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t. We explain how a dis
rete grey level image 
an be numer-i
ally translated into a 
ompletely pixel independent geometri
 stru
-ture made of oriented 
urves with grey levels atta
hed to them. Forthat purpose, we prove that the AÆne Morphologi
al S
ale Spa
e ofan image 
an be geometri
ally 
omputed using a level set de
omposi-tion/re
onstru
tion and a well adapted 
urve evolution s
heme. Su
h analgorithm appears to be mu
h more a

urate than 
lassi
al pixel-basedones, and allows 
ontinuous deformations of the original image.1 Introdu
tionIf a mathemati
ian had to examine re
ent evolutions of image analysis, he would
ertainly noti
e a growing interest for geometri
 te
hniques, relying on the 
om-putation of di�erential operators like orientation, 
urvature, ... or on the analysisof more global obje
ts like level 
urves. Of 
ourse Fourier or wavelet analysis arestill very eÆ
ient for image 
ompression for example, but in order to analyzelarger s
ales geometri
 approa
hes seem to be more relevant. At large s
alesa real-world image 
an hardly be 
onsidered {like a sound signal{ as a super-imposition of waves (or wavelets), sin
e the main formation pro
ess relies ono

lusion, whi
h is highly nonlinear. This is not without some mathemati
al
onsequen
es : in this 
ontext, images are more likely to be represented in ageometri
al spa
e like BV (R2 ), the spa
e of fun
tions on R2 with bounded vari-ation, than in the more 
lassi
al L2(R2 ) spa
e. From a pra
ti
al point of view,the question of the numeri
al geometri
 representation of an image 
ertainlydeserves to be investigated, sin
e images have been des
ribed so far by arrays ofnumbers (or wavelet/DCT 
oeÆ
ients for 
ompressed images). It is likely thatin the future alternative geometri
 des
riptions will be 
ommonly used, relyingon some level-set/texture de
omposition like the one proposed in [7℄.In this paper, we show how it is possible to 
ompute numeri
ally a 
omplete-ly geometri
 and multis
ale representation of an image, for whi
h the notion of
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an be re
overed). Our algorithm is a fully geomet-ri
al implementation of the so-
alled AÆne Morphologi
al S
ale Spa
e (AMSS,see [1℄), des
ribed in Se
t. 2. Due to its 
ontrast invarian
e, this s
ale spa
eis equivalent to the aÆne 
urve shortening pro
ess des
ribed in [14℄, for whi
ha fully geometri
al algorithm has been re
ently proposed in [10℄. A simpli�edversion of this s
heme, des
ribed in Se
t. 3, allows to pro
ess all level 
urvesof an image with a high pre
ision in a 
ouple of minutes. In asso
iation withlevel set de
omposition and re
onstru
tion algorithms, des
ribed in Se
t. 4, wethus 
ompute the AMSS of an image with mu
h more a

ura
y than 
lassi
als
alar s
hemes, as is shown in Se
t. 5. Another interest of this method is that ityields a 
ontrast-invariant multis
ale geometri
 representation of the image thatprovides a framework for geometry based analyses and pro
essing. We illustratethis in Se
t. 6 by applying our algorithm to image deformation.2 The AÆne Morphologi
al S
ale Spa
eA natural way of extra
ting the geometry of an image 
onsists in the level set de-
omposition inherited from Mathemati
al Morphology. Given an image u viewedas an intensity map from R2 to R, one 
an de�ne the (upper) level sets of u by��(u) = fx 2 R2 ; u(x) > �g:This 
olle
tion of planar sets is equivalent to the fun
tion u itself sin
e one hasthe re
onstru
tion formula u(x) = supf�; x 2 ��g:The main interest of this representation is its invarian
e under 
ontrast 
hanges :if g is an in
reasing map from R to R (i.e. a 
ontrast 
hange), then one has�g(�)(g(u)) = ��(u):Hen
e, the 
olle
tion of all level sets of an image does not depend a priori on theglobal lightning 
onditions of this image, and is thus an interesting geometri
alrepresentation.Now, be
ause an image generally 
ontains details of di�erent sizes, the notionof s
ale-spa
e has been introdu
ed. It 
onsists in representing an original imageu0(�) by a 
olle
tion of images (u(�; t))t>0 whi
h are simpli�ed versions of u0 su
hthat u(�; 0) = u0(�) and, with in
reasing s
ale t , the ut represent more and more
oarser versions of u0 . There are plenty of possibilities for su
h representations,but it is possible to redu
e them by demanding strong invarian
e properties fromthe operator Tt whi
h transforms u0(�) into u(�; t). In parti
ular, it is possible toenfor
e the level set de
omposition evoked above to be 
ompatible with the s
ale-spa
e representation, in the sense that the �-level set of u(�; t) only depends onthe �-level set of u0. If one asks, in addition, for other properties like regularity,semi-group stru
ture, and Eu
lidean Invarian
e (i.e. translation and rotation
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e), then a

ording to [1℄ one redu
es the possibilities to the 
hoi
e of anonde
reasing 
ontinuous fun
tion F governing the s
ale spa
e given by�u�t = jDujF �div DujDuj� ; (1)where Du represents the spatial gradient of u. In this paper we have 
hosen theparti
ular 
ase of the AÆne Morphologi
al S
ale Spa
e, given by F (s) = s1=3 ,for mainly two reasons :First, this is the only 
ase whi
h yields an additional invarian
e property
alled AÆne Invarian
e :Tt(u0 Æ �) = (Ttu0) Æ � for any �(x) = Ax+ b; A 2 SL(R2 ); b 2 R2 : (2)This property allows to perform aÆne-invariant shape re
ognition under o

lu-sions (see [5℄) and to 
ompute lo
al aÆne-invariant features like aÆne 
urvaturefor example.Se
ond, there exists a fully 
onsistent geometri
 s
heme (see [10℄) for solvingthe level 
urve evolution indu
ed by the AMSS,�C�t = �1=3N: (3)Here C is any point of a level 
urve, � the lo
al 
urvature and N the normalve
tor at this point. In parti
ular, this s
heme guarantees that the in
lusion ofany two sets is preserved by the evolution (in
lusion prin
iple). In the simpli�edversion des
ribed in Se
t. 3, it is very fast (linear 
omplexity) and robust, asonly areas and middle points are 
omputed.3 A Fast Geometri
 S
hemeThe numeri
al implementation of the aÆne s
ale spa
e of a 
urve given by (3) 
anbe realized in several ways. For our purpose, an ideal algorithm should satisfy,up to a given 
omputer pre
ision, the following properties :P1: preserve in
lusion, whi
h is ne
essary for level set re
onstru
tion;P2: be aÆne invariant, sin
e the s
ale-spa
e is;P3: have linear 
omplexity, so that all level 
urves of an image 
an be pro
essedwith a high pre
ision in a reasonable time.Of 
ourse, algorithms based on s
alar formulations (see [15℄) are not relevanthere, sin
e our goal is pre
isely to get rid of pixel based representations. In any
ase, su
h algorithms satisfy neither P1 nor P2, and are not 
omputationallyeÆ
ient (in terms of time and memory) if an a

urate pre
ision is needed (e.g.100 points per original pixel). The purpose of this paper is to present a s
heme
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σFig. 1. AÆne erosion (- - -) of a 
onvex 
urve (|).opposite to Sethian's formulation 1, sin
e we want to solve a s
alar (
ontrast-invariant) evolution equation with a geometri
 algorithm. We 
annot either uselo
al point evolution s
hemes (naive ones or more re�ned ones like in [9℄) sin
ethey do not guarantee P1 (be
ause they rely on a lo
al estimation of the 
ur-vature that is not dire
tly 
onne
ted with a global property like in
lusion), andfor the same reason P2 would be un
ertain (and might depend on the dis
retiza-tion). This is the reason why we started from the geometri
 s
heme des
ribed in[10℄, for it satis�es P1 and P2. This s
heme is based on a simple operator 
alledaÆne erosion, whi
h we de�ne now.Consider a (non ne
essarily 
losed) 
onvex parameterized 
urve C : [a; b℄ 7!R2 and an area parameter �. De�ne a �-
hord set of C as the region with area �that is en
losed by a segment [C(s1)C(s2)℄ and the 
orresponding pie
e of 
urveC([s1; s2℄). Then, the �-aÆne erosion of C, written E�(C), 
an be de�ned as thesegment-side boundary of the union of these �-
hord sets (see Fig. 1). Withoutgoing into details (whi
h might be found in [10℄ and [11℄), we brie
y re
all twomain results about the aÆne erosion :First, the evoked boundary is essentially obtained by the middle points ofthe segments [C(s1)C(s2)℄ de�ning the �-
hord sets (minus some \ghosts parts"that do not appear in general, and plus two end-segments if the 
urve is not
losed)Se
ond, the in�nitesimal iteration of su
h an operator asymptoti
ally yieldsthe aÆne s
ale spa
e of the initial 
urve C0 (with �xed endpoints if C0 is not
losed), one has(E�)n (C0)! C(�; t)) as n! +1; � ! 0 and 12 �32� 23 n�2=3 ! t ;where C(�; t) is de�ned from C0 by (3).The s
heme presented in [10℄ relies on a more general de�nition of the aÆneerosion that also applies to non-
onvex 
urves. Compared to the 
onvex 
ase,the 
omputations are more 
omplex sin
e the 
omputation of 
urve interse
tionsmay be needed, whi
h requires 
areful programming and 
auses the 
omplexity1 The main interest of s
alar formulations is that they naturally handle topologi
al
hanges of the level sets : it has however been proved in [2℄ that no su
h 
hangeso

ur for the aÆne s
ale spa
e.
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ome quadrati
 in the number of verti
es of the polygonal
urve to be pro
essed. This is the reason why, as suggested in [10℄, we have
hosen an alternative s
heme based on the separate treatment of ea
h 
onvexpart. Given a possibly non-
onvex and non-ne
essarily 
losed polygonal 
urve,we iterate the following three-step pro
ess :1. Break the 
urve into 
onvex 
omponents (by \
utting" in
e
tion segmentsat their middle point), and 
ompute the minimum value �min of the area ofany non-
losed 
omponent.2. De�ne �real = min(�min; �) and apply a dis
rete aÆne erosion of area �realto ea
h 
onvex 
omponent.3. Con
atenate the obtained pie
es of 
urves in order to obtain a new (possiblynon-
onvex) 
urve.This approa
h yields a good approximation of the exa
t aÆne-erosion of C. Infa
t, the only di�eren
e may o

ur near in
e
tion points of C, but in pra
ti
efor reasonable values of � both evolutions give the same result (see [11℄). Themain advantage of this simpli�ed algorithm is that it is very fast (it has linear
omplexity) and it is very robust, sin
e ea
h evolution is obtained by middlepoints of segments whose endpoints lie on the original 
urve and whose sele
tiononly relies on an area 
omputation.4 The Complete AlgorithmOur geometri
 multis
ale representation algorithm for numeri
al images is madeout of the following 5 steps.Step 1: de
omposition.The level set extra
tion is done 
urrently in a straightforward way. Using 4-
onne
tedness, we extra
t, for ea
h grey value whi
h appears in the image, the
orresponding level sets (upper or lower) and keep the oriented border su
h thatthe level set lies on the left of the 
urve. We thus obtain a set of 
urves whi
hare either 
losed or start and end on the image border. For ea
h 
urve we keepthe asso
iated grey level, so that we have a representation that is 
ompletelyequivalent to the initial image. It is important to noti
e that no interpolation ismade to extra
t these level 
urves : the pixels are simply 
onsidered as adja
entsquares.Step 2: symmetrization.Then, in order to get Neumann boundary 
onditions for the aÆne s
ale spa
e,we have the possibility to symmetrize the level lines whi
h start and end on theborder, whi
h guarantees that the 
urve will remain orthogonal to the image bor-der during the evolution. Curves with end points on the same side are re
e
tedon
e, 
urves with end points on adja
ent sides are re
e
ted twi
e, thus yielding
losed 
urves. Finally 
urves with end points on opposite sides are re
e
ted on
eat ea
h side (they should, theoreti
ally, be re
e
ted in�nitely many times, butin pra
ti
e on
e is enough). Without this symmetrization the endpoints of thenon-
losed level 
urves would remain �xed.
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Fig. 2. Example of rasterization of a 
oating-point 
urve (|) into a pixel-separatinginteger 
urve (- - -).Step 3 : AMSS.At this stage, we pro
ess all level 
urves with the geometri
 implementationof the aÆne s
ale spa
e des
ribed in Se
t. 3. This involves two parameters :the s
ale of evolution t and the pre
ision " at whi
h 
urves are 
omputed. Wenormalize " su
h that 1=" 
orresponds to the number of points that will be usedto des
ribe a one-pixel-length 
urve.Step 4: geometri
 transformation and/or 
omputation.On
e a
hieved steps 1 to 3, we have a smooth geometri
 des
ription of the imagethat allows to perform any geometri
 transformation and/or 
omputation. Weshall give an example of image deformation in se
tion 6, but there are many otherpossibilities of geometri
 pro
essing. For example, one 
an simply remove levelsets that are too small, or too os
illatory (see [12℄), or satisfying any geometri

riterion that 
an be estimated on a smooth 
urve.Step 5: rasterization and re
onstru
tion.After transforming the level lines of the initial image, we need to re
onstru
tedthe 
orresponding image. This is done by �lling in the level sets and using thegrey level information asso
iated with ea
h level line. This step is more 
omplexthan the extra
tion of level lines, sin
e now the level 
urves are made of pointswith non-integer 
oordinates, and thus we have to de
ide whether a pixel isinside the set or not. We �rst rasterize the 
urves by taking 
are to respe
t thein
lusion prin
iple, using an adaptation of Bresenham's algorithm 2, so that apixel belongs to the side of the 
urve where more than half of its area is. Weadded a spe
ial treatment for very near points (sub-pixel). Our implementationallows a good approximation of the real 
urves. Only some very small, sub-pixel,details of the eroded 
urve might be lost during the rasterization, su
h as 
urvesen
losing an area smaller than one pixel.2 Bresenham's algorithm is a well known algorithm from 
omputer graphi
s whi
hallows to join two points whi
h have 
oating-point 
oordinates and are distant bymore than a 
ouple of pixels (see [3℄ and any 
omputer graphi
s book or internetsite).
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omplexity of the di�erent steps of the algorithm depends on the followingparameters : N , the number of pixels 
ontained in the original image (typi
ally106) ; G, the number of grey-levels 
ontained in the original image (typi
ally256) ; ", the pre
ision (number of points per pixel) at whi
h the level 
urves needto be 
omputed (typi
ally from 1=100 to 1=2) ; t, the s
ale at whi
h the level
urves are smoothed, andN 0, the number of pixels 
ontained in the re
onstru
tedimage. Table 1 gives upper bounds of time and memory 
omplexity for the stepsdes
ribed above. 
omputation time memoryde
omposition N �G N �GaÆne s
ale spa
e N �G� t=" N �G="rasterization N �G=" N �G="re
onstru
tion N 0 �G N 0 �GTable 1. Complexity of the proposed algorithmNoti
e that the upper bound of N � G points to des
ribe all level lines of G isvery rough. For the 
lassi
al Lena image (see Fig 5, one has N = 2562, G = 238,and the de
omposition yields in 10 se
onds about 48000 
urves and 1:1 millionpoints. Then the aÆne s
ale spa
e 
omputation for " = 1=2 takes 2:5 minutesand yields 13000 
urves and 0:78 million points. The �nal rasterization andre
onstru
tion takes 10 se
onds.5 Comparison with S
alar S
hemesThe purpose of this se
tion is to 
ompare the geometri
 algorithm we proposedwith expli
it s
alar s
hemes based on the iteration of a pro
ess likeun+1 = un + jDunj �div DunjDunj�1=3 ;where Dun and div DunjDunj are 
omputed using �nite di�eren
es on a 3x3 neigh-borhood of the 
urrent pixel (see [6℄) or using a non-lo
al estimation of theimage derivatives obtain by a Gaussian 
onvolution (see [13℄). Su
h a s
heme isstrongly limited by the grid : the lo
alization of the level 
urves is known upto a pre
ision of the order of the pixel size (even when interpolation is used),and aÆne-invarian
e 
ould only be a
hieved at large s
ales (but even rotation-invarian
e is diÆ
ult to ensure at all s
ales, as noti
ed in [13℄). Another strikingside e�e
t of su
h s
alar s
hemes is that they need to produ
e arti�
ial di�usionin the gradient dire
tion. In other terms, a s
alar s
heme 
annot be 
ontrast in-variant, and in pra
ti
e new grey levels (and 
onsequently new level 
urves) are



346 Pro
. 2nd Int. Conf. on S
ale-Spa
e Theories in Computer Vision
reated. The reason is the following : for a purely 
ontrast-invariant algorithmde�ned on a �xed grid, a point of a level 
urve either does not move or movesby at least one pixel. This 
onstraint 
auses small (i.e. large s
ale) 
urvatures tobe treated as zero, and is for that reason in
ompatible with a 
urvature-drivenevolution like AMSS.These e�e
ts are illustrated on Fig. 3. We have 
hosen an image of size 100�70whi
h has been magni�ed 10 times and subsampled to only 10 20-spa
ed greylevels, see the �rst line. The left 
olumn presents the image, the right 
olumnthe level sets. In the se
ond line we show the result of our algorithm, no levelsets (i.e. grey levels) are 
reated, the level lines are smoothed. The last linepresents the result of a 
lassi
al s
alar algorithm. As expe
ted, the s
alar s
hemeprodu
es arti�
ial di�usion whi
h 
auses a multipli
ation of the level lines. This
an be seen in the left half of the level lines image where 5-spa
ed level lines arerepresented, in the right part 20-spa
ed level lines are represented whi
h shouldbe the only present. One 
an also remark some anisotropy in that side e�e
tdi�usion : it is more attenuated along the dire
tions aligned with the grid (i.e.horizontal or verti
al dire
tions), whi
h enfor
es the visual per
eption of thisgrid.6 Appli
ations6.1 Visualization of Level CurvesThe level sets of an image are generally so irregular that only a few of them 
anbe visualized at the same time. Extra
ting and pro
essing independently ea
hlevel 
urve of an image produ
es an interesting tool to visualize 
learly the levellines of a given image, as illustrated in Fig. 5.Here, we 
an see all 4-spa
ed level lines of the Lena image thanks to the smoothgeometri
 representation provided by the geometri
 AÆne Morphologi
al S
aleSpa
e. Su
h a superimposition shows interesting information about the geometri
stru
ture of the image.6.2 Image DeformationIn this part, we show how our algorithm 
an be used to apply a geometri
 trans-form to an image. In the experiments that follow, proje
tive or aÆne transformsare used, but more 
omplex geometri
 transform will work as well. Let u(i; j) bea given, dis
rete image, how 
an one de�ne an approximation (or interpolation)~u of u that allows to build the transformed imagev(i; j) = ~u� ai+ bj + 
di+ ej + 1 ; fi+ gj + hdi+ ej + 1� ;where a; b; 
; d; e; f; g; h are given 
oeÆ
ients (that may vary) ? One 
an dis-tinguish between two kinds of methods. The �rst are 
ontinuous (and expli
it)methods, for whi
h a 
ontinuous model for ~u is expli
itly given and 
omputed
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e and for all. The se
ond are dis
rete (and impli
it) methods, forwhi
h ~u is impli
itly de�ned and must be estimated for ea
h dis
rete grid.For example, zero order interpolation de�ned by ~u(i; j) = u([i + 1=2℄; [j +1=2℄) , where [x℄ represent the integer part of x, or bilinear interpolation andhigher order generalizations are expli
it methods. On the opposite, image in-terpolation/approximation algorithms based on the minimization of a 
ertainerror between dis
rete images (like the Total Variation used in [8℄) are impli
itmethods. In fa
t, this distin
tion is rather formal if the pra
ti
al 
riterion is not\how is ~u de�ned ?", but \how mu
h time does it take to 
ompute ~u ?". Forexample, Fourier representation is an expli
it method, but for non-Eu
lideantransformations it is 
omputationally expensive. Indeed if N is the number ofpixels of the original image u, it requires N operations to 
ompute the valueof ~u in a given point. From that point of view, our representation is a 
ompro-mise between 
omputation time (on
e the level lines have been extra
ted andsmoothed, the deformation and the re
onstru
tion pro
esses are fast) and a

u-ra
y (the geometry of the level sets is pre
isely known). We do not aÆrm thatthe AÆne Morphologi
al S
ale Spa
e yields the best image approximation : itis geometri
ally better than bilinear interpolation (for whi
h pixelization e�e
tsremain), but less a

urate than sophisti
ated image interpolation algorithms like[8℄. However, we proved that it 
an be pre
isely 
omputed in a reasonable timeand then allowing any kind of geometri
 deformation.We 
ompared deformations yielded by our method, zero and bilinear inter-polation on two images :On the simple binary image (left in Fig. 4), we applied an aÆne deformationusing three di�erent methods. A bilinear interpolation (left part of middle im-age) and a zero-order interpolation (right part of middle image). Our geometri
representation des
ribed in this paper gives the right image. Contrary to 
lassi-
al methods, a geometri
 
urve shortening qui
kly provides a good 
ompromisebetween pixelization e�e
ts, a

ura
y and di�usion e�e
ts.In Fig. 6 we present a satellite image from whi
h we have simulated a pro-je
tive view (from right to left as indi
ated by the bla
k trapezoid). Fig. 7 leftshows the results with zero-order interpolation (left part) and bilinear interpo-lation (right part). Our algorithm, using the geometri
 implementation of theaÆne morphologi
al s
ale spa
e gives the result shown in Fig. 7 right.7 Con
lusionIn this paper, we des
ribed how the AÆne Morphologi
al S
ale Spa
e of animage 
an be implemented in a geometri
 manner. Compared to 
lassi
al s
alars
hemes, the main advantages are a mu
h higher a

ura
y both in terms ofimage de�nition and in terms of �delity to the s
ale spa
e properties (
ontrast-invarian
e and aÆne-invarian
e). The algorithm needs a large amount of memorybut it still is rather fast, and the representation it indu
es also allows very fastgeometri
 image deformations and 
ontrast 
hanges.
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omposition/re
onstru
tion and on a par-ti
ular geometri
 algorithm for aÆne 
urve shortening, but it 
ould be gen-eralized to other 
urve evolutions, as similar geometri
 algorithm for general
urvature-driven 
urve evolutions are likely to appear soon. Another generaliza-tion 
ould be made by using some image interpolation for the extra
tion of thelevel-sets : however, in this 
ase the representation will generally no be 
ontrast-invariant any more. A more geometri
 extension of the algorithm relying on theinterpolation of new level lines using the Absolute Minimizing Lips
hitz Exten-sion (see [4℄) 
ould also be investigated for visualization tasks.Referen
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Fig. 3. AMSS of gira�e, original top left, level lines on the right.

Fig. 4. AÆne transform of an ellipse image.
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Fig. 5. The Lena image superimposed with its smoothed level lines.

Fig. 6. Original satellite image.

Fig. 7. Proje
tive view of satellite image.


