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Abstract - Land cover classification requires both temporal and
spatial information. Indeed, vegetation temporal evolution is
necessary to discriminate the different land cover types. This
information can be derived from coarse resolution sensors such
as MERIS (300×300m2 pixel size), or SPOT/VGT (1km2 pixel
size), whereas high resolution images, such as SPOT4/HRV ones
(20×20m2 pixel size), contain the required spatial information.
In this paper, a new method is proposed to perform an efficient
land cover classification using these two kinds of remote sens-
ing data. This method is based on Bayesian theory and on the
linear mixture model permitting, through a simulated anneal-
ing algorithm, to perform a high resolution classification from
a coarse resolution time series.
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olution, mixture model, multitemporal series

1. INTRODUCTION

Nowadays, agricultural surveys, forest or environmental monitor-
ing, natural resources management use widely remote sensing data.
Land cover classification provides essential information for studies
on geosphere-biosphere-atmosphere interaction, analysis of global
change and weather forecasting. Indeed, vegetation characteristics
have an important impact on surface processes involved in the wa-
ter or energy exchanges. The advent of remote sensing science pro-
vides a powerful tool for land cover monitoring and information
extraction. Satellite sensors providing more and more data and in-
formation, automatic tools are worth for operational approaches in
both environmental researches and management activities.
For vegetation monitoring (and in particular agricultural applica-
tions), the time evolution is one of the most discriminating criteria.
Hence, land cover classification requires high temporal frequency
information. Nowadays, mainly two kinds of imaging sensors are
used for these applications: sensors with a high spatial resolution
(e.g. SPOT 4, 1 pixel for20m × 20m) but a monthly temporal
acquisition frequency, and sensors with a medium or coarse spatial
resolution (e.g. MERIS, 1 pixel for300m× 300m, or SPOT-VGT,
1 pixel for 1km2) but daily or so temporal acquisition frequency.
These sensors are multispectral and hence provide useful informa-
tion for vegetation studies. One of the key challenge for automatic
land cover classification is the combination of information from dif-
ferent resolutions to have both a high discrimination between land
cover types and accurate spatial information.
In the remote sensing litterature, numbers of methods have been re-
ported for image fusion. For example, during these last two decades,
research studies have been devoted to the problem of reconstructing
a HR image from multiple undersampled frames [1]. A possible ap-

proach, rather time consuming, consists in deriving multitemporal
high spatial resolution (HR) series from coarse resolution (CR) one
with a data fusion method (e.g.[2]), and then performing classifi-
cation from this reconstructed HR series. Here, we directly solve
the HR/CR classification problem.
In this paper, we propose a Bayesian approach for both supervised
and unsupervised algorithm based on the linear mixture model.
Section 2 presents the classification method: having formulated the
problem and stated the coarse resolution model, the classification
model is deduced and the simulated annealing algorithm used for
unsupervised as for supervised classification is described. As an
illustration of the performance of the approach, some results ob-
tained processing SPOT data are commented in Section 3 before
Section 4 gathers the main lines of the paper as a conclusion.

2. CLASSIFICATION METHOD

The approach we propose here is based on the assumption that the
scene geometry is stationary during the considered period. This
is realistic for a time period such as one agricultural year. Spatial
information can then be extracted at any time of the periode.g.pro-
cessing a segmentation of one HR image. Classification will then
be obtained by labellizing all segments according to time series in-
formation. We assume CR signal can be expressed according to the
HR segmentation using the linear mixture model. In a Bayesian
context, assuming the image signal follows a Gaussian law con-
ditionnally to classes, we define an energy corresponding to the
maximuma posteriori probability of a labellisation knowing the
observation. Optimization process necessary to obtain the solution
is performed using the simulated annealing technique.

2.1. Problem formulation

Classical Bayesian approach for HR classification assumes that the
data imageu : Ω → R is a realisation of a random field̃u on do-
mainΩ, that comes from a realisationl : Ω → L of a random field
l̃, whereL = {1, ..., c, ...|L|} is the set of all possible labels (re-
lated to the land cover types). Then, the classification problem con-
sists in the estimation of the non observed realisationl of the field
l̃ from the observed noisy datau, realisation of̃u. Assuming̃l is a
Markov Random Field, the prior probability ofl can be expressed
and the probability ofu conditionally tol comes from the knowl-
edge of the class statistics (e.g. Gaussian distribution). Therefore
the a posterioridistributionP(l̃ = l | ũ = u) can be expressed
and the classification solution obtained using an optimization tech-
nique [3].
Whereas high resolution pixel interactions led to spatial regularity
in the HR model, pixel spatial interactions cannot reasonnably be
considered in the case of CR data such as SPOT-VGT or MERIS



(such pixels represent a surface from300m × 300m to 1km ×
1km). Moreover, in the case of agricultural areas, most spatial in-
formation is the geometry of the cadaster that can be considered
as constant during the agricultural year. Consequently, assuming
at least one HR image is available during the agricultural year, we
propose to decompose the multi-resolution classification problem
into two successive problems: the segmentation of the scene and
its labellisation, which aims at giving to each segment a label cor-
responding to its type of vegetation (e.g. 1 for ’corn’, 2 for ’for-
est’,etc.). Since the segmentation problem we consider is rather
classical (segmentation of one HR image), we refer to the Mum-
ford and Shah variational method [4]. In the following, we focus
on the labellization of each segment of the HR segmentation.

2.2. Coarse resolution model

Let Ω′ be the CR domain andv = (v0, ..., v|T |) a CR time series.
For all datet in the set of available datesT , assume the CR image
vt : Ω′ → R is a realisation of a random field̃vt. Assuming a CR
image corresponds to the average of apseudo- HR image, thelin-
ear mixture modelyields that the esperance of the observation mea-
surement performed over a mixed pixel is the weighted average of
the observation measurement that could have been performed over
pure pixelrepresenting each land cover type. This, so called,lin-
ear mixture modelhas been widely used for extracting information
from remotely sensed images containing mainly mixed pixels, as
well for mixed pixel’s proportion estimation [5] as for class feature
estimation [6]. It has been validated for reflectance measurements,
and is verified by definition for fractional cover measurement. The
measurement observed in a CR pixely can then be expressed as

vt(y) =
1

N

X
c∈L

X
x ⊂ y
lx = c

ut(x), (1)

wherex is a HR pixel (x ⊂ y is the set of all HR pixels contained
in the CR pixely), lx denotes the label of the HR pixelx andN is
the number of HR pixels contained in a CR pixel (resolution ratio).
Assume HR imageut is the realisation of a Gaussian random field
ũ of meanµt

c and variance(σt
c)

2. A mixture of Gaussian laws be-
ing Gaussian, CR pixel values follow a Gaussian law of mean and
variance depending on the class mixture within the CR pixel. More
precisely, the valuevt(y) observed in a pixely ∈ Ω′ at a datet is
a realisation of the random variablẽvt(y) ∼ N (µt

y, (σt
y)2) where

µt
y represents the pixely’s mean and(σt

y)2 its variance. Let us
model these parameters according to their class mixture. For each
pixel y of the CR domainΩ′, let us denote byαc(y) the relative
area in the CR pixely occupied by the labelc. That is, writing
Nc(y) the number of HR pixels labelledc within the CR pixely,
the proportion of classc within y is αc(y) = Nc(y)/N and, by
definition,

P
c∈L αc(y) = 1. In this study, as labels are unknown,

let us relate segment and class mixture. For each CR pixely, let us
denote byβk(y) the relative area of a segmentk within y. The pro-
portion of classc in a pixely is equal to the sum of the proportions
of all segmentsk labelled byc within y, i.e

αc(y) =
X

k ∈ S
lk = c

βk(y) , (2)

whereS denotes the number of segments contained in the segmen-
tation andlk represents the label of the segmentk.

For all datet and pixely, the mean

µt
y =

X
c∈L

αc(y)µt
c =

X
c∈L

X
k ∈ S
lk = c

βk(y)µt
c. (3)

As the measurement observed in a CR pixel (1) can also be written

vt(y) =
X
c∈L

αc(y)
X

x ⊂ y
lx = c

ut(x)

Nc(y)
, (4)

the variance is computed using the variance expression for Gaus-
sian mixture and hence, for each datet and pixely, it writes

(σt
y)2 =

X
c∈L

α2
c(y)Nc(y)(

1

Nc(y)
)2(σt

c)
2 (5)

=
1

N
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c∈L

αc(y)(σt
c)

2 (6)

=
1

N

X
c∈L

X
k ∈ S
lk = c

βk(y)(σt
c)

2. (7)

Now the coarse resolution model is set up, let us define theoptimal
labellisation corresponding to an observationv.

2.3. labellisation model

Consider̄l = (l̄1, ..., l̄|S|) ∈ L|S| the labels’vector of the segments
indexed byk = (1, ..., |S|). We are looking for theoptimal la-
bellisation of the random field̃l knowing the coarse resolution ob-
servationv. According to Gaussian hypothesis and notations from
section 2.2, the probability of observing a seriesv in the CR pixel
y, conditionally to the labellisationl,

P(v(y) | l̃ = l) =
Y
t∈T

1

σt
y

√
2π

exp

„
−

(vt(y)− µt
y)2

2σt
y
2

«
, (8)

with µt
y andσt

y respectively given by (3) and (5), assuming condi-
tionnal independance of̃vt|l̃. Thea posterioridistributionP(l̃ =

l | ṽt = v) = (P(vt|l̃ = l)P(l))/P(vt). Notice thatP(vt) is
a constant for the considered problem, and the priorP(l) is also
considered as constant (equiprobability ofl) in absence of more in-
formation and spatial interaction modelling. Therefore, for a fixed
datet, the maximuma posterioriis the labellisation vector̄l solu-
tion of the problem

min
{l∈L|S|}

X
y∈Ω′

 `
vt(y)− µt

y

´2
(σt

y)2
+ ln (σt

y)2
!

. (9)

Considering time series, the mean vector writesµy = (µt
y)t∈T for

all pixel y and, assuming all dates are independant, the covariance
matrix Σy is diagonal with diagonal values( (σt

y)2 )t∈T . Hence,
(9) becomes

min
{l∈L|S|}

X
y∈Ω′

`t(v(y)− µy)Σ−1
y (v(y)− µy) + ln (det(Σy))

´
.

(10)
From this energy, we propose, on the one hand, a supervised al-
gorithm leading to a solution of (10) and, on the other hand, an
unsupervised algorithm solving a simplyfied problem. Indeed, if
class features (mean and variance) are knowna priori, a solution



of (10) can be derived using a global optimization process. In prac-
tice, class features are generally unknown: they depend on the ac-
quisition date, local vegetation growing process, the atmospheric
conditions, etc. Therefore, unsupervised classification method can
be more appropriate. However, if class means can be estimated
during the minimization process (as explained in the following sec-
tion), class variances estimation is much more sensitive and time-
consuming. Hence, according to some robustness criteria, the unsu-
pervised approach we propose assumes equal class variances rather
than inaccurate estimated ones. This assumption leads, from (6), to
constant variances for all pixely and (10) simplifies as

min
{l∈L|S|}

X
y∈Ω′

X
t∈T

`
vt(y)− µt

y

´2
. (11)

An algorithm of simulated annealing type is described in the next
section as an optimisation process for both the supervised and un-
supervised method.

2.4. Algorithm

Because of the size of the solution space, a systematic search of
the minimum is impossible. As no heuristic seems justified for this
problem, we chose a simulated annealing algorithm. It has been
widely used for different optimization problems [7]. As far as the
unsupervised approach is concerned, the algorithm takes as inputs a
HR segmentation, a CR time series of the same scene and the num-
ber of labels required. It returns the labellisation solution of (11)
and the class features. For sake of simplicity, denoteEl the global
energy to minimize in (11). It stands for the energy corresponding
to a labellizationl. Each step of the algorithm changes randomly
one segment label in the labellisation and test whether it makes the
energy decreasing or not. DenoteElprev the energy correponding
to the previous labellization. The algorithm is the following.

Compute proportions(βk(y))y,k for all pixel y.
Initialize randomly the labellisation.
Estimate label’s mean (linear regression).
Initialize temperatureT0 to the graph’s diameter.
While a label is not rejectednr × |S| times successively, do

for i = 0 to |S|
select randomly a segmentk and a labelc for this segment,
re-estimate label’s means,
compute∆E = El − Elprev

if ∆E ≤ 0 accept the label change,
else reject it with a probabilityexp (−∆E/T ).

T = (q)nT0 wheren is the number of done iterations.

Theroretically, the temperature descent must be logarithmic to lead
to convergence but empirically, settingnr = 400 andq = 0.999
provided good results in our experiments.
The supervised algorithm takes as inputs a HR segmentation, a CR
time series of the same scene and the class features. It returns
the labellization solution of (10). The algorithm is the same as
the unsupervised one except for the label’s mean estimation and
re-estimation (since mean and variance area priori known) and
El now refers to the complete energy to minimize in (10). As
the class feature estimation step is time-consuming, this version
is more rapid than the unsupervised one. Let us now analyse the
results we obtain in the case of simulated and actual data.

3. RESULTS

First, both methods have been validated using simulated data. Then,
their performance on actual data have been checked.

3.1. Validation on simulated data

Simulations are made such that the two main image model assump-
tions are verifyied: linear mixture model for CR data and Gaussian
distribution conditionally to classes. More precisely, from a HR
classification of a256 × 256 subpart of a SPOT/HRV image, ac-
tual class features are estimated. Then, these parameters are used to
simulate HR images randomly according to Gaussian laws condi-
tionally to classes. Then, CR simulated images result from the spa-
tial average of HR simulated images at the coarse resolution con-
sidered. The quality of the obtained labellisation (from CR data)
is measured by comparison to the labellisation obtained from HR
data. This latter hence stands for the reference.
Obtained results of the supervised approach reach a performance
upper than99.5% of good classification for simulated CR data with
a resolution ratio|Ω′|/|Ω| = 16 × 16. Two main types of errors
have been observed. On the one hand, tiny segments may be mis-
classified if their occupation rate within the CR pixel is to weak to
have an effective contribution in the energy. On the other hand and
unusually, connex segments can be misclassified because of simu-
lated annealing failure to reach the global minimum. In this case,
the algorithm is stuck in a local minimum, very close to the global
minimum. For example, we encountered a case where three connex
segments are misclassified because labellisation error correction for
only one of them increases the energy and only exact labellisation
simultaneously of all of them lets the energy decrease. We may
improve the algorithm changing the temperature descent law for a
logarithmic one but as this kind of errors is unusual we decided, so
far, to keep the proposed temperature descent law as a compromise
between time processing and result performance.
The unsupervised algorithm has been validated on the same sim-
ulated data. Notice that, theoretically, the unsupervised approach
(minimization (11)) does not necessarily lead exactly to the same
minimum with CR data than with HR data. However, in practice
they are very close and results obtained are compared to the HR
reference. From simulated CR data, the unsupervised approach
reaches99% of good classification (comparing to HR classifica-
tion), that is almost as good as the supervised approach. A few
more little segments are misclassified, as the energy considered
only takes into account segment’s means. Indeed, class variances
have been supposed equal whereas one class has been simulated
with a much smaller variance.

3.2. Application to actual data

The proposed approach has then been applied to a subpart of an
actual SPOT/HRV time series of8 images provided by the CNES
agency in the framework of the European ADAM project. This time
series has been pre-processed with an algorithm derived from [8],
leading to land cover fraction series. This parameter is linear and
competitive for land cover discrimination. The Mumford and Shah
segmentation method has been processed on one HR image Fig. 1a.
CR MERIS data have been simulated from the HR time series (see
Fig. 1b), by averaging of a factor16 in each direction (line and col-
umn). Fig. 2 shows the unsupervised result obtained with5 classes.
Fig. 2c presents, for each class, the mean estimation from CR data
and from the reference HR data. We notice, in a satisfying way, that
these estimated class means are very close, showing unsupervised



means estimation from CR data is rather accurate. CR resulting la-
belisation is compared to the result obtained with HR series: the
classification from CR series Fig. 2a is up to97% identical to the
one obtained from HR series. The error map presented on Fig. 2b
shows that additional errors may be larger than the size of the CR
pixel. This happens essentially when a segment covers several CR
pixels with small proportions on each CR intersected pixel and a
mean very close to its neighbours one. The energy of the error
labellisation is hence very close to the reference one, but still mini-
mum. We also note that, in some very few cases, whole CR pixels
are misclassified (see the triangular error segment at the bottom of
the map 2b). In particular, this may happen if this pixel’s value
belongs to the distribution queue. It seems that the use of larger
multitemporal series could overcome such problems.

(a) HR Segmentation (b) Input CR image

Fig. 1. Inputs of the algorithm: on the left, the HR segmentation
(100 segments) and on the right, a CR image (simulated MERIS)
extracted from the time series.

4. CONCLUSION

In this paper, we proposed a Bayesian method for high resolution
classification from coarse resolution time series. In practice, two
algorithms have been described. Both provide a HR classification
from CR time series. The first one, supervised, leads to the optimal
energy but is quite sensitive to class variance estimation. The sec-
ond one is totally unsupervised but the class number.
As the obtained results are convincing, future work will deal more
performance analysis according to different parameters (resolution
data, number of dates, etc.). Moreover, the validity of the model’s
assumptions will be studied in the case of different types of actual
data.
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