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Abstract

In 1923, Max Wertheimer proposed a research programme and method in visual perception. He conjectured the existence of a

small set of geometric grouping laws governing the perceptual synthesis of phenomenal objects, or ‘‘gestalt’’ from the atomic retina

input. In this paper, we review this set of geometric grouping laws, using the works of Metzger, Kanizsa and their schools. In

continuation, we explain why the Gestalt theory research programme can be translated into a Computer Vision programme. This

translation is not straightforward, since Gestalt theory never addressed two fundamental matters: image sampling and image in-

formation measurements. Using these advances, we shall show that gestalt grouping laws can be translated into quantitative laws

allowing the automatic computation of gestalts in digital images.

From the psychophysical viewpoint, a main issue is raised: the computer vision gestalt detection methods deliver predictable

perception thresholds. Thus, we are set in a position where we can build artificial images and check whether some kind of agreement

can be found between the computationally predicted thresholds and the psychophysical ones. We describe and discuss two pre-

liminary sets of experiments, where we compared the gestalt detection performance of several subjects with the predictable detection

curve. In our opinion, the results of this experimental comparison support the idea of a much more systematic interaction between

computational predictions in Computer Vision and psychophysical experiments.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction, Gestalt theory

The geometric Gestalt theory started in 1921 with the

Max Wertheimer founding paper [33]. The Gestalt Bible

Gesetze des Sehens by Wolfgang Metzger gave in its last

edition in 1975 a broad overview of the extension and the

results of the research. At about the same date, Computer

Vision was an emerging new discipline, at the crossing
point between Artificial Intelligence and Robotics. The

foundation of signal sampling theory by Claude Shannon

[30] was actually already 20 years old, but computers were

able to deal with images with some efficiency only at the

beginning of the seventies. Two things are noticeable:

• Computer Vision used very little and almost nothing
of the Gestalt theory results: the founding book of
David Marr [24] involves much more neurophysiol-

ogy than phenomenology. Also, its programme and

the robotics programme [13] based Computer Vision

on binocular stereo vision. This was in total contra-
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diction to, or ignorance of, the results explained at

length in Metzger’s chapters on Tiefensehen. Indeed,

these chapters demonstrate that binocular stereo vi-

sion is a parent pauvre in human volume perception.

The only bright exception is Attneave’s attempt [3]

to give a quantitative sampling theory adapted to

shape perception. His paper had some influence in

shape analysis algorithms.
• Conversely, the Shannon’s information theory does not
seem to have influenced at all gestalt research, as far as

we can judge from Kanizsa’s and Metzger’s books.

Both facts are surprising. Indeed, both disciplines

have attempted to answer the following question: how

to arrive at global percepts from the local, atomic in-

formation contained in an image? Both groups were
aware that the retina information is atomic and that

synthesis laws are necessary to build up visual objects,

let them be gestalts 1 or shapes (see Fig. 1).
1 We shall write gestalt and treat it as an English word when we talk

about gestalts as groups and maintain the uppercase in Gestalt theory.



Fig. 1. Illustration of gestalt principles. From left to right and top to bottom: color constancy+proximity, similarity of shape and similarity of

texture; continuity of direction; closure (of a curve); convexity; parallelism; amodal completion (a disk seen behind the square); color constancy; good

continuation (dots building a curve); closure (of a curve made of dots); modal completion and pregnancy: by pregnancy of squares, we tend to see a

square in the last figure and its sides are also seen in a modal way (subjective contour). Notice that the similarity of texture in the first and last figure.

Most of the figures involve constant width and similarity of size of the objects.
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In this paper, we shall summarize a computational

theory which permits to find automatically gestalts in
digital images. This theory essentially predicts perception

thresholds which can be computed on every image and

give a usually clear cut decision between what is seeable

as a geometric structure (gestalt) in the image and what

is not. Those thresholds are computable thanks to the

discrete nature of images.

A physiological and psychophysical question arises:

are the same kind of thresholds in game in our equally
discrete retina images? We made two simple experiments

to check whether a match between theoretically pre-

dicted thresholds and psychophysical ones can be made.

In the first experiment, squares were displayed to subjects

in more or less noisy images and the subjects were asked

to decide whether they saw one or not. In the second

experiment, aligned segments were displayed in a back-

ground of random segments. In both cases, subjects were
asked to decide when they saw a square, or an alignment.

Our theory predicted an a priori shape for the ‘‘pop-out’’

curve, depending in each case upon two parameters. In

the first experiment, the pop-out depends upon relative

contrast and size of the square; in the second one, the

pop-out depends upon the number of aligned segments

and the density of background distractors. Somewhat to

our surprise, we found a significant agreement between
the gestalt pop-out threshold curves predicted and the

observed ones. This opens, to our opinion, a new way to

develop a quantitative Gestalt theory and psychophysical

devices. Indeed, this possibility of predicting a priori

perception quantitative thresholds and checking them

experimentally can be expanded to all gestalt qualities.

The future computational theories about the perception

of simple and complex gestalts should systematically
entail psychophysical (and maybe neurophysiological)

devices to decide between computational theories of

human perception.

Our plan is as follows. We start in the next section

with an account of Gestalt theory, centered however on

the initial 1923 Wertheimer programme. We also ad-

dress some slight changes in terminology necessitated by
the computational developments, in particular the no-

tion of partial gestalt. In continuation, we shall recall the
very basics of Shannon theory and explain why, together

with a probabilistic principle which we call Helmholtz

principle, they permit a computation of gestalts in dig-

ital images. Section 4 is devoted to the description of

two experimental devices permitting to check whether

the psychophysical pop-out curves, depending on two

parameters (roughly, size of the object and amount of

noise) are in agreement with the computationally pre-
dicted ones.
2. Classification of gestalt laws from a computational

viewpoint

According to Gestalt theory, ‘‘grouping’’ is the main

process in our visual perception (see [15–18,21,25,33,34]).
Whenever points (or previously formed visual objects)

have one or several characteristics in common, they get

grouped and form a new, larger visual object, a gestalt.

The list given by Gaetano Kanisza in Grammatica del

Vedere page 45 [15] is vicinanza, somiglianza, continuita di

direzione, chiusura, pregnanza, esperienza passata, that is:

vicinity, similarity, continuity of direction, closure,

pregnancy, former experience. This is almost exactly the
list stated in the founding paper of Wertheimer [33].

The above grouping laws have not at all the same

status and will need some ordering. All of them, how-

ever, belong, according to Kanizsa to the so called pro-

cesso primario (primary process), opposed to a more

cognitive secondary process. Also, it may of course be

asked why and how this list of geometric qualities has

emerged in the course of biological evolution. Brunswick
and Kamiya [5] were among the first to suggest that the

gestalt grouping laws were directly related to the geo-

metric statistics of the natural world. Since then, several

works have addressed from different points of views

these statistics and the building elements which should be

conceptually considered in perception theory, and/or

numerically used in Computer Vision [1,4,11,22,27].
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2.1. The starting points or atomic data: Shannon theory

and the discrete nature of images

Before proceeding to a classification of gestalt laws

from the computational viewpoint, we must discuss the

computational nature of images, let them be digital or

biological. In order to define an image in the simplest

possible way, we just need to fix a point of focus. As-

sume all photons converging towards this focus are in-
tercepted by a surface which has been divided into

regular cells, usually squares or hexagons. Each cell

counts its number of photons hits during a fixed expo-

sure time. This count gives a grey level image, that is, a

rectangular, (roughly circular in biological vision) array

of grey level values on a grid. In the case of digital im-

ages, CCD matrices give regular grids made of squares.

In the biological case, the retina is divided into hexag-
onal cells with growing sizes from the fovea. Thus, in all

cases, a digital or biological image contains a finite

number of values on a grid. Shannon [30] made explicit

the mathematical conditions under which, from this

matrix of values, a continuous image can be recon-

structed. By Shannon’s theory, we can compute the grey

level at all points, and not only the points of the grid.

When we zoom in the interpolated image, however, it
looks more and more blurry: the amount of information

in a digital image is bounded and the resolution of the

image is finite. The points of the grid together with their

grey level values are called pixels, an abbreviation for

picture elements.

This raises a hope: aren’t the pixels the atoms from

which gestalt grouping can start? On the other hand, we

see a paradox: how can we infer sure events as lines,

circles, squares, whatsoever gestalt from discrete data? If

the image is blurry, all of these structures cannot be

inferred as completely sure ; their exact location must in

fact remain uncertain. As we shall see, this is crucial: all

basic geometric information in the image has an easy-to-

guess accuracy. This accuracy parameter will be crucial

in the computations of the next sections. Since all local

information about a function u at a point ðx; yÞ boils
down to its Taylor expansion, we can assume that the

atomic information from which gestalts can be built up

are:

• the value uðx; yÞ of the grey level at each point ðx; yÞ of
the image plane. Since the function u is blurry, this
value is valid at points close to ðx; yÞ,

• the gradient of u at ðx; yÞ, the vector

Duðx; yÞ ¼ ou
ox

;
ou
oy

� �
ðx; yÞ;

• the orientation at ðx; yÞ,

OrientðxÞ ¼ 1

kDuðx; yÞk

�
� ou

oy
;
ou
ox

�
ðx; yÞ:
This vector is visually intuitive, since it is tangent to
the boundaries one can see in an image.

The orientation is invariant when the image contrast

changes (which means robustness to illumination con-

ditions). Attneave’s and Julesz [14] constantly refer to it

for shape recognition and texture discrimination theory.

2.2. From atomic data to partial gestalts

Before going on with the discussion, we must fix a bit

the terminology to adapt it to the intermediate scopes

Computer Vision has to deal with. There are three

meanings for gestalt:

• the first one is the final global group seen, whose con-
stitution it is the aim of Gestalt theory to explain;

• the second one is related to the geometric qualities in-
volved, like good continuation or convexity; in that

case, we shall talk about the ‘‘good continuation ge-

stalt’’, which actually means ‘‘good continuation

law’’ leading to detect smooth curves;

• finally we have partial gestalts, namely not the final
gestalts, but the result of application of one of the

grouping laws to the image.

This is better explained by an example. A simple

object like a square, whose boundary has been drawn in

black with a pencil on a white sheet, will be perceived by

connectedness (the boundary is a black line), by con-

stant width (of the stroke), convexity and closedness (of

the black pencil stroke), parallelism (between opposite

sides), orthogonality (between adjacent sides), finally
equidistance (of both pairs of opposite sides). Thus, we

must distinguish between what we shall call global ge-

stalt and partial gestalt. The square is a global gestalt,

but it is the result of a long list of concurring geometric

qualities, leading to parts of it endowed with some ge-

stalt quality. Such parts we shall call partial gestalts.

To be more precise, let us make the following defi-

nitions.

Definition 1. We call partial gestalt law any grouping

process driven by a single grouping law.

As we shall see, the partial gestalt grouping laws are

computationally treatable as they proceed from local,
atomic observations. Also, all of them are recursive: they
allow the grouping of already partially constituted
groups into larger groups, and so on.

One can summarize the efforts of Computer Vision as

a way to compute the (very diverse in nature) partial

gestalts. To take an instance, the snakes method [19]

attempts to capture the closed smooth curves, a com-

bination of the ‘‘closure’’ and ‘‘good continuation’’ ge-

stalts. In the same way, have been proposed in
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Computer Vision: alignment detectors (e.g. Hough
transforms), edge detectors, angle detectors, shape rec-

ognition methods (the ‘‘similarity of shape’’ gestalt), and

texture segmenters, that is, a general way to group

points according to common features which are, again,

nothing but partial gestalts. The good continuation

principle has been extensively addressed in Computer

Vision, first in [26], more recently in [28] and still more

recently in [12]. A recent example of computer vision
paper implementing ‘‘good continuation’’, understood a

‘‘constant curvature’’, is [35].
3. Computing partial gestalts in digital images

3.1. General detection principles

In this section, we quickly review anterior work where

we proposed a general principle for computing any

partial gestalt and applied it to several gestalt qualities.

This principle will be applied to several new examples of

computable partial gestalts.
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Fig. 2. An illustration of Helmholtz principle: non-casual alignments are au

randomness. Top left: 20 uniformly randomly distributed dots, and 7 aligned

a large deviation. Bottom: same alignment added to 80 random dots. The a

meaningful, it would need to contain at least 11 points.
Helmholtz Principle (see Fig. 2): In [7], we outlined a
computational method to decide whether a given partial

gestalt (computed by any segmentation or grouping

method) is reliable or not. We treated the detection of

alignments, as one of the most basic gestalts (see [33]).

As we shall recall, our method gives absolute thresholds,
depending only on the image size, permitting to decide

when a peak in the Hough transform is significant or

not.
A geometrically meaningful event is an event that,

according to probabilistic estimates, should not happen

in an image and therefore makes sense. This informal

definition immediately raises an objection: if we do

probabilistic estimates in an image, this means that we

have an a priori model. We are therefore loosing any

generality in the approach, unless the probabilistic

model could be proven to be ‘‘the right one’’ for the
image under consideration. In fact, our proposition has

been to do statistical estimates without any image

model. Instead, we applied a general perception princi-

ple that we called Helmholtz principle. This principle

yields computational grouping thresholds associated
50 60 70 80 90 100

0 10 20 30 40 50 60 70 80 90 100
0

0

0

0

0

0

0

0

0

0

00

tomatically detected by Helmholtz principle as a large deviation from

added. Top right: this meaningful (and seeable) alignment is detected as

lignment is no more meaningful (and no more seeable). In order to be
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with each gestalt quality. It can be stated in the fol-
lowing generic way. Assume that objects O1, O2; . . . ;On

are present in an image. Assume that k of them, say
O1; . . . ;Ok, have a common feature, say, same color,

same orientation, etc. We are then facing the dilemma: is

this common feature happening by chance or is it sig-

nificant and enough to group O1; . . . ;Ok? In order to

answer this question, we make the following mental

experiment: we assume a priori that the considered
quality has been randomly and uniformly distributed on

all objects, i.e. O1; . . . ;On. Notice that this quality may

also be spatial (like position, orientation). Then we

(mentally) assume that the observed position of objects

in the image is a random realization of this uniform

process. We finally ask the question: is the observed

repartition probable or not? If not, this proves a con-
trario that a grouping process (a gestalt) is at stake,
since, according to Helmholtz principle, qualities of in-

dependent objects should be equally distributed. Math-

ematically, this can be formalized by

Definition 2 (e-meaningful event [7]). We say that an
event of type ‘‘such configuration of points has such

property’’ is e-meaningful if the expectation of the
number of occurrences of this event is less than e under
the uniform random assumption.

As an example of generic computation we can do

with this definition, let us assume that the probability

that a given object Oi has the considered quality is equal

to p. Then, under the independence assumption, the
probability that at least k objects out of the observed n
have this quality is

Bðp; n; kÞ ¼
Xn

i¼k

n
k

� �
pið1� pÞn�i

;

i.e. the tail of the binomial distribution. In order to get

an upper bound for the number of false alarms, i.e. the

expectation of the number of geometric events happen-

ing by pure chance, we can simply multiply the above

probability by the number of tests we perform on the

image. Let us call NT the number of tests. Then in most
cases we shall consider in the next subsections, a con-

sidered event will be defined as e-meaningful if

NTBðp; n; kÞ6 e:

We call in the following the left hand member of this

inequality the ‘‘number of false alarms’’ (NFA).

When e6 1, we talk about meaningful events. This
seems to contradict the necessary notion of a parameter-

less theory. Now, it does not, since the e-dependency of
meaningfulness is low (it is in fact a log e-dependency
[7]). The probability that a meaningful event is observed

by accident will be very small. In such a case, our per-

ception is liable to see the event, no matter whether it is
‘‘true’’ or not. We refer to [7] for a complete discussion
of this definition.

The general method we have just outlined can be

viewed as a systematization of Stewart’s ‘‘MINPRAN’’

method [32]. The method was presented as a new par-

adigm, but was applied only to the 3D alignment

problem.

The method we explain here has probably been pro-

posed several times in Computer Vision (e.g. in the early
Lowe work [23]), but, to the best of our knowledge, not

systematically developed.

3.2. Meaningful alignments

Let us start by our first example, the detection of

straight lines in an image. From the psychophysical and

statistical viewpoint, alignment is considered as one of
the main partial gestalts, already discussed at length in

the founding Wertheimer paper [33]. A recent study on

long range interactions in image perception due to

alignments can be found in [31].

Since images are blurry, noisy and aliased, we cannot

hope for a strong accuracy in direction measurement at

each pixel, and we shall, without need for many expla-

nations, fix the accuracy of a measured gradient direc-
tion at a point equal to a factor pp radians. This means
that a casual alignment of a direction with a prefixed one

happens with probability p. In practice, p ¼ 1
16
is the best

we can hope from digital images (and is even optimistic

for aliased images). We consider the following event:

‘‘on a discrete segment of the image, joining two pixel

centers, and with length l counted in points at Nyquist
distance, at least k points have the same direction as the
segment with precision p’’. The direction at each point
is computed as the direction of the gradient rotated by
p
2
.

Definition 3 ([7]). Consider a segment S of length l con-
taining k aligned points. We call number of false alarms
of S,

NFAðSÞ ¼ N 4
Xl

j¼k

l
j

� �
pjð1� pÞl�j

:

We say that S is e-meaningful if NFAðSÞ6 e.
An example of alignment detection is given on Fig. 3

with e ¼ 1.
If on a straight line we have found a very meaningful

segment S, then by enlarging slightly or reducing slightly
S, we still find a meaningful segment. This means that
meaningfulness cannot be a univoque criterion for de-

tection, unless we can point out the ‘‘best meaningful’’

explanation of what is observed as meaningful. This is
done by the following definition, which can be adapted

as well to meaningful boundaries [8], meaningful edges

[8], meaningful modes in a histogram [9] and clusters.



Fig. 3. Two partial gestalts, alignments and boundaries. Top: original

aerial view (source: INRIA), middle: maximal meaningful alignments,

bottom: maximal meaningful boundaries.
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Definition 4 ([9]). We say that an e-meaningful geometric
structure A is maximal meaningful if

• it does not contain a strictly more meaningful struc-
ture: 8B � A, NFAðBÞPNFAðAÞ.

• it is not contained in a more meaningful structure:
8B � A, B 6¼ A, NFAðBÞ > NFAðAÞ.

It is proved in [9] that maximal structures cannot

overlap, which is one of the main theoretical outcomes

validating the above definitions.
3.3. Edge and boundary detectors

We shall now review briefly our second example of

partial gestalt, the boundaries: a classical example in

Computer Vision! The scope here is to point out the

existence of a parameterless boundary detector deduced

from the Helmholtz principle and again to compare it

with the other definitions of partial gestalts. A detailed

treatment is given in [8]. Let u be a discrete image of size
N 
 N . We consider the level lines at quantized levels
k1; . . . ; kk (see [6]).

Level lines are simply curves along which uðx; yÞ is
constant. Since the image is only defined on a discrete

grid, an interpolation close to Shannon’s interpolation

must be defined. In the experiments below we chose a

less accurate interpolation, the bilinear interpolation,

for a sake of simplicity.
Let L be a level line of the image u. We denote by l its

length counted in independent points, and by x1,
x2; . . . ; xl the l considered points of L. For a point x 2 L,
the contrast at x is defined by

cðxÞ ¼ jrujðxÞ; ð1Þ
where ru is computed by a standard finite difference
scheme on a 2 · 2 neighborhood [7]. For l > 0, we
consider the event: for all 16 i6 l, cðxiÞP l, i.e. each
point of L has a contrast larger than l. From now on, all
computations are performed in the Helmholtz frame-
work: we make all computations as though the contrast

observations at xi were mutually independent. Since the
l points are independent, the probability of this event is

Prob½cðx1ÞPl� �Prob½cðx2ÞPl� � � �Prob½cðxlÞPl� ¼HðlÞl;
ð2Þ

where HðlÞ is the probability for a point on any level
line to have a contrast larger than l. An important
question here is the choice of HðlÞ.
We decided to compute HðlÞ from the empirical

distribution given by the image itself, that is

HðlÞ ¼ 1
M
#fx; jrujðxÞP lg; ð3Þ

where M is the number of pixels of the image where

ru 6¼ 0. In order to define a meaningful event, we have
to compute the expectation of the number of occur-

rences of this event in the observed image. Thus, we first

define the number of false alarms.

Definition 5 ([8]). Let L be a level line with length l,
counted in independent points. Let l be the minimal
contrast of the points x1; . . . ; xl of L. The number of false
alarms of this event is defined by

NFAðLÞ ¼ Nll � ½HðlÞ�l; ð4Þ
where Nll is the number of level lines in the image.
Notice that the number Nll of level lines is provided

by the image itself. We now define e-meaningful level
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lines. The definition is analogous to the definition of e-
meaningful alignments.

Definition 6 (e-meaningful boundary [8]). A level line L
with length l and minimal contrast l is e-meaningful if

NFAðLÞ6 e: ð5Þ

The above definition involves two variables: the

length l of the level line, and its minimal contrast l.
The number of false alarms of an event measures the

‘‘meaningfulness’’ of this event: the smaller it is, the

more meaningful the event is. An example of boundary
detection is given on Fig. 3.

3.4. A general similarity grouping principle: histogram

modes

As we mentioned in the introduction, the main ge-

staltic grouping principle is this: points or objects having

one or several features in common are being grouped
because they have this feature in common. We shall

consider here only grouping by a single feature and we

shall see that this single-feature grouping already yields

relevant results. We face here a general problem: assume

k objects O1; . . . ;Ok, among a longer list O1; . . . ;On, have

some quality Q in common. Assume that this quality is
actually measured as a real number. Then our decision of

whether the grouping of O1; . . . ;Ok is relevant must be
based on the fact that the values QðO1Þ; . . . ;QðOkÞ make
a meaningful mode of the histogram of QðO1Þ; . . . ;QðOnÞ.
Fig. 4. Collaboration of gestalts: the objects tend to be grouped similarly by se

its maximal meaningful boundaries (right). Second row, left: histogram of are

The outliers are the double blob, the white background region and the th

meaningful blobs (computed as the principal axis of each blob). There is a sin

95. It contains 28 objects out of 32. The outliers are the white background reg

levels inside each block. There is a single maximal mode containing 30 obj

background white region and the darkest spot.
Thus, the single quality grouping is led back to the
question of an automatic, parameterless, histogram

mode detector. Of course, this mode detector depends

upon the kind of feature under consideration. We shall

consider two paradigmatic cases, namely the case of

orientations, where the histogram can be assumed by

Helmholtz principle to be flat, and the case of the objects

sizes (areas) where the null assumption is that the size

histogram is decreasing (see Fig. 4).

3.4.1. The similarity gestalt: objects grouped by orienta-

tion, or grey level

In the sequel, we quantize the possible orientations

and grey levels in the usual way and we assume that the

M values of orientation (or grey level) are independent
and uniformly distributed on f1; 2; . . . ; Lg. Consider an
interval ½a; b� � ½1; L� and let kða; bÞ denote the number
of objects with gestalt value in ½a; b�. We define
pða; bÞ ¼ ðb� aþ 1Þ=L as the a priori probability that
the gestalt value of an object falls in ½a; b�. With the same
generic argument as in Section 1, we have

Definition 7 ([9]). An interval ½a; b� is e-meaningful if

NFAð½a; b�Þ ¼ Ni � Bðpða; bÞ;M ; kða; bÞÞ6 e;

where Ni is the number of considered intervals

(Ni ’ LðLþ 1Þ=2). An interval ½a; b� is said maximal
meaningful if it is meaningful and if it does not contain,
or is not contained in, a more meaningful interval (see

Definition 4).
veral different partial gestalts. First row: original DNA image (left) and

as of the meaningful blobs. There is a unique maximal mode (256–416).

ree tiny blobs. Second row, middle: histogram of orientations of the

gle maximal meaningful mode (interval). This mode is the interval 85–

ion and three tiny spots. Second row, right: histogram of the mean grey

ects out of 32, in the grey level interval 74–130. The outliers are the
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It can be proved in the same way as for alignments
that maximal meaningful intervals do not intersect.

Thus, we get an operational definition of meaningful

modes as disjoint subintervals of ½1; L�.

3.4.2. Size of objects

The preceding arguments are easily adapted to

Helmholtz type assumptions on non-uniform histo-

grams. A very generic way to group objects in an image is
their similarity of size. This similarity lets groups per-

ceptually pop out. Now, it would be a total nonsense to

assume any uniform law on the objects sizes. There are

several powerful arguments in favor of a statistical de-

creasing law for size. These arguments derive from per-

spective laws, or from the occlusion dead leaves model,

or directly from statistical observations of natural images

[2]. Our Helmholtz qualitative hypothesis is then: the
prior distribution of the size of objects is decreasing.

Definition 8 ([10]). An interval ½a; b� is e-meaningful (for
the decreasing assumption) if

NFAð½a; b�Þ ¼ Ni �max
p2D

Bðpða; bÞ;M ; kða; bÞÞ6 e;

where D is the set of decreasing probability distributions
on f1; 2; . . . ; Lg, and pða; bÞ ¼

Pb
i¼a pi.

3.5. Alignments of objects (good continuation again)

The gestalt we now consider is not the same as the

alignment gestalt considered at the beginning of Section
Fig. 5. Gestalt grouping principles at work for building an ‘‘order 3’’ gestalt

(left) and its maximal meaningful boundaries (right). Second row: left, baryc

meaningful mode of the region areas histogram; right, meaningful alignmen
2, where the aligned points had their own orientation.
Here, we consider the case of objects whose barycenters

are aligned. Assume that we observe M objects of a

certain kind in an image. Our null hypothesis for the

application of Helmholtz principle will be that the M
barycenters ðxi; yiÞ are independent and uniformly dis-
tributed on a domain X. A meaningful alignment of
points must be a meaningful peak in the Hough

Transform (see [20,29] for a very similar approach).
Now, the accuracy matter must be addressed. Points will

be supposed to be aligned if they all fall into a strip thin

enough, in sufficient number. Let S be a strip of width a.
Let pðSÞ denote the prior probability for a point to fall
in S, and let kðSÞ denote the number of points (among
the M) which are in S. The following definition permits
to compute all strips where a meaningful alignment is

observed (see Fig. 5).

Definition 9 ([10]). A strip S is e-meaningful if

NFAðSÞ ¼ Ns � BðpðSÞ;M ; kðSÞÞ6 e;

where Ns is the number of considered strips (one has
Ns ’ 2pðR=aÞ2, where R is the half-diameter of X and a
the minimal width of a strip).

In practice, we sample all possible strip widths in a

logarithmic scale (about 8 widths) and we sample ac-

cordingly the angles between tested strips in order to get

a good covering of all directions. Thus, the number of
strips Ns only depends on the size of the image and this
yields a parameterless detection method.
(alignment of blobs of the same size). First row: original DNA image

enters of all meaningful regions whose area is inside the only maximal

ts of these points.



Fig. 6. Example of test image used for square detection.
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4. Psycho-visual experiments

In this section, we describe two psycho-visual exper-

iments that we built up in order to compare our ap-

proach of computational gestalts to the human gestalt

perception. The question is: to what extent can one

sustain that our perception is driven by Helmholtz

principle? The experiments were designed to test the

ability of a subject to detect the presence of a certain
kind of structure in an image. For each experiment, we

measured the subject response in function of two pa-

rameters, namely the size of the gestalt to be detected

and the amount of noise, and we compared the average

perception threshold to the computational one predicted

by Helmholtz principle.

4.1. Detection of squares

4.1.1. Protocol

A sequence of images is presented to the subject.

Each image appears on the screen during 1.5 s. For each

image the subject has to answer to the question: ‘‘Voyez-

vous un carr�e dans l’image?’’. 2 If his answer is yes, he
has to press a key during the 1.5 s image display time.

Between each image, a blank image is displayed during
approximately 0.5 s to avoid interferences between

successive images.

Each image is made of N 
 N black or white pixels. A
square is randomly generated in the following way: its

side length l and its position are chosen randomly (and
uniformly), and a number �d 2 ½0; 1� (average density) is
also randomly chosen. A random image is then gener-

ated as follows: each pixel is black with probability p
and white with probability 1� p (Bernoulli process). All
pixel values are chosen independently, except that we

take p ¼ �d in the square domain and p ¼ 1=2 outside.
Such an image is shown on Fig. 6.

For each image, we record the answer of the subject

(‘‘can you see a square, yes or no’’), along with the

square side length (l) and its relative density d, defined
by d ¼ jd � 1=2j, where d is the ratio of white pixels
contained in the square (note that the expectation of d is
�d, but the two numbers may differ a little). Each image is
then represented as a point in the (d, l) plane.

4.1.2. Prediction

If our perception is based on Helmholtz principle, we

are supposed to detect the square against the hypothesis

that the image is a white noise, in the present case a
Bernouilli noise with parameter 1/2. The number of false

alarms associated to a square with side length l and
relative density d is then
2 Can you see a square in this image?
F ðl; dÞ ¼ N 3Prob
Sl2
l2

����
�

� 1
2

����P d

�
; ð6Þ

where Sn is the sum of n independent Bernoulli random
variables with parameter 1/2, which means that

Prob½Sn P k� ¼ 2�n
Xn

j¼k

n
k

� �
:

The first factor of (6), N 3, counts the number of
possible squares (N 2 locations and N side lengths).

Using a large deviation estimate of (6) [9], we obtain

log F ðl; dÞ ’ 3 logN � l2 ð1ð þ 2dÞ logð1þ 2dÞ
þ ð1� 2dÞ logð1� 2dÞÞ:

Each level line of F , defined by F ðl; dÞ ¼ e, separates
two regions in the (d, l) plane: the squares that we are e-
meaningful and the other ones. These level lines are
represented in Fig. 7 for several values of e. Note that
for small values of d, we have

log F ðl; dÞ ’ 3 logN � 8d2l2 þ Oðd4Þ;

so that the level lines of F look like hyperbolae
(d � l ¼ cte). If our visual perception has something to do
with Helmholtz principle, the perception thresholds we

measure in our experiments should correspond to a level

line of F associated to some confidence level e.

4.1.3. Results

We asked eight persons to realize the experiment

described above. To each subject, we submitted a first
(non-recorded) training set of 50 images, then a real set

of 100 images. No other explanation were given to the

subjects than just the written question ‘‘can you see . . .’’.
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Fig. 7. Thresholds in the (d, l) plane (square density and side length)
predicted by Helmholtz principle for different values of e ðe ¼ 10�0;
10�10; 10�20; . . . ; 10�50Þ when N ¼ 600.
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Fig. 9. Positive answers for l6 100 and the prediction curve
(e ¼ 10�20).
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Fig. 10. Negative answers for l6 100 and the prediction curve
(e ¼ 10�20).
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Each image had size 600 · 600 and was displayed on a
15

00
1600 · 1200 LCD panel. The answers are reported on

Fig. 8. Note that the values chosen randomly for d and l
excluded the domain fðd; kÞ; l > 60 and d > 0:15g, for
which the detection of the square is too obvious.
The data we collected appeared to fit the Helmholtz

model for lP 100, for e around 10�20 (see Figs. 9 and
10). However, for larger values of l the perception
threshold is worse than the one predicted by Helmholtz

principle (see Fig. 11).

4.1.4. Discussion

Since the experiments involve two parameters (d and
l), whereas the model only has one (e), the fit obtained
between the measured data for l6 100 and the model
seems to be relevant. How to explain the lack of fit for

lP 100? For such a large square, our visual system has
to ‘‘zoom out’’ the image, so that our model based on

the fact that each point (black or white) is visible be-

comes questionable. Indeed, imagine that we keep a

fixed physical image size but reduce the pixel size to zero
0
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80

100

0 0.05 0.1 0.15 0.2 0.25 0.3

"yes"
1

Fig. 8. Positive (left) and negative (right) answers for l6 100, in function of t
(l, vertical axis).
(hence N ! 1): then, our model predicts that any
square with d > 0 will become visible for N large en-
ough. This is clearly false, and can be explained by the
0
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80

00

0 0.05 0.1 0.15 0.2 0.25 0.3

"no"

he relative density of the square (d, horizontal axis) and its side length
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Fig. 11. Comparison between the prediction curve, positive (left) and negative (right) answers for l6 300.
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fact that the resolution of our visual system is not infi-
nite. Hence, we think that there is a maximum size for

the squares beyond which the discrete model associated

with Shannon sampling is no more valid.

The experiment we presented could be developed in

several ways. First, one could try to perform more

measurements, with one or several subjects. However,

performing a lot of measurements with one single sub-

ject is difficult, because loss of concentration cannot be
avoided beyond a certain number of experiments. When

taking several subjects, there is a risk that the separation

between ‘‘yes’’ and ‘‘no’’ answers becomes more fuzzy,

since the threshold that each subject chooses may de-

pend on the interpretation of the question (do I have to

say yes when I am sure that I see a square, or when I

think that there may be a square?). This question was

actually asked to us by some subjects, but we gave no
directions.

Another possibility to investigate further would be to

change the image size (N ) in order to check that the
threshold value e remains constant. However, our main
concern here was not to predict exactly a perceptual

threshold, but to predict its dependence upon the two

parameters involved (the square density and side

length).

4.2. Detection of alignments

4.2.1. Protocol

The protocol is essentially the same as for the square

detection: images appear on the screen during 1.5 s, and

the subject has to answer a question. For this experi-

ment, the question is ‘‘Y a-t-il un alignement excep-
tionnel?’’. 3

Each image is made of an hexagonal grid of size

N 
 N . At the center of each cell, there may be a little
3 Is there an exceptional alignment?
segment or not. This little segment has three possible
orientations: 0�, 120� or 240�. To build each image, an
alignment is generated in the following way: a position,

a length l and a orientation are chosen, and then l
segments are put in the adjacent cells defined by the

initial position and the orientation. These segments are

constrained to have the same direction as the alignment

itself. Then, a density �d is chosen randomly in [0,0.5],
and the other cells are filled randomly and indepen-
dently with respect to �d: each cell is empty with proba-
bility 1� d and contains one of the three possible
segments with probability d=3. Such an image is shown
on Fig. 12.

For each image, we record the answer of the subject

(yes or no), along with the alignment length (l) and the
density d of cell with segments (the expectation of d is
�d). Each image is then represented as a point in the (d, l)
plane.

4.2.2. Prediction

If we apply Helmholtz principle to this experiment,

the number of false alarms associated to the encoun-

tering of an alignment of l consecutive segments is
Fig. 12. Example of test image used for alignment detection (N ¼ 50).
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NFA ¼ 3
2
N 3

d
3

� �l

: ð7Þ

The number 3N 3=2 approximately counts the number of
possible alignments on the image (three orientations, N 2

positions for the center, N=2 possibilities for the segment
length), and the second term is simply the probability

that the l cells of the alignment have the proper orien-
tation, knowing the empirical density d of non-empty
cells in the image. From (7), we deduce that the
threshold curve in the (d, l) plane corresponding to
NFA6 e has equation

l ¼ C
logðd=3Þ ; where C ¼ logðeÞ � log 3

2
N 3

� �
:

Some of these curves are displayed on Fig. 13.

4.2.3. Results

We collected 900 answers from seven different sub-

jects. Like for the square detection, each subject was first

submitted to a short (non-recorded) training set. This
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Fig. 13. Thresholds in the (d, l) plane (segment density and alignment
length) predicted by Helmholtz principle for different values of

e ðe ¼ 10�0; 10�1; 10�2; . . . ; 10�5Þ when N ¼ 50.
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Fig. 14. Positive (left) and ne
step was needed by the subject to understand well the
question. The answers are shown on Fig. 14.

We found that for e ’ 10�2, the threshold curve we
predict separates not too badly the two sets of answers

(see Figs. 15 and 16). The fitting could not have been
Fig. 15. Positive answers and the prediction curve (e ¼ 10 ).
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Fig. 16. Negative answers and the prediction curve (e ¼ 10�2).
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much better because the answers are a little bit mixed up
(the threshold is fuzzy).

4.2.4. Discussion

The predicted threshold curve seems to fit well the

observed data, but one could argue that any straight line

would do as well. This is probably true, but once again,

since we only had one parameter (e) to fit the data, we
think that the fact that the position and the slope of our
line-like threshold curve fits together the data for a

convenient value of e is significant. We do not claim that
our prediction is satisfied very precisely (it would require

much more experiments and probably a more con-

strained protocol to check it), but at least the predicted

curve has a reasonable slope and offset.

4.3. Conclusion

What did we prove with these experiments? In some

way, that the qualitative thresholds predicted by our

computational approach of gestalt detection seem to fit

the human perception, at least for the two examples

above. One could argue that our experiments were de-

signed in such a way that we answer ‘‘yes’’ when we

perceive that the randomness of the image presented to
the subject has been biased. Hence, there could be that

we would fit as well the measured data by any threshold

curve obtained from a criterion measuring the ‘‘ran-

domness’’ of the image. In fact, this is exactly what we

claim: we do not say that the model that allows us to

compute the thresholds is reproduced in our brain, but

simply that our perception is based on a detection of

randomness that can be modeled by Helmholtz princi-
ple. To go further in the analogy between computational

and psycho-visual gestalts, we would need to build ex-

periments for which the Helmholtz model is visually

achievable. This may be right for the second experiment

(detection of aligned segments), but for the square de-

tection it does not seem realistic to say that we can

perceive each point of the 600 · 600 binary image pre-
sented during 1.5 s. This may explain why we find a fit
for e ¼ 10�20, which is in a sense far from being optimal.
A significant improvement of our results would be re-

alized by designing several experiments from which only

one single threshold curve is predicted (corresponding to

a kind of ‘‘universal’’ value of e), instead of a family of
curves from which we select the best fit as above.
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