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Abstract—In this paper, we present a new method for sub- enabling to study the coherence between the time series and
pixelic land-cover change detection using coarse resolution time the classification.
series, as they offer a high time-repetitiveness of acquisition. According to the linear mixture modetf( [1]), the expec-
Changes are detected by analyzing the coherence between a* ti fth ¢ f d ived pixel is th
coarse resolution time series and a high resolution classification ation of the measurement per orme_ over a mixed pixe '_S €
as a description of the land-cover state at the date of reference average of the measure corresponding to each class weighted
To that aim, an a-contrario model is derived, leading to the by its occupation rate in the pixel. The value observed withi

definition of a probabilistic coherence criterion free of parameter 3 CR pixelz at a datet can hence be estimated by
and free of anya priori information. This measure is the core of

a stochastic algorithm that selects automatically the image sub- o(x,t) = Z ay(x)p(t), 1)
domain representing the most likely changes. Some particular 1
problems related to the use of time series are discussed, such as . .
the potential high variability of a time series or the problem of Where a;(z) denotes the relative area of the CR pixel
missing data. Some experiments are then presented on pseudo-Occupied by the label (by construction,}”, ., a;(z) = 1)
actual data, showing a good performance for change detection and y;(t) represents the average intensity characterizing each
and a high robustness to .the qonsidered resolution ratio (between label at datet. As the problem we consider assumes that a
;r]e?‘i:é?.h resolution classification and the coarse resolution time HR classification is given at the date of reference, the class
proportionsq; (x) are known.

Let ©2 denote the image domaif, the set of acquisition

dates, and a spatio-temporal sub-domainQfx 7. The mini-

In this paper, we focus on the problem of change detectiggl residual error between observations and the recottistnuc
for applications such as vegetation monitoring or classifin obtained from a given label distribution and the classifizat
updates. In this context, a high frequency of data acqaisitiimage can be measured over a sub-domain 2 x 7" using
is often required, leading usually to the use of coarse apafin® Squared Euclidean norm by
resolution time series. In the image processing literattire E,, = min||v, — 9|2, )
problem of change detection has been widely exploesd for
video applications) but some specific difficulties appeaal-de wherev,, is the CR time series restricted to the sub-domain
ing with remote sensed data. Indeed, illumination varmedjo w. An estimation of the mean valuesg(/) is then obtained
soil moisture, differences of sensor calibration betwega t through the minimal argument of the residual error.
dates, absence & priori information on expected changes At this stage, the main detection issue is the definition of an
or misregistration are factors to take into account, sin@ne a priori threshold on the residual errdz,,, in order to decide
after specific pre-processinge.d. radiometric or geometric between changes and no-changes. This threshold should be an
corrections) they usually persist partly. Moreover, if @hi appropriate combination of the residual erfy and the size
frequency of acquisition is mandatory for vegetation monaf the sub-domainu, since even without changes, larger sub-
toring, spatial resolution is also necessary in order t@t®c domains are expected to yield larger residual errors simeg t
objects of interest. As the remote sensed images dedicaitegblve more pixels.
to vegetation can not be acquired with both a high spatialIn section II-A, we build an a-contrario detection modelttha
resolution and a high temporal frequency, we choose highables to combine these parameters in a single probabilist
temporal frequency and try to detect subpixelic land-coveriterion allowing the detection of the most coherent sub-
changes, by comparing a coarse resolution (CR) time seriesdlomain with a given classification (that is, a given high-
a former high resolution (HR) reference classificationeled, resolution label map), controlling the expected number of
such a comparison allows to follow objects that are obséevalfalse alarms. The complementary of this sub-domain is then
in the HR classification but impossible to distinguish at eonsidered as the set of pixels about to represent changes.
coarse resolution. The classification is hence used as a mBRskformances resulting from a theoretical study of the rhode

I. INTRODUCTION



according to its main parameters are also mentionned. Sofree of parameters meanwhile ensuring less than one dmtecti
numerical issues are raised in Section |I-B and a stochadhig chance in a white noise image.

RANSAC algorithm is described. Finally, some results aee pr  From a theoretical point of view, an analysis of the detectio
sented for an agricultural site of the Danubian plain (Ruisanmodel was performed to understand the influence of the size
ADAM database). and the level of contrast of the data [7]. First, it has been
confirmed that the higher the time series contrast is, thiednig

is the coherence measure between a HR classification and a
A. a-contrario model CR time series (and any amount of changes can be detected if

The a-contrario detection (see [2], [3]) enables to computéhe data contrast is high enough). Moreover, for any giveelle
level of significance without modeling changes nor quairtfy Of contrast, any amount of changes can be detected as soon
the expected differences (noise, distortions, intringidabil- @S the the data size is large enough. As the contrast and the
ity, etc.),i.e. with very fewa priori information. It relies on the @mount of changes are typically presented as limiting facto

idea that a given structure is to be detected if its occugéma 1N the literature, these results offer promising possibsi for

very unlikely event according to a naive random model on tfB€ applicability of the proposed approach. _

data. In the context of change detection, this idea is paatity Using the coherence measure (3), the sub-domain of
interesting as changes cannot be reasonably modeled throfiganges can be seen as the complementary sub-domain of
a list of all possible changes (crop rotation, forest cuts §i€ one that maximizes the coherence between a given clas-

fires can occur on the Earth surface with various size afification and a CR time series (the one that minimizes the
radiometric intensities). Moreover, arpriori model of the no- VF'A value). Next section presents the algorithm used for

change surface is also physically difficult to define as termipo this research.
evolution profiles of different land-covers vary from a year

another and from a geographical area to another. Approac o
based on the comparison of temporal profiles from a year tofTom the coherence measure (3), a sub-domain is detected

another can be found in the literature [4]-[6], but they facd coherent with a given label map if it corresponds to the
the threshold choice issue we mentioned earlier. sub-domain that minimizes the value of theF"A. The latter

Following the general framework of a-contrario modelingl€Pends on the size of the CR image, the number of labels
let us assume as a naive modélyj that a CR image is a L the size of the considered sub-domain, the standard

random fieldV” of |©2] independent Gaussian centered variablé§viation of the naive modet and the cumulated quadratic
with a given variancer. Let us recall that the ambition of "€Sidue on this sub-domaifi,. All NF'A parameters can be
this model is not to reasonably model the data but rather @§t&ined directly from the data except the cumulated quidra
define a noise model against which we will detect significaffgSidue £, which depends on the class’ means, whichais

structures in the data. From there, we define the cohereféiPri unknown. It is hence necessary to estimate the mean
measure of a spatial sub-domainby characteristics of each class before being able to compute

the quadratic residues associated to a considered subidoma
NFA(w, Ey) =n(|w]) - Pry(Ey), (3) and then the corresponding NFA. The mean estimation and
the detection itself are two linked problems as the quality
of estimation has a strong impact on the performance of the

Il. PROPOSED CHANGE DETECTION METHOD

. N i
hBeS umerical aspects

wheren is a normalization term aniy, (E,,) represents the
probability of measuring as surprisingly small error by mba

on the sub-domaiw, that is, after computation detchqn. . I
' ' ! Practically, the algorithm takes a HR classification and a CR
1 E, /20° lwl-L time series as inputs and returns the sub-domaileading
P, (EL) = F(w—L)/O et = 7ldt, (4 1o the smallest value ofNF'A as an estimate of the most
2

unchanged domain. It is fully unsupervised as all pararaeter
where I' is the usual Euler function. The function is are obtained directly from the data. The algorithm is based o
chosen in order to ensure that the expected number of falsRANSAC strategydf. [8]) for pixel selection. This strategy
alarms remains as small as desired. Several choices are tisecombined with the a-contrario model to compose a robust
acceptable. In this study, it is set#o= \Q|(|‘S“.’2“) as this choice change detection method. Indeed, an empirical analysiseof t
enables to distribute the risk uniformly with respect to theobustness has shown that up7% of outliers g¢.g. change
domain size, and it guarantees an average number of faibeels) can be well detected. This performance is partitula
detections less thah This choice permits the comparison ohigh compared to the usual limitation threshold 25% or
sub-domains of various size. 30% for change pixels found in the literaturef.([9]). It shows

Let us remark that this measure depends on the sizetlét the method we present here is very robust to the amount
the considered sub-domain, on the number of labels in tbéchanges or outliers, confirming the asymptotic theoattic
classification and on the naive model variance. All thesesult mentioned Section II-A. Moreover, another emplrica
parameters are obtained directly from the data, except thealysis has shown that changes impacting more2bfzt of
variances? which can be chosen arbitrary. It has been set toCR pixel are detected with less tha% (median) of error
the empirical variance of the data series, leading to a moaeld that performances are stable with respect to the résolut



ratio (the impacting factor being the occupation rate withi but it does not permit to detect a spatio-temporal sub-domai
CR pixel). The algorithm in the case where a single CR imagince it does not take into account the whole time series. In

v is used is detailed in the following. practice, time series are rather used to analyse the tempora
« Assigno? to the CR image variance. evolution of intensities and to enable the detection ofispat
o Initialize §,,in[], NFA[] and NF A, ,;,, t0 +oo. temporal domains, which may be useful since changes can
« RepeatN times occur at some dates without impacting other ones.
1) draw a random set of L CR pixelsz, In this work, a vectorial approach is considered for the de-

2) estimate the label mean vecterfrom equations tection of a spatio-temporal sub-domain of changes, asgumi
that all images of the time series are accurately registered

v(z) = Zaz (), Denote7 the set of acquisition dates of a time series. The a-
! contrario detection model presented Section II-A can béyeas
defined forx € I, extended to time series, considering a spatio-temporal sub
3) computeE(z) = (v(z) — >, auly))?, for x € domainQ x 7. In this sectionw denote a spatio-temporal
Dgr, sub-domain of2 x 7. As a naive model, the CR time series
4) sortDgr iNto @ Vector(x;);<;<|pg,| DY increasing is assumed to be a random field (68| x |7| independent
error E(xz;). Gaussian random variables of zero-mean and variarfce
5) initialize § = 7 E(x;), From there, aVF A can be defined by
6) for each index € {L +1,...,|Dgrl|},
NFA(w, E,) = Py (EL), 5
— Set(5:5+E(ZL‘1), (w ) 77(|WD HU( ) ( )
— if § < minli] then wheren(|w|) = [2] x |7]( o/ 7) and
* setémm[i] =9, E. /202
* compute the correspondiny F'A[i] value, Pu (E.) = 1 / e —tplel=e o
« it NFA[i] < NFAp,, then o (B Dl ‘ ©

- SetNF A, = NFAJi

Concerning the choice of the variance of the naive model,
- setD = {xk}k:11

let us recall that, in the monotemporal case, taking the CR

+ end if image variance as the variance of the naive model was juktifie
- end if by the fact that nothing should be detected in a white noise
7) end for image. In the multitemporal case, setting the variance ef th
« end repeat naive model to the variance of the CR time series does not

The research of the minimurVFA has been optimized €nsure this property anymore as, in the case of high variance
remarking that, for a given image, théF A does not depend differences between dates within the time series, suchwe nai
directly on the sub-domain of interest but only of its model could detect noisy pixels as coherent. Hence, thefuse o
cardinal and, monotonously, on cumulated quadratic eoors this naive model can lead to the false detection of noisylpixe
w. Sorting the pixel values by increasing quadratic errorche OF o the complete validation of very different classificas.
enables to minimize théV F A over all |2|! sub-domains by To avoid the detection of irrelevant sub-domains, the isitgn
increasing onlyiQ2| sub-domains, with an overall complexityVa|Ues are normalized by the image variance within eachémag
0(19|log |2). and the variance of the naive model is setltoThis choice
Moreover, notice that the only parameter of the algorith@nables to give an equal weight to all images of the series.
is the number of iterationsN). Due to RANSAC strat- The multitemporal algorithm is very close to the monotem-
egy, convergence requires a very high number of iteratioR@ral one but the fact that time series may contain missing
(N = 100000 in the following experiments). However, thisdata at different locations for each date must be taken into
is not really a limiting factor as the computation time oficcount in the research of the sub-domain of changes. A
each iteration is very fast (for instancé)0, 000 iterations Simple possibility is to restrict the study to the set of ixaat
for change detection considering a HR classification of siZé€ validated for all dates but this might considerably oedu

256 x 256 and a CR image of sizé6 x 16 takes aboutios (he analysed domain. _ o
on a laptop). Instead, we propose to consider a restriction{bfx 7

to the set of valid pixels. More precisely, each pixel of the
I1l." A PPLICATION TO TIME SERIES spatial domain is considered as a vector whose coordinates
In the multitemporal case, different approaches may be chtuprrespond to each of its valid dates. This way, if a pixel is
sen depending whether the application requires the detectimpacted by some changes at a given date, it will be rejected
of a spatio-temporal sub-domain or a spatial sub-domain. Foom the whole series. In order to allow the comparison of
instance, a sequential approach can be considered, cangpasub-domains of different size for each date, the cumulated
the minimumN F A values obtained for each image separatelyesidues are normalized by the number of valid dates, lgadin
Such an approach could be used in order to find the imagetofa mean cumulated residue. From there, the same algorithm
a time series which is the most coherent with the classifinatias in Section II-B can be used.



Figure 1 shows the evolution of th€ F'A values obtained

IV. RESULTS

from a time series as a function of the number of labels chosen

for the HR classification. In this example, the HR classifarat
has been estimated in some way (see [7], [10] for details) fro
the whole time series8(images), for a number of classes
of 1 to 20. Comparing a part of this time series to the H
classification, we expect to valid the whole spatio-tempor
domain. Each curve presented Figure 1 corresponds to

value obtained of the time series from the fifstlates. Let us

remark that the use of one date alone does not permit to vakﬁ%
classifications while using any time series containing MOr&
than one date enables to valid the whole domain. Moreov
each curve shows a minimum value fo2 labels, meaning
that thel2 classes classification is the most coherent with t

The multitemporal detection algorithm takes a HR classifi-
cation and a CR time series as inputs, and returns the spatio-

I:Eemporal CR sub-domain which is the most coherent with the

5|R classification. In this section, some results obtainedgus
ual HR images (SPOT4) of the Danubian Plain (Rumania,
AM database) are presented, while the CR time series has
en simulated by averaging HR images on pixel blocks of
ze 15 x 15 (Figure 2 (b)). As no groundtruth on changes
ere available, a HR classification has been createdlfor
abels and using® HR actual images (Figure 2 (a)). The

ﬁzgange detection method applied to this classification had t

corresponding CR time series 8fdates enabled to validate

fime series. the whole domain except the dark pixel of Figure 2 (c).
We then introduced different changes artificially in the HR
classification. In Figure 2, changes were introduced in the

0 PRI ; ; — reference classification by replacing a random selection of
é*%ﬁ**ﬁ_"’*\kﬁ——kJrA—H—F‘F segments label with another existing label. Figure 2(d) to
-100 [ kK SKBK (f) presents several cases of such simulated changes and
Z _o00 | E’D%%**'*x%%%%ﬁém pixels detected as changes are presented in red in the CR
o B EER DD domain. On the same image, the bondary of each segment
S -300 EES! is traced in black, pixels corresponding to simulated clkang
o are represented in green and those that were already dktecte
S 7400 poy in (c) are in pink. The hint of segments enables to visuatize t
_500 | T=2 impact area of segments of interest within CR pixels. Change
%j é are well detected by the method, even when they impact a
-600 : : : : very small area of a CR pixel (Figure 2(a) and (c)). In order
0 5 10 15 20 to simulate the appearance of a new class, Figure 3(a) to (c)
Nombre de labels shows the results obtained using classification (a) modified
(@) NFA attribution of a new class to selected segments. Changes are
still well detected, except in figure 3(a) and (b) where onelpi
‘ ‘ ‘ ‘ (in the middle of the bottom line) has been overdetecteds Thi
~ 100 | CRREMKIERESER RS SRSEHKEE | last overdetection is probably due to the fact a minorityssla
* has been modified to simulate a change, leaving very few or
g 80 | no occurence of the same class.
A 60 | In order to consider some other type of changes, let us con-
g | sider the HR Classification Figure 3 (a) and the correspandin
o 40 b | CR image Figure 3 (b) where changes have been simulated
£ T=1 —— (see in the white area Figure (c)). The method applied to
g 20 | T=2 Figures (a) and (b) enabled to detect all red pixels Figuye (c
) T=3 k- Pink pixels correspond to pixels that were already detected
0r T=4 [ . ; .
: : : : before the simulation of changes in (b).
0 5 10 15 20

Nombre de labels
(b) Coherent sub-domair)

An important aspect of this method is the resolution ratio
between HR and CR. The comparison of the results presented
Figure 4 shows the robustness of the method with respect to
the resolution ratio. Indeed, in a monotemporal contex, th

Fig. 1. Results obtained using the fifstates of the time series (figure 2 (b)) change detection method has been applied for the validation

and a classification realized using the whole time seriess (@étes) forl to i ~ati i i
20 classes. Théog,,(NFA) value (a) and the relative size (b) of the mostOf the classification shown on Figure 3 (a) from a CR image

coherent sub-domain are plotted in function of the number a$ses. Each Obtained by averaging HR images by blocks of size: 5
curve corresponds to the results obtained for a given saifsbe time series  (Figure 4(a)),15 x 15 (Figure 4(b)) and0 x 50 (Figure 4(c)).

(first T' dates). All HR cla_ssifications are validated as soon as at fedates In these three cases, about% of the pixels are detected.

are used, but not for a single date. . . .
Let us remark that the spatial location of the detected pixel
as non-coherent (in red) is stable, showing the good robastn
of the method with respect to the resolution ratio.



(a) classification
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(b) Modified CR image

(e) 3 changes (f) 4 changes Fig. 3. Detection of changes introduced in the CR image (bjesponding
to the HR classification (a) : detected changes are repegbénted Figure (c)

Fig. 2. Results obtained for changes introduced in the ifiestion by a and the boundary of introduced changes is represented ite whihe same
random sort of3, 4 or 5 segments, and a new label for the sorted segmenigiage. Changes concebm6% of the CR pixels an®6.2% of the image had
The label is sorted betweehand L. Changes that have been simulated irbeen validated before introducing changes. Detected pb@hcerns39.3%
the classification are represented in yellow when they atectid, green of the pixels, which is close to the expected.7%.
otherwise. Detected pixels that do not correspond to ctaage represented
in pink if they were already detected before the simulationcbfinges
(cf. (c)) and in red otherwise. Globally, remark that simulatednges are
well detected even when they impact a weak proportion of a G&l.pDn
Figure (c), a missed detection can be observed (top rightréarg. been proposed. This extension takes into account the fact a

time series often shows high variabilities between two slate

This new model enables the development of a fully unsu-
V. CONCLUSION pervised method for subpixelic change detection. The tzsul

In this paper, an a-contrario model has been proposed ﬂprtained using pseudo-actual data showed very good perfor-

subpixelic change detection in land-cover coarse regmiuti™ance and robustness to the resolution ratio used. However,
ther validation on actual time series with known changes

time series, by defining a coherence measure of an image il to b ; 4. in ord | . icutar
domain according to the knowledge of a high resolution cla8f® still to be performed, in order to analyse in particuts t

sification at a reference date. The model provides an ekpliﬁPnS't'V'ty of the modlel to m|§reg|strat|on errors and theot
function combining all detection parameters into a singleel dePartures from the linear mixture model.
of coherence, thus yielding an unsupervised detectionadeth Moreover, this approach is based on the assumption of
A stochastic algorithm using a RANSAC strategy has algmerfect image registration. Further work should focus on a
been described in the monotemporal case. registration sensitivity analysis as, in reality, regsn is

In the multitemporal case, the problem of missing data hast perfect and the use of time series misregistred timeseri
been discussed and an adapted extension of the algorihm \wasld lead to cumulated errors.
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Fig. 4. Change detection using the HR classification of EigRi(a) and a
CR image with a resolution ratia\)) of 5 x 5, 15 x 15, 30 x 30 and50 x 50.
Detected pixels are presented in red, superimposed on then@gei used.
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