 1: Computation of the velocity field (minimum of 15 matchings).

The following results were produced from a real movie produced by the SRI center (see
[2]) and available with anonymous ftp at periscope.cs.umass.edu. The four images on
the first row are taken from four different mouvies : each image is the 20th image
(over 64) of the movie it belongs to : column 1: original “TREES” movie, column 2:
movie processed with DCMA (5 iterations), column 3: processed movie (15 iterations),
column 4: processed movie (31 iterations). Then, the velocity field of each movie
was computed on the 20th tmage simply by looking for trajectories with a matching
constraint of 15 images. These velocities are represented on row 2 : the white color
means points where no matching was found with respect to the constraint, and the grey
scale (from light grey to black) measures the velocity from 0.0 to 2.0 pizels per image.
On the third row, the velocity images of row 2 were simply “dilated” to produce more
readable results. Notice how the velocity information, which is almost inexistant on
the original movie (for the matching constraint we imposed), progressively appears on
the DCMA as the scale increases. Since the distance of objects to the image plane is
inversely proportional to their velocity, closest points appear in black and farthest ones
in light grey. On the last image of row 3, we distinguish the foreground tree in black,
the ground from black to middle grey, the background tree in middle grey, and the far
background in light grey.



