
Springer Leture Notes in Computer Siene, vol. 1682, 1999. 339Geometri Multisale Representation ofNumerial ImagesGeorges Koeper1;2 and Lionel Moisan11 Centre de Math�ematiques et de Leurs Appliations (CNRS UMR 8536),Eole Normale Sup�erieure de Cahan,61 avenue du pr�esident Wilson, 94235 Cahan edex, Frane2 Universit�e Ren�e DesartesUFR de Math�ematiques et Informatique, �equipe PRISME,Centre Universitaire des Saints-P�eres,45 rue des Saints-P�eres, 75270 PARIS edex 06, Franekoepfler�mla.ens-ahan.fr moisan�mla.ens-ahan.frAbstrat. We explain how a disrete grey level image an be numer-ially translated into a ompletely pixel independent geometri stru-ture made of oriented urves with grey levels attahed to them. Forthat purpose, we prove that the AÆne Morphologial Sale Spae ofan image an be geometrially omputed using a level set deomposi-tion/reonstrution and a well adapted urve evolution sheme. Suh analgorithm appears to be muh more aurate than lassial pixel-basedones, and allows ontinuous deformations of the original image.1 IntrodutionIf a mathematiian had to examine reent evolutions of image analysis, he wouldertainly notie a growing interest for geometri tehniques, relying on the om-putation of di�erential operators like orientation, urvature, ... or on the analysisof more global objets like level urves. Of ourse Fourier or wavelet analysis arestill very eÆient for image ompression for example, but in order to analyzelarger sales geometri approahes seem to be more relevant. At large salesa real-world image an hardly be onsidered {like a sound signal{ as a super-imposition of waves (or wavelets), sine the main formation proess relies onolusion, whih is highly nonlinear. This is not without some mathematialonsequenes : in this ontext, images are more likely to be represented in ageometrial spae like BV (R2 ), the spae of funtions on R2 with bounded vari-ation, than in the more lassial L2(R2 ) spae. From a pratial point of view,the question of the numerial geometri representation of an image ertainlydeserves to be investigated, sine images have been desribed so far by arrays ofnumbers (or wavelet/DCT oeÆients for ompressed images). It is likely thatin the future alternative geometri desriptions will be ommonly used, relyingon some level-set/texture deomposition like the one proposed in [7℄.In this paper, we show how it is possible to ompute numerially a omplete-ly geometri and multisale representation of an image, for whih the notion of



340 Pro. 2nd Int. Conf. on Sale-Spae Theories in Computer Visionpixel disappears (though it an be reovered). Our algorithm is a fully geomet-rial implementation of the so-alled AÆne Morphologial Sale Spae (AMSS,see [1℄), desribed in Set. 2. Due to its ontrast invariane, this sale spaeis equivalent to the aÆne urve shortening proess desribed in [14℄, for whiha fully geometrial algorithm has been reently proposed in [10℄. A simpli�edversion of this sheme, desribed in Set. 3, allows to proess all level urvesof an image with a high preision in a ouple of minutes. In assoiation withlevel set deomposition and reonstrution algorithms, desribed in Set. 4, wethus ompute the AMSS of an image with muh more auray than lassialsalar shemes, as is shown in Set. 5. Another interest of this method is that ityields a ontrast-invariant multisale geometri representation of the image thatprovides a framework for geometry based analyses and proessing. We illustratethis in Set. 6 by applying our algorithm to image deformation.2 The AÆne Morphologial Sale SpaeA natural way of extrating the geometry of an image onsists in the level set de-omposition inherited from Mathematial Morphology. Given an image u viewedas an intensity map from R2 to R, one an de�ne the (upper) level sets of u by��(u) = fx 2 R2 ; u(x) > �g:This olletion of planar sets is equivalent to the funtion u itself sine one hasthe reonstrution formula u(x) = supf�; x 2 ��g:The main interest of this representation is its invariane under ontrast hanges :if g is an inreasing map from R to R (i.e. a ontrast hange), then one has�g(�)(g(u)) = ��(u):Hene, the olletion of all level sets of an image does not depend a priori on theglobal lightning onditions of this image, and is thus an interesting geometrialrepresentation.Now, beause an image generally ontains details of di�erent sizes, the notionof sale-spae has been introdued. It onsists in representing an original imageu0(�) by a olletion of images (u(�; t))t>0 whih are simpli�ed versions of u0 suhthat u(�; 0) = u0(�) and, with inreasing sale t , the ut represent more and moreoarser versions of u0 . There are plenty of possibilities for suh representations,but it is possible to redue them by demanding strong invariane properties fromthe operator Tt whih transforms u0(�) into u(�; t). In partiular, it is possible toenfore the level set deomposition evoked above to be ompatible with the sale-spae representation, in the sense that the �-level set of u(�; t) only depends onthe �-level set of u0. If one asks, in addition, for other properties like regularity,semi-group struture, and Eulidean Invariane (i.e. translation and rotation



Springer Leture Notes in Computer Siene, vol. 1682, 1999. 341invariane), then aording to [1℄ one redues the possibilities to the hoie of anondereasing ontinuous funtion F governing the sale spae given by�u�t = jDujF �div DujDuj� ; (1)where Du represents the spatial gradient of u. In this paper we have hosen thepartiular ase of the AÆne Morphologial Sale Spae, given by F (s) = s1=3 ,for mainly two reasons :First, this is the only ase whih yields an additional invariane propertyalled AÆne Invariane :Tt(u0 Æ �) = (Ttu0) Æ � for any �(x) = Ax+ b; A 2 SL(R2 ); b 2 R2 : (2)This property allows to perform aÆne-invariant shape reognition under olu-sions (see [5℄) and to ompute loal aÆne-invariant features like aÆne urvaturefor example.Seond, there exists a fully onsistent geometri sheme (see [10℄) for solvingthe level urve evolution indued by the AMSS,�C�t = �1=3N: (3)Here C is any point of a level urve, � the loal urvature and N the normalvetor at this point. In partiular, this sheme guarantees that the inlusion ofany two sets is preserved by the evolution (inlusion priniple). In the simpli�edversion desribed in Set. 3, it is very fast (linear omplexity) and robust, asonly areas and middle points are omputed.3 A Fast Geometri ShemeThe numerial implementation of the aÆne sale spae of a urve given by (3) anbe realized in several ways. For our purpose, an ideal algorithm should satisfy,up to a given omputer preision, the following properties :P1: preserve inlusion, whih is neessary for level set reonstrution;P2: be aÆne invariant, sine the sale-spae is;P3: have linear omplexity, so that all level urves of an image an be proessedwith a high preision in a reasonable time.Of ourse, algorithms based on salar formulations (see [15℄) are not relevanthere, sine our goal is preisely to get rid of pixel based representations. In anyase, suh algorithms satisfy neither P1 nor P2, and are not omputationallyeÆient (in terms of time and memory) if an aurate preision is needed (e.g.100 points per original pixel). The purpose of this paper is to present a sheme
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σFig. 1. AÆne erosion (- - -) of a onvex urve (|).opposite to Sethian's formulation 1, sine we want to solve a salar (ontrast-invariant) evolution equation with a geometri algorithm. We annot either useloal point evolution shemes (naive ones or more re�ned ones like in [9℄) sinethey do not guarantee P1 (beause they rely on a loal estimation of the ur-vature that is not diretly onneted with a global property like inlusion), andfor the same reason P2 would be unertain (and might depend on the disretiza-tion). This is the reason why we started from the geometri sheme desribed in[10℄, for it satis�es P1 and P2. This sheme is based on a simple operator alledaÆne erosion, whih we de�ne now.Consider a (non neessarily losed) onvex parameterized urve C : [a; b℄ 7!R2 and an area parameter �. De�ne a �-hord set of C as the region with area �that is enlosed by a segment [C(s1)C(s2)℄ and the orresponding piee of urveC([s1; s2℄). Then, the �-aÆne erosion of C, written E�(C), an be de�ned as thesegment-side boundary of the union of these �-hord sets (see Fig. 1). Withoutgoing into details (whih might be found in [10℄ and [11℄), we briey reall twomain results about the aÆne erosion :First, the evoked boundary is essentially obtained by the middle points ofthe segments [C(s1)C(s2)℄ de�ning the �-hord sets (minus some \ghosts parts"that do not appear in general, and plus two end-segments if the urve is notlosed)Seond, the in�nitesimal iteration of suh an operator asymptotially yieldsthe aÆne sale spae of the initial urve C0 (with �xed endpoints if C0 is notlosed), one has(E�)n (C0)! C(�; t)) as n! +1; � ! 0 and 12 �32� 23 n�2=3 ! t ;where C(�; t) is de�ned from C0 by (3).The sheme presented in [10℄ relies on a more general de�nition of the aÆneerosion that also applies to non-onvex urves. Compared to the onvex ase,the omputations are more omplex sine the omputation of urve intersetionsmay be needed, whih requires areful programming and auses the omplexity1 The main interest of salar formulations is that they naturally handle topologialhanges of the level sets : it has however been proved in [2℄ that no suh hangesour for the aÆne sale spae.



Springer Leture Notes in Computer Siene, vol. 1682, 1999. 343of the algorithm to beome quadrati in the number of verties of the polygonalurve to be proessed. This is the reason why, as suggested in [10℄, we havehosen an alternative sheme based on the separate treatment of eah onvexpart. Given a possibly non-onvex and non-neessarily losed polygonal urve,we iterate the following three-step proess :1. Break the urve into onvex omponents (by \utting" inetion segmentsat their middle point), and ompute the minimum value �min of the area ofany non-losed omponent.2. De�ne �real = min(�min; �) and apply a disrete aÆne erosion of area �realto eah onvex omponent.3. Conatenate the obtained piees of urves in order to obtain a new (possiblynon-onvex) urve.This approah yields a good approximation of the exat aÆne-erosion of C. Infat, the only di�erene may our near inetion points of C, but in pratiefor reasonable values of � both evolutions give the same result (see [11℄). Themain advantage of this simpli�ed algorithm is that it is very fast (it has linearomplexity) and it is very robust, sine eah evolution is obtained by middlepoints of segments whose endpoints lie on the original urve and whose seletiononly relies on an area omputation.4 The Complete AlgorithmOur geometri multisale representation algorithm for numerial images is madeout of the following 5 steps.Step 1: deomposition.The level set extration is done urrently in a straightforward way. Using 4-onnetedness, we extrat, for eah grey value whih appears in the image, theorresponding level sets (upper or lower) and keep the oriented border suh thatthe level set lies on the left of the urve. We thus obtain a set of urves whihare either losed or start and end on the image border. For eah urve we keepthe assoiated grey level, so that we have a representation that is ompletelyequivalent to the initial image. It is important to notie that no interpolation ismade to extrat these level urves : the pixels are simply onsidered as adjaentsquares.Step 2: symmetrization.Then, in order to get Neumann boundary onditions for the aÆne sale spae,we have the possibility to symmetrize the level lines whih start and end on theborder, whih guarantees that the urve will remain orthogonal to the image bor-der during the evolution. Curves with end points on the same side are reetedone, urves with end points on adjaent sides are reeted twie, thus yieldinglosed urves. Finally urves with end points on opposite sides are reeted oneat eah side (they should, theoretially, be reeted in�nitely many times, butin pratie one is enough). Without this symmetrization the endpoints of thenon-losed level urves would remain �xed.
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Fig. 2. Example of rasterization of a oating-point urve (|) into a pixel-separatinginteger urve (- - -).Step 3 : AMSS.At this stage, we proess all level urves with the geometri implementationof the aÆne sale spae desribed in Set. 3. This involves two parameters :the sale of evolution t and the preision " at whih urves are omputed. Wenormalize " suh that 1=" orresponds to the number of points that will be usedto desribe a one-pixel-length urve.Step 4: geometri transformation and/or omputation.One ahieved steps 1 to 3, we have a smooth geometri desription of the imagethat allows to perform any geometri transformation and/or omputation. Weshall give an example of image deformation in setion 6, but there are many otherpossibilities of geometri proessing. For example, one an simply remove levelsets that are too small, or too osillatory (see [12℄), or satisfying any geometririterion that an be estimated on a smooth urve.Step 5: rasterization and reonstrution.After transforming the level lines of the initial image, we need to reonstrutedthe orresponding image. This is done by �lling in the level sets and using thegrey level information assoiated with eah level line. This step is more omplexthan the extration of level lines, sine now the level urves are made of pointswith non-integer oordinates, and thus we have to deide whether a pixel isinside the set or not. We �rst rasterize the urves by taking are to respet theinlusion priniple, using an adaptation of Bresenham's algorithm 2, so that apixel belongs to the side of the urve where more than half of its area is. Weadded a speial treatment for very near points (sub-pixel). Our implementationallows a good approximation of the real urves. Only some very small, sub-pixel,details of the eroded urve might be lost during the rasterization, suh as urvesenlosing an area smaller than one pixel.2 Bresenham's algorithm is a well known algorithm from omputer graphis whihallows to join two points whih have oating-point oordinates and are distant bymore than a ouple of pixels (see [3℄ and any omputer graphis book or internetsite).



Springer Leture Notes in Computer Siene, vol. 1682, 1999. 345Complexity of the AlgorithmThe omplexity of the di�erent steps of the algorithm depends on the followingparameters : N , the number of pixels ontained in the original image (typially106) ; G, the number of grey-levels ontained in the original image (typially256) ; ", the preision (number of points per pixel) at whih the level urves needto be omputed (typially from 1=100 to 1=2) ; t, the sale at whih the levelurves are smoothed, andN 0, the number of pixels ontained in the reonstrutedimage. Table 1 gives upper bounds of time and memory omplexity for the stepsdesribed above. omputation time memorydeomposition N �G N �GaÆne sale spae N �G� t=" N �G="rasterization N �G=" N �G="reonstrution N 0 �G N 0 �GTable 1. Complexity of the proposed algorithmNotie that the upper bound of N � G points to desribe all level lines of G isvery rough. For the lassial Lena image (see Fig 5, one has N = 2562, G = 238,and the deomposition yields in 10 seonds about 48000 urves and 1:1 millionpoints. Then the aÆne sale spae omputation for " = 1=2 takes 2:5 minutesand yields 13000 urves and 0:78 million points. The �nal rasterization andreonstrution takes 10 seonds.5 Comparison with Salar ShemesThe purpose of this setion is to ompare the geometri algorithm we proposedwith expliit salar shemes based on the iteration of a proess likeun+1 = un + jDunj �div DunjDunj�1=3 ;where Dun and div DunjDunj are omputed using �nite di�erenes on a 3x3 neigh-borhood of the urrent pixel (see [6℄) or using a non-loal estimation of theimage derivatives obtain by a Gaussian onvolution (see [13℄). Suh a sheme isstrongly limited by the grid : the loalization of the level urves is known upto a preision of the order of the pixel size (even when interpolation is used),and aÆne-invariane ould only be ahieved at large sales (but even rotation-invariane is diÆult to ensure at all sales, as notied in [13℄). Another strikingside e�et of suh salar shemes is that they need to produe arti�ial di�usionin the gradient diretion. In other terms, a salar sheme annot be ontrast in-variant, and in pratie new grey levels (and onsequently new level urves) are



346 Pro. 2nd Int. Conf. on Sale-Spae Theories in Computer Visionreated. The reason is the following : for a purely ontrast-invariant algorithmde�ned on a �xed grid, a point of a level urve either does not move or movesby at least one pixel. This onstraint auses small (i.e. large sale) urvatures tobe treated as zero, and is for that reason inompatible with a urvature-drivenevolution like AMSS.These e�ets are illustrated on Fig. 3. We have hosen an image of size 100�70whih has been magni�ed 10 times and subsampled to only 10 20-spaed greylevels, see the �rst line. The left olumn presents the image, the right olumnthe level sets. In the seond line we show the result of our algorithm, no levelsets (i.e. grey levels) are reated, the level lines are smoothed. The last linepresents the result of a lassial salar algorithm. As expeted, the salar shemeprodues arti�ial di�usion whih auses a multipliation of the level lines. Thisan be seen in the left half of the level lines image where 5-spaed level lines arerepresented, in the right part 20-spaed level lines are represented whih shouldbe the only present. One an also remark some anisotropy in that side e�etdi�usion : it is more attenuated along the diretions aligned with the grid (i.e.horizontal or vertial diretions), whih enfores the visual pereption of thisgrid.6 Appliations6.1 Visualization of Level CurvesThe level sets of an image are generally so irregular that only a few of them anbe visualized at the same time. Extrating and proessing independently eahlevel urve of an image produes an interesting tool to visualize learly the levellines of a given image, as illustrated in Fig. 5.Here, we an see all 4-spaed level lines of the Lena image thanks to the smoothgeometri representation provided by the geometri AÆne Morphologial SaleSpae. Suh a superimposition shows interesting information about the geometristruture of the image.6.2 Image DeformationIn this part, we show how our algorithm an be used to apply a geometri trans-form to an image. In the experiments that follow, projetive or aÆne transformsare used, but more omplex geometri transform will work as well. Let u(i; j) bea given, disrete image, how an one de�ne an approximation (or interpolation)~u of u that allows to build the transformed imagev(i; j) = ~u� ai+ bj + di+ ej + 1 ; fi+ gj + hdi+ ej + 1� ;where a; b; ; d; e; f; g; h are given oeÆients (that may vary) ? One an dis-tinguish between two kinds of methods. The �rst are ontinuous (and expliit)methods, for whih a ontinuous model for ~u is expliitly given and omputed



Springer Leture Notes in Computer Siene, vol. 1682, 1999. 347from u one and for all. The seond are disrete (and impliit) methods, forwhih ~u is impliitly de�ned and must be estimated for eah disrete grid.For example, zero order interpolation de�ned by ~u(i; j) = u([i + 1=2℄; [j +1=2℄) , where [x℄ represent the integer part of x, or bilinear interpolation andhigher order generalizations are expliit methods. On the opposite, image in-terpolation/approximation algorithms based on the minimization of a ertainerror between disrete images (like the Total Variation used in [8℄) are impliitmethods. In fat, this distintion is rather formal if the pratial riterion is not\how is ~u de�ned ?", but \how muh time does it take to ompute ~u ?". Forexample, Fourier representation is an expliit method, but for non-Eulideantransformations it is omputationally expensive. Indeed if N is the number ofpixels of the original image u, it requires N operations to ompute the valueof ~u in a given point. From that point of view, our representation is a ompro-mise between omputation time (one the level lines have been extrated andsmoothed, the deformation and the reonstrution proesses are fast) and au-ray (the geometry of the level sets is preisely known). We do not aÆrm thatthe AÆne Morphologial Sale Spae yields the best image approximation : itis geometrially better than bilinear interpolation (for whih pixelization e�etsremain), but less aurate than sophistiated image interpolation algorithms like[8℄. However, we proved that it an be preisely omputed in a reasonable timeand then allowing any kind of geometri deformation.We ompared deformations yielded by our method, zero and bilinear inter-polation on two images :On the simple binary image (left in Fig. 4), we applied an aÆne deformationusing three di�erent methods. A bilinear interpolation (left part of middle im-age) and a zero-order interpolation (right part of middle image). Our geometrirepresentation desribed in this paper gives the right image. Contrary to lassi-al methods, a geometri urve shortening quikly provides a good ompromisebetween pixelization e�ets, auray and di�usion e�ets.In Fig. 6 we present a satellite image from whih we have simulated a pro-jetive view (from right to left as indiated by the blak trapezoid). Fig. 7 leftshows the results with zero-order interpolation (left part) and bilinear interpo-lation (right part). Our algorithm, using the geometri implementation of theaÆne morphologial sale spae gives the result shown in Fig. 7 right.7 ConlusionIn this paper, we desribed how the AÆne Morphologial Sale Spae of animage an be implemented in a geometri manner. Compared to lassial salarshemes, the main advantages are a muh higher auray both in terms ofimage de�nition and in terms of �delity to the sale spae properties (ontrast-invariane and aÆne-invariane). The algorithm needs a large amount of memorybut it still is rather fast, and the representation it indues also allows very fastgeometri image deformations and ontrast hanges.



348 Pro. 2nd Int. Conf. on Sale-Spae Theories in Computer VisionOur method relies on a level-set deomposition/reonstrution and on a par-tiular geometri algorithm for aÆne urve shortening, but it ould be gen-eralized to other urve evolutions, as similar geometri algorithm for generalurvature-driven urve evolutions are likely to appear soon. Another generaliza-tion ould be made by using some image interpolation for the extration of thelevel-sets : however, in this ase the representation will generally no be ontrast-invariant any more. A more geometri extension of the algorithm relying on theinterpolation of new level lines using the Absolute Minimizing Lipshitz Exten-sion (see [4℄) ould also be investigated for visualization tasks.Referenes1. L. Alvarez, F. Guihard, P.L. Lions, J.M. Morel, \Axioms and fundamental e-quations of image proessing", Arhives for Rational Mehanis 123, pp. 199-257,1993.2. S. Angenent, G. , A. Tannenbaum, \On the aÆne heat equation for nononvexurves", preprint.3. J. E. Bresenham, \Algorithm for omputer ontrol of a digital plotter", IBM Syst.J. 4:1, pp. 25-30, 1965.4. V. Caselles, J.-M. Morel \An Axiomati Approah to Image Interpolation", IEEETransations On Image Proessing, vol. 7:3, pp. 376-386, marh 1998.5. T. Cohigna, \Reonnaissane de formes planes", PhD dissertation, Ceremade,1994.6. T. Cohigna, F. Eve, F. Guihard, J.-M. Morel, \Numerial analysis of the funda-mental equation of image proessing", preprint Ceremade, 1992.7. J. Froment, \A Funtional Analysis Model for Natural Images Permitting Stru-tured Compression", preprint CMLA, 1998.8. F. Guihard, F. Malgouyres, \Total Variation Based Interpolation", Proeedingsof Eusipo'98, vol. 3, pp.1741-1744.9. K. Mikula, \Solution of nonlinear urvature driven evolution of plane onvexurves", Applied Numerial Mathematis, vol. 23, pp. 347-360, 1997.10. L. Moisan, \AÆne Plane Curve Evolution : a Fully Consistent Sheme", IEEETransations On Image Proessing, vol. 7:3, pp. 411-420, marh 1998.11. L. Moisan, \Traitement num�erique d'images et de �lms : �equations aux d�eriv�eespartielles pr�eservant forme et relief", PhD dissertation, Ceremade, 1997.12. P. Monasse, F. Guihard, \Fast omputation of a ontrast-invariant image repre-sentation", preprint CMLA, 1998.13. W.J. Niessen, B. M. ter Haar Romeny, M. A. Viergever, \Numerial Analysis ofGeometry-Driven Di�usion Equations", in Geometry-Driven Di�usion in Comput-er Vision, Bart M. ter Haar Romeny Ed., Kluwer Aad. Pub., 1994.14. G. Sapiro, A. Tannenbaum, \AÆne invariant sale-spae", Int. J. Comp. Vision,vol. 11, pp. 25-44, 1993.15. J.A. Sethian, Level Set Methods, Cambridge University Press, 1996.
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Fig. 3. AMSS of gira�e, original top left, level lines on the right.

Fig. 4. AÆne transform of an ellipse image.



350 Pro. 2nd Int. Conf. on Sale-Spae Theories in Computer Vision

Fig. 5. The Lena image superimposed with its smoothed level lines.

Fig. 6. Original satellite image.

Fig. 7. Projetive view of satellite image.


