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Abstract—In this paper, we present a new method for sub-
pixelic land-cover change detection using coarse resolution time
series, as they offer a high time-repetitiveness of acquisition.
Changes are detected by analyzing the coherence between a
coarse resolution time series and a high resolution classification
as a description of the land-cover state at the date of reference.
To that aim, an a-contrario model is derived, leading to the
definition of a probabilistic coherence criterion free of parameter
and free of any a priori information. This measure is the core of
a stochastic algorithm that selects automatically the image sub-
domain representing the most likely changes. Some particular
problems related to the use of time series are discussed, such as
the potential high variability of a time series or the problem of
missing data. Some experiments are then presented on pseudo-
actual data, showing a good performance for change detection
and a high robustness to the considered resolution ratio (between
the high resolution classification and the coarse resolution time
series).

I. I NTRODUCTION

In this paper, we focus on the problem of change detection
for applications such as vegetation monitoring or classification
updates. In this context, a high frequency of data acquisition
is often required, leading usually to the use of coarse spatial
resolution time series. In the image processing literature, the
problem of change detection has been widely explored (e.g. for
video applications) but some specific difficulties appear deal-
ing with remote sensed data. Indeed, illumination variations,
soil moisture, differences of sensor calibration between two
dates, absence ofa priori information on expected changes
or misregistration are factors to take into account, since even
after specific pre-processing (e.g. radiometric or geometric
corrections) they usually persist partly. Moreover, if a high
frequency of acquisition is mandatory for vegetation moni-
toring, spatial resolution is also necessary in order to locate
objects of interest. As the remote sensed images dedicated
to vegetation can not be acquired with both a high spatial
resolution and a high temporal frequency, we choose high
temporal frequency and try to detect subpixelic land-cover
changes, by comparing a coarse resolution (CR) time series to
a former high resolution (HR) reference classification. Indeed,
such a comparison allows to follow objects that are observable
in the HR classification but impossible to distinguish at a
coarse resolution. The classification is hence used as a mask

enabling to study the coherence between the time series and
the classification.

According to the linear mixture model (cf. [1]), the expec-
tation of the measurement performed over a mixed pixel is the
average of the measure corresponding to each class weighted
by its occupation rate in the pixel. The value observed within
a CR pixelx at a datet can hence be estimated by

v̂(x, t) =
∑

l

αl(x)µl(t), (1)

where αl(x) denotes the relative area of the CR pixelx

occupied by the labell (by construction,
∑

l∈L αl(x) = 1)
andµl(t) represents the average intensity characterizing each
label at datet. As the problem we consider assumes that a
HR classification is given at the date of reference, the class
proportionsαl(x) are known.

Let Ω denote the image domain,T the set of acquisition
dates, andω a spatio-temporal sub-domain ofΩ×T . The mini-
mal residual error between observations and the reconstruction
obtained from a given label distribution and the classification
image can be measured over a sub-domainω ⊂ Ω × T using
the squared Euclidean norm by

Eω = min
µ

||vω − v̂ω||
2

2, (2)

wherevω is the CR time series restricted to the sub-domain
ω. An estimation of the mean valuesµt(l) is then obtained
through the minimal argument of the residual error.

At this stage, the main detection issue is the definition of an
a priori threshold on the residual errorEω, in order to decide
between changes and no-changes. This threshold should be an
appropriate combination of the residual errorEω and the size
of the sub-domainω, since even without changes, larger sub-
domains are expected to yield larger residual errors since they
involve more pixels.

In section II-A, we build an a-contrario detection model that
enables to combine these parameters in a single probabilistic
criterion allowing the detection of the most coherent sub-
domain with a given classification (that is, a given high-
resolution label map), controlling the expected number of
false alarms. The complementary of this sub-domain is then
considered as the set of pixels about to represent changes.
Performances resulting from a theoretical study of the model



according to its main parameters are also mentionned. Some
numerical issues are raised in Section II-B and a stochastic
RANSAC algorithm is described. Finally, some results are pre-
sented for an agricultural site of the Danubian plain (Rumania,
ADAM database).

II. PROPOSED CHANGE DETECTION METHOD

A. a-contrario model

The a-contrario detection (see [2], [3]) enables to computea
level of significance without modeling changes nor quantifying
the expected differences (noise, distortions, intrinsic variabil-
ity, etc.),i.e. with very fewa priori information. It relies on the
idea that a given structure is to be detected if its occurrence is a
very unlikely event according to a naive random model on the
data. In the context of change detection, this idea is particularly
interesting as changes cannot be reasonably modeled through
a list of all possible changes (crop rotation, forest cuts or
fires can occur on the Earth surface with various size and
radiometric intensities). Moreover, ana priori model of the no-
change surface is also physically difficult to define as temporal
evolution profiles of different land-covers vary from a yearto
another and from a geographical area to another. Approaches
based on the comparison of temporal profiles from a year to
another can be found in the literature [4]–[6], but they face
the threshold choice issue we mentioned earlier.

Following the general framework of a-contrario modeling,
let us assume as a naive model (H0) that a CR imagev is a
random fieldV of |Ω| independent Gaussian centered variables
with a given varianceσ2. Let us recall that the ambition of
this model is not to reasonably model the data but rather to
define a noise model against which we will detect significant
structures in the data. From there, we define the coherence
measure of a spatial sub-domainω by

NFA(ω,Eω) = η(|ω|) · PH0
(Eω), (3)

whereη is a normalization term andPH0
(Eω) represents the

probability of measuring as surprisingly small error by chance
on the sub-domainω, that is, after computation,

PH0
(Eω) =

1

Γ( |ω|−L
2

)

∫ Eω/2σ2

0

e−tt
|ω|−L

2
−1dt, (4)

where Γ is the usual Euler function. The functionη is
chosen in order to ensure that the expected number of false
alarms remains as small as desired. Several choices are then
acceptable. In this study, it is set toη = |Ω|

(

|ω|
|Ω|

)

as this choice
enables to distribute the risk uniformly with respect to the
domain size, and it guarantees an average number of false
detections less than1. This choice permits the comparison of
sub-domains of various size.

Let us remark that this measure depends on the size of
the considered sub-domain, on the number of labels in the
classification and on the naive model variance. All these
parameters are obtained directly from the data, except the
varianceσ2 which can be chosen arbitrary. It has been set to
the empirical variance of the data series, leading to a model

free of parameters meanwhile ensuring less than one detection
by chance in a white noise image.

From a theoretical point of view, an analysis of the detection
model was performed to understand the influence of the size
and the level of contrast of the data [7]. First, it has been
confirmed that the higher the time series contrast is, the higher
is the coherence measure between a HR classification and a
CR time series (and any amount of changes can be detected if
the data contrast is high enough). Moreover, for any given level
of contrast, any amount of changes can be detected as soon
as the the data size is large enough. As the contrast and the
amount of changes are typically presented as limiting factors
in the literature, these results offer promising possibilities for
the applicability of the proposed approach.

Using the coherence measure (3), the sub-domain of
changes can be seen as the complementary sub-domain of
the one that maximizes the coherence between a given clas-
sification and a CR time series (the one that minimizes the
NFA value). Next section presents the algorithm used for
this research.

B. Numerical aspects

From the coherence measure (3), a sub-domain is detected
as coherent with a given label map if it corresponds to the
sub-domain that minimizes the value of theNFA. The latter
depends on the size of the CR image, the number of labels
L, the size of the considered sub-domain|w|, the standard
deviation of the naive modelσ and the cumulated quadratic
residue on this sub-domainEω. All NFA parameters can be
obtained directly from the data except the cumulated quadratic
residueEω which depends on the class’ means, which isa
priori unknown. It is hence necessary to estimate the mean
characteristics of each class before being able to compute
the quadratic residues associated to a considered sub-domain
and then the corresponding NFA. The mean estimation and
the detection itself are two linked problems as the quality
of estimation has a strong impact on the performance of the
detection.

Practically, the algorithm takes a HR classification and a CR
time series as inputs and returns the sub-domainω leading
to the smallest value ofNFA as an estimate of the most
unchanged domain. It is fully unsupervised as all parameters
are obtained directly from the data. The algorithm is based on
a RANSAC strategy (cf. [8]) for pixel selection. This strategy
is combined with the a-contrario model to compose a robust
change detection method. Indeed, an empirical analysis of the
robustness has shown that up to75% of outliers (e.g. change
pixels) can be well detected. This performance is particularly
high compared to the usual limitation threshold of25% or
30% for change pixels found in the literature (cf. [9]). It shows
that the method we present here is very robust to the amount
of changes or outliers, confirming the asymptotic theoretical
result mentioned Section II-A. Moreover, another empirical
analysis has shown that changes impacting more that20% of
a CR pixel are detected with less than3% (median) of error
and that performances are stable with respect to the resolution



ratio (the impacting factor being the occupation rate within a
CR pixel). The algorithm in the case where a single CR image
v is used is detailed in the following.

• Assignσ2 to the CR image variance.
• Initialize δmin[], NFA[] andNFAmin to +∞.
• RepeatN times

1) draw a random setI of L CR pixelsx,
2) estimate the label mean vectorµ from equations

v(x) =
∑

l

αl(x)µl,

defined forx ∈ I,
3) computeE(x) = (v(x) −

∑

l αl(y)µl)
2, for x ∈

DBR,
4) sortDBR into a vector(xi)1≤i≤|DBR| by increasing

error E(xi).
5) initialize δ =

∑L
i=0

E(xi),
6) for each indexi ∈ {L + 1, . . . , |DBR|},

– setδ = δ + E(xi),
– if δ < δmin[i] then

∗ setδmin[i] = δ,
∗ compute the correspondingNFA[i] value,
∗ if NFA[i] ≤ NFAmin, then

· setNFAmin = NFA[i]
· setD = {xk}k=1..i

∗ end if
– end if

7) end for
• end repeat

The research of the minimumNFA has been optimized
remarking that, for a given image, theNFA does not depend
directly on the sub-domain of interestω but only of its
cardinal and, monotonously, on cumulated quadratic errorson
ω. Sorting the pixel values by increasing quadratic errors hence
enables to minimize theNFA over all |Ω|! sub-domains by
increasing only|Ω| sub-domains, with an overall complexity
O(|Ω| log |Ω|).

Moreover, notice that the only parameter of the algorithm
is the number of iterations (N ). Due to RANSAC strat-
egy, convergence requires a very high number of iterations
(N = 100 000 in the following experiments). However, this
is not really a limiting factor as the computation time of
each iteration is very fast (for instance,100, 000 iterations
for change detection considering a HR classification of size
256 × 256 and a CR image of size16 × 16 takes about10s
on a laptop).

III. A PPLICATION TO TIME SERIES

In the multitemporal case, different approaches may be cho-
sen depending whether the application requires the detection
of a spatio-temporal sub-domain or a spatial sub-domain. For
instance, a sequential approach can be considered, comparing
the minimumNFA values obtained for each image separately.
Such an approach could be used in order to find the image of
a time series which is the most coherent with the classification

but it does not permit to detect a spatio-temporal sub-domain
since it does not take into account the whole time series. In
practice, time series are rather used to analyse the temporal
evolution of intensities and to enable the detection of spatio-
temporal domains, which may be useful since changes can
occur at some dates without impacting other ones.

In this work, a vectorial approach is considered for the de-
tection of a spatio-temporal sub-domain of changes, assuming
that all images of the time series are accurately registered.
DenoteT the set of acquisition dates of a time series. The a-
contrario detection model presented Section II-A can be easily
extended to time series, considering a spatio-temporal sub-
domain Ω × T . In this section,ω denote a spatio-temporal
sub-domain ofΩ × T . As a naive model, the CR time series
is assumed to be a random field of|Ω| × |T | independent
Gaussian random variables of zero-mean and varianceσ2.
From there, aNFA can be defined by

NFA(ω,Eω) = η(|ω|) · PH0
(Eω), (5)

whereη(|ω|) = |Ω| × |T |
(

|ω|
|Ω|×|T |

)

and

PH0
(Eω) =

1

Γ( |ω|−L×T
2

)

∫ Eω/2σ2

0

e−tt
|ω|−L×T

2
−1dt. (6)

Concerning the choice of the variance of the naive model,
let us recall that, in the monotemporal case, taking the CR
image variance as the variance of the naive model was justified
by the fact that nothing should be detected in a white noise
image. In the multitemporal case, setting the variance of the
naive model to the variance of the CR time series does not
ensure this property anymore as, in the case of high variance
differences between dates within the time series, such a naive
model could detect noisy pixels as coherent. Hence, the use of
this naive model can lead to the false detection of noisy pixels
or to the complete validation of very different classifications.
To avoid the detection of irrelevant sub-domains, the intensity
values are normalized by the image variance within each image
and the variance of the naive model is set to1. This choice
enables to give an equal weight to all images of the series.

The multitemporal algorithm is very close to the monotem-
poral one but the fact that time series may contain missing
data at different locations for each date must be taken into
account in the research of the sub-domain of changes. A
simple possibility is to restrict the study to the set of pixels that
are validated for all dates but this might considerably reduce
the analysed domain.

Instead, we propose to consider a restriction ofΩ × T
to the set of valid pixels. More precisely, each pixel of the
spatial domain is considered as a vector whose coordinates
correspond to each of its valid dates. This way, if a pixel is
impacted by some changes at a given date, it will be rejected
from the whole series. In order to allow the comparison of
sub-domains of different size for each date, the cumulated
residues are normalized by the number of valid dates, leading
to a mean cumulated residue. From there, the same algorithm
as in Section II-B can be used.



Figure 1 shows the evolution of theNFA values obtained
from a time series as a function of the number of labels chosen
for the HR classification. In this example, the HR classification
has been estimated in some way (see [7], [10] for details) from
the whole time series (8 images), for a number of classes
of 1 to 20. Comparing a part of this time series to the HR
classification, we expect to valid the whole spatio-temporal
domain. Each curve presented Figure 1 corresponds to the
value obtained of the time series from the firstT dates. Let us
remark that the use of one date alone does not permit to valid
classifications while using any time series containing more
than one date enables to valid the whole domain. Moreover,
each curve shows a minimum value for12 labels, meaning
that the12 classes classification is the most coherent with the
time series.
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Fig. 1. Results obtained using the firstT dates of the time series (figure 2 (b))
and a classification realized using the whole time series (of8 dates) for1 to
20 classes. Thelog

10
(NFA) value (a) and the relative size (b) of the most

coherent sub-domain are plotted in function of the number of classes. Each
curve corresponds to the results obtained for a given subsetof the time series
(first T dates). All HR classifications are validated as soon as at least 2 dates
are used, but not for a single date.

IV. RESULTS

The multitemporal detection algorithm takes a HR classifi-
cation and a CR time series as inputs, and returns the spatio-
temporal CR sub-domain which is the most coherent with the
HR classification. In this section, some results obtained using
actual HR images (SPOT4) of the Danubian Plain (Rumania,
ADAM database) are presented, while the CR time series has
been simulated by averaging HR images on pixel blocks of
size 15 × 15 (Figure 2 (b)). As no groundtruth on changes
were available, a HR classification has been created for10
labels and using8 HR actual images (Figure 2 (a)). The
change detection method applied to this classification and the
corresponding CR time series of8 dates enabled to validate
the whole domain except the dark pixel of Figure 2 (c).
We then introduced different changes artificially in the HR
classification. In Figure 2, changes were introduced in the
reference classification by replacing a random selection of
segments label with another existing label. Figure 2(d) to
(f) presents several cases of such simulated changes and
pixels detected as changes are presented in red in the CR
domain. On the same image, the bondary of each segment
is traced in black, pixels corresponding to simulated changes
are represented in green and those that were already detected
in (c) are in pink. The hint of segments enables to visualize the
impact area of segments of interest within CR pixels. Changes
are well detected by the method, even when they impact a
very small area of a CR pixel (Figure 2(a) and (c)). In order
to simulate the appearance of a new class, Figure 3(a) to (c)
shows the results obtained using classification (a) modifiedby
attribution of a new class to selected segments. Changes are
still well detected, except in figure 3(a) and (b) where one pixel
(in the middle of the bottom line) has been overdetected. This
last overdetection is probably due to the fact a minority class
has been modified to simulate a change, leaving very few or
no occurence of the same class.

In order to consider some other type of changes, let us con-
sider the HR Classification Figure 3 (a) and the corresponding
CR image Figure 3 (b) where changes have been simulated
(see in the white area Figure (c)). The method applied to
Figures (a) and (b) enabled to detect all red pixels Figure (c).
Pink pixels correspond to pixels that were already detected
before the simulation of changes in (b).

An important aspect of this method is the resolution ratio
between HR and CR. The comparison of the results presented
Figure 4 shows the robustness of the method with respect to
the resolution ratio. Indeed, in a monotemporal context, the
change detection method has been applied for the validation
of the classification shown on Figure 3 (a) from a CR image
obtained by averaging HR images by blocks of size5 × 5
(Figure 4(a)),15×15 (Figure 4(b)) and50×50 (Figure 4(c)).
In these three cases, about4.5% of the pixels are detected.
Let us remark that the spatial location of the detected pixels
as non-coherent (in red) is stable, showing the good robustness
of the method with respect to the resolution ratio.



(a) classification (b) CR time series

(c) Detected changes (d) 2 changes

(e) 3 changes (f) 4 changes

Fig. 2. Results obtained for changes introduced in the classification by a
random sort of3, 4 or 5 segments, and a new label for the sorted segments.
The label is sorted between1 and L. Changes that have been simulated in
the classification are represented in yellow when they are detected, green
otherwise. Detected pixels that do not correspond to changes are represented
in pink if they were already detected before the simulation ofchanges
(cf. (c)) and in red otherwise. Globally, remark that simulated changes are
well detected even when they impact a weak proportion of a CR pixel. On
Figure (c), a missed detection can be observed (top right, in green).

V. CONCLUSION

In this paper, an a-contrario model has been proposed for
subpixelic change detection in land-cover coarse resolution
time series, by defining a coherence measure of an image sub-
domain according to the knowledge of a high resolution clas-
sification at a reference date. The model provides an explicit
function combining all detection parameters into a single level
of coherence, thus yielding an unsupervised detection method.
A stochastic algorithm using a RANSAC strategy has also
been described in the monotemporal case.

In the multitemporal case, the problem of missing data has
been discussed and an adapted extension of the algorihm has

(a) classification

(b) Modified CR image (c) Detected changes

Fig. 3. Detection of changes introduced in the CR image (b) corresponding
to the HR classification (a) : detected changes are represented in red Figure (c)
and the boundary of introduced changes is represented in white in the same
image. Changes concern5.46% of the CR pixels and96.2% of the image had
been validated before introducing changes. Detected pixels concerns89.3%
of the pixels, which is close to the expected90.7%.

been proposed. This extension takes into account the fact a
time series often shows high variabilities between two dates.

This new model enables the development of a fully unsu-
pervised method for subpixelic change detection. The results
obtained using pseudo-actual data showed very good perfor-
mance and robustness to the resolution ratio used. However,
further validation on actual time series with known changes
are still to be performed, in order to analyse in particular the
sensitivity of the model to misregistration errors and to other
departures from the linear mixture model.

Moreover, this approach is based on the assumption of
perfect image registration. Further work should focus on a
registration sensitivity analysis as, in reality, registration is
not perfect and the use of time series misregistred time series
would lead to cumulated errors.



(a) N = 5 (b) N = 15

(c) N = 30 (d) N = 50

Fig. 4. Change detection using the HR classification of Figure 3 (a) and a
CR image with a resolution ratio (N ) of 5×5, 15×15, 30×30 and50×50.
Detected pixels are presented in red, superimposed on the CR image used.
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