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Abstract. We explain how a discrete grey level image can be numer-
ically translated into a completely pixel independent geometric struc-
ture made of oriented curves with grey levels attached to them. For
that purpose, we prove that the Affine Morphological Scale Space of
an image can be geometrically computed using a level set decomposi-
tion/reconstruction and a well adapted curve evolution scheme. Such an
algorithm appears to be much more accurate than classical pixel-based
ones, and allows continuous deformations of the original image.

1 Introduction

If a mathematician had to examine recent evolutions of image analysis, he would
certainly notice a growing interest for geometric techniques, relying on the com-
putation of differential operators like orientation, curvature, ... or on the analysis
of more global objects like level curves. Of course Fourier or wavelet analysis are
still very efficient for image compression for example, but in order to analyze
larger scales geometric approaches seem to be more relevant. At large scales
a real-world image can hardly be considered like a sound signal as a super-
imposition of waves (or wavelets), since the main formation process relies on
occlusion, which is highly nonlinear. This is not without some mathematical
consequences : in this context, images are more likely to be represented in a
geometrical space like BV (R?), the space of functions on R? with bounded vari-
ation, than in the more classical L?(R?) space. From a practical point of view,
the question of the numerical geometric representation of an image certainly
deserves to be investigated, since images have been described so far by arrays of
numbers (or wavelet/DCT coefficients for compressed images). It is likely that
in the future alternative geometric descriptions will be commonly used, relying
on some level-set /texture decomposition like the one proposed in [7].

In this paper, we show how it is possible to compute numerically a complete-
ly geometric and multiscale representation of an image, for which the notion of
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pixel disappears (though it can be recovered). Our algorithm is a fully geomet-
rical implementation of the so-called Affine Morphological Scale Space (AMSS,
see [1]), described in Sect. 2. Due to its contrast invariance, this scale space
is equivalent to the affine curve shortening process described in [14], for which
a fully geometrical algorithm has been recently proposed in [10]. A simplified
version of this scheme, described in Sect. 3, allows to process all level curves
of an image with a high precision in a couple of minutes. In association with
level set decomposition and reconstruction algorithms, described in Sect. 4, we
thus compute the AMSS of an image with much more accuracy than classical
scalar schemes, as is shown in Sect. 5. Another interest of this method is that it
yields a contrast-invariant multiscale geometric representation of the image that
provides a framework for geometry based analyses and processing. We illustrate
this in Sect. 6 by applying our algorithm to image deformation.

2 The Affine Morphological Scale Space

A natural way of extracting the geometry of an image consists in the level set de-
composition inherited from Mathematical Morphology. Given an image u viewed
as an intensity map from R? to R, one can define the (upper) level sets of u by

a(u) = {x € R?%; u(x) > A}

This collection of planar sets is equivalent to the function u itself since one has
the reconstruction formula

u(x) = sup{A; x € xa}

The main interest of this representation is its invariance under contrast changes :
if g is an increasing map from R to R (i.e. a contrast change), then one has

Xg(N\) (g(u)) = xa(u).

Hence, the collection of all level sets of an image does not depend a priori on the
global lightning conditions of this image, and is thus an interesting geometrical
representation.

Now, because an image generally contains details of different sizes, the notion
of scale-space has been introduced. It consists in representing an original image
up(+) by a collection of images (u(, t))¢>0 which are simplified versions of ug such
that u(-,0) = uo(-) and, with increasing scale ¢, the u; represent more and more
coarser versions of ug . There are plenty of possibilities for such representations,
but it is possible to reduce them by demanding strong invariance properties from
the operator T; which transforms uq(-) into u(-,t). In particular, it is possible to
enforce the level set decomposition evoked above to be compatible with the scale-
space representation, in the sense that the A-level set of u(-,t) only depends on
the A-level set of ug. If one asks, in addition, for other properties like regularity,
semi-group structure, and Euclidean Invariance (i.e. translation and rotation
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invariance), then according to [1] one reduces the possibilities to the choice of a
nondecreasing continuous function F' governing the scale space given by

ou . Du
E = ‘D’U/‘ F (dlvD'[/,) s (1)

where Du represents the spatial gradient of u. In this paper we have chosen the
particular case of the Affine Morphological Scale Space, given by F(s) = s'/3
for mainly two reasons :

First, this is the only case which yields an additional invariance property
called Affine Invariance :

Ty(ug o @) = (Tyug) o ¢ for any ¢(x) = Ax+b, Ae SL(R?), beR*. (2)

This property allows to perform affine-invariant shape recognition under occlu-
sions (see [5]) and to compute local affine-invariant features like affine curvature
for example.

Second, there exists a fully consistent geometric scheme (see [10]) for solving
the level curve evolution induced by the AMSS,

oC

o = kPN, (3)

Here C is any point of a level curve, k the local curvature and N the normal
vector at this point. In particular, this scheme guarantees that the inclusion of
any two sets is preserved by the evolution (inclusion principle). In the simplified
version described in Sect. 3, it is very fast (linear complexity) and robust, as
only areas and middle points are computed.

3 A Fast Geometric Scheme

The numerical implementation of the affine scale space of a curve given by (3) can
be realized in several ways. For our purpose, an ideal algorithm should satisfy,
up to a given computer precision, the following properties :

P1: preserve inclusion, which is necessary for level set reconstruction;

P2: be affine invariant, since the scale-space is;

P3: have linear complexity, so that all level curves of an image can be processed
with a high precision in a reasonable time.

Of course, algorithms based on scalar formulations (see [15]) are not relevant
here, since our goal is precisely to get rid of pixel based representations. In any
case, such algorithms satisfy neither P1 nor P2, and are not computationally
efficient (in terms of time and memory) if an accurate precision is needed (e.g.
100 points per original pixel). The purpose of this paper is to present a scheme
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Fig. 1. Affine erosion (- - -) of a convex curve ().

opposite to Sethian’s formulation !, since we want to solve a scalar (contrast-
invariant) evolution equation with a geometric algorithm. We cannot either use
local point evolution schemes (naive ones or more refined ones like in [9]) since
they do not guarantee P1 (because they rely on a local estimation of the cur-
vature that is not directly connected with a global property like inclusion), and
for the same reason P2 would be uncertain (and might depend on the discretiza-
tion). This is the reason why we started from the geometric scheme described in
[10], for it satisfies P1 and P2. This scheme is based on a simple operator called
affine erosion, which we define now.

Consider a (non necessarily closed) convex parameterized curve C' : [a, b] —
R? and an area parameter o. Define a o-chord set of C' as the region with area o
that is enclosed by a segment [C(s1)C(s2)] and the corresponding piece of curve
C([s1,52]). Then, the o-affine erosion of C, written E,(C), can be defined as the
segment-side boundary of the union of these o-chord sets (see Fig. 1). Without
going into details (which might be found in [10] and [11]), we briefly recall two
main results about the affine erosion :

First, the evoked boundary is essentially obtained by the middle points of
the segments [C'(s1)C(s2)] defining the o-chord sets (minus some “ghosts parts”
that do not appear in general, and plus two end-segments if the curve is not
closed)

Second, the infinitesimal iteration of such an operator asymptotically yields
the affine scale space of the initial curve Cy (with fixed endpoints if Cy is not
closed), one has

3

(E;)" (Co) = C(,t)) as n— +oc, 0 — 0 and % <%> no?® 5t
where C(-,t) is defined from Cy by (3).

The scheme presented in [10] relies on a more general definition of the affine
erosion that also applies to non-convex curves. Compared to the convex case,
the computations are more complex since the computation of curve intersections
may be needed, which requires careful programming and causes the complexity

! The main interest of scalar formulations is that they naturally handle topological
changes of the level sets : it has however been proved in [2] that no such changes
occur for the affine scale space.
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of the algorithm to become quadratic in the number of vertices of the polygonal
curve to be processed. This is the reason why, as suggested in [10], we have
chosen an alternative scheme based on the separate treatment of each convex
part. Given a possibly non-convex and non-necessarily closed polygonal curve,
we iterate the following three-step process :

1. Break the curve into convex components (by “cutting” inflection segments
at their middle point), and compute the minimum value o ,,;, of the area of
any non-closed component.

2. Define 0,¢q; = min(om,in, o) and apply a discrete affine erosion of area o,¢q;
to each convex component.

3. Concatenate the obtained pieces of curves in order to obtain a new (possibly
Non-convex) curve.

This approach yields a good approximation of the exact affine-erosion of C'. In
fact, the only difference may occur near inflection points of C, but in practice
for reasonable values of o both evolutions give the same result (see [11]). The
main advantage of this simplified algorithm is that it is very fast (it has linear
complexity) and it is very robust, since each evolution is obtained by middle
points of segments whose endpoints lie on the original curve and whose selection
only relies on an area computation.

4 The Complete Algorithm

Our geometric multiscale representation algorithm for numerical images is made
out of the following 5 steps.

Step 1: decomposition.

The level set extraction is done currently in a straightforward way. Using 4-
connectedness, we extract, for each grey value which appears in the image, the
corresponding level sets (upper or lower) and keep the oriented border such that
the level set lies on the left of the curve. We thus obtain a set of curves which
are either closed or start and end on the image border. For each curve we keep
the associated grey level, so that we have a representation that is completely
equivalent to the initial image. It is important to notice that no interpolation is
made to extract these level curves : the pixels are simply considered as adjacent
squares.

Step 2: symmetrization.

Then, in order to get Neumann boundary conditions for the affine scale space,
we have the possibility to symmetrize the level lines which start and end on the
border, which guarantees that the curve will remain orthogonal to the image bor-
der during the evolution. Curves with end points on the same side are reflected
once, curves with end points on adjacent sides are reflected twice, thus yielding
closed curves. Finally curves with end points on opposite sides are reflected once
at each side (they should, theoretically, be reflected infinitely many times, but
in practice once is enough). Without this symmetrization the endpoints of the
non-closed level curves would remain fixed.
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Fig. 2. Example of rasterization of a floating-point curve (—) into a pixel-separating
integer curve (- - -).

Step 3 : AMSS.

At this stage, we process all level curves with the geometric implementation
of the affine scale space described in Sect. 3. This involves two parameters :
the scale of evolution ¢ and the precision € at which curves are computed. We
normalize ¢ such that 1/ corresponds to the number of points that will be used
to describe a one-pixel-length curve.

Step 4: geometric transformation and/or computation.

Once achieved steps 1 to 3, we have a smooth geometric description of the image
that allows to perform any geometric transformation and/or computation. We
shall give an example of image deformation in section 6, but there are many other
possibilities of geometric processing. For example, one can simply remove level
sets that are too small, or too oscillatory (see [12]), or satisfying any geometric
criterion that can be estimated on a smooth curve.

Step 5: rasterization and reconstruction.

After transforming the level lines of the initial image, we need to reconstructed
the corresponding image. This is done by filling in the level sets and using the
grey level information associated with each level line. This step is more complex
than the extraction of level lines, since now the level curves are made of points
with non-integer coordinates, and thus we have to decide whether a pixel is
inside the set or not. We first rasterize the curves by taking care to respect the
inclusion principle, using an adaptation of Bresenham’s algorithm 2, so that a
pixel belongs to the side of the curve where more than half of its area is. We
added a special treatment for very near points (sub-pixel). Our implementation
allows a good approximation of the real curves. Only some very small, sub-pixel,
details of the eroded curve might be lost during the rasterization, such as curves
enclosing an area smaller than one pixel.

2 Bresenham’s algorithm is a well known algorithm from computer graphics which
allows to join two points which have floating-point coordinates and are distant by
more than a couple of pixels (see [3] and any computer graphics book or internet
site).
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Complexity of the Algorithm

The complexity of the different steps of the algorithm depends on the following
parameters : N, the number of pixels contained in the original image (typically
105) ; G, the number of grey-levels contained in the original image (typically
256) ; €, the precision (number of points per pixel) at which the level curves need
to be computed (typically from 1/100 to 1/2) ; ¢, the scale at which the level
curves are smoothed, and N', the number of pixels contained in the reconstructed
image. Table 1 gives upper bounds of time and memory complexity for the steps
described above.

| ||computation time| memory|

decomposition N x G N x G
affine scale space|| N x G xt/e |NxGJe
rasterization N x G/e N x G/e
reconstruction N' x G N' x G

Table 1. Complexity of the proposed algorithm

Notice that the upper bound of N x G points to describe all level lines of G is
very rough. For the classical Lena image (see Fig 5, one has N = 2562, G = 238,
and the decomposition yields in 10 seconds about 48000 curves and 1.1 million
points. Then the affine scale space computation for € = 1/2 takes 2.5 minutes
and yields 13000 curves and 0.78 million points. The final rasterization and
reconstruction takes 10 seconds.

5 Comparison with Scalar Schemes

The purpose of this section is to compare the geometric algorithm we proposed
with explicit scalar schemes based on the iteration of a process like

D l/n/ 1/?
u™ ! = u™ + |Du”| div 22— ,
| Dun|

where Du™ and div% are computed using finite differences on a 3x3 neigh-
borhood of the current pixel (see [6]) or using a non-local estimation of the
image derivatives obtain by a Gaussian convolution (see [13]). Such a scheme is
strongly limited by the grid : the localization of the level curves is known up
to a precision of the order of the pixel size (even when interpolation is used),
and affine-invariance could only be achieved at large scales (but even rotation-
invariance is difficult to ensure at all scales, as noticed in [13]). Another striking
side effect of such scalar schemes is that they need to produce artificial diffusion
in the gradient direction. In other terms, a scalar scheme cannot be contrast in-
variant, and in practice new grey levels (and consequently new level curves) are
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created. The reason is the following : for a purely contrast-invariant algorithm
defined on a fixed grid, a point of a level curve either does not move or moves
by at least one pixel. This constraint causes small (i.e. large scale) curvatures to
be treated as zero, and is for that reason incompatible with a curvature-driven
evolution like AMSS.

These effects are illustrated on Fig. 3. We have chosen an image of size 100x 70
which has been magnified 10 times and subsampled to only 10 20-spaced grey
levels, see the first line. The left column presents the image, the right column
the level sets. In the second line we show the result of our algorithm, no level
sets (i.e. grey levels) are created, the level lines are smoothed. The last line
presents the result of a classical scalar algorithm. As expected, the scalar scheme
produces artificial diffusion which causes a multiplication of the level lines. This
can be seen in the left half of the level lines image where 5-spaced level lines are
represented, in the right part 20-spaced level lines are represented which should
be the only present. One can also remark some anisotropy in that side effect
diffusion : it is more attenuated along the directions aligned with the grid (i.e.
horizontal or vertical directions), which enforces the visual perception of this
grid.

6 Applications

6.1 Visualization of Level Curves

The level sets of an image are generally so irregular that only a few of them can
be visualized at the same time. Extracting and processing independently each
level curve of an image produces an interesting tool to visualize clearly the level
lines of a given image, as illustrated in Fig. 5.

Here, we can see all 4-spaced level lines of the Lena image thanks to the smooth
geometric representation provided by the geometric Affine Morphological Scale
Space. Such a superimposition shows interesting information about the geometric
structure of the image.

6.2 Image Deformation

In this part, we show how our algorithm can be used to apply a geometric trans-
form to an image. In the experiments that follow, projective or affine transforms
are used, but more complex geometric transform will work as well. Let u(i, j) be
a given, discrete image, how can one define an approximation (or interpolation)
@ of u that allows to build the transformed image

. ~<m:+bj+c fi+g,j+h,>
1)(,[’7-7):7‘ )

di+ej+1" di+ej+1
where a,b,c,d,e, f,g,h are given coeflicients (that may vary) ? One can dis-

tinguish between two kinds of methods. The first are continuous (and explicit)
methods, for which a continuous model for @ is explicitly given and computed
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from u once and for all. The second are discrete (and implicit) methods, for
which @ is implicitly defined and must be estimated for each discrete grid.

For example, zero order interpolation defined by a(i,j) = u([i + 1/2],[j +
1/2]), where [z] represent the integer part of z, or bilinear interpolation and
higher order generalizations are explicit methods. On the opposite, image in-
terpolation/approximation algorithms based on the minimization of a certain
error between discrete images (like the Total Variation used in [8]) are implicit
methods. In fact, this distinction is rather formal if the practical criterion is not
“how is @ defined ?”, but “how much time does it take to compute @ ?”. For
example, Fourier representation is an explicit method, but for non-Euclidean
transformations it is computationally expensive. Indeed if N is the number of
pixels of the original image u, it requires N operations to compute the value
of @ in a given point. From that point of view, our representation is a compro-
mise between computation time (once the level lines have been extracted and
smoothed, the deformation and the reconstruction processes are fast) and accu-
racy (the geometry of the level sets is precisely known). We do not affirm that
the Affine Morphological Scale Space yields the best image approximation : it
is geometrically better than bilinear interpolation (for which pixelization effects
remain), but less accurate than sophisticated image interpolation algorithms like
[8]. However, we proved that it can be precisely computed in a reasonable time
and then allowing any kind of geometric deformation.

We compared deformations yielded by our method, zero and bilinear inter-
polation on two images :

On the simple binary image (left in Fig. 4), we applied an affine deformation
using three different methods. A bilinear interpolation (left part of middle im-
age) and a zero-order interpolation (right part of middle image). Our geometric
representation described in this paper gives the right image. Contrary to classi-
cal methods, a geometric curve shortening quickly provides a good compromise
between pixelization effects, accuracy and diffusion effects.

In Fig. 6 we present a satellite image from which we have simulated a pro-
jective view (from right to left as indicated by the black trapezoid). Fig. 7 left
shows the results with zero-order interpolation (left part) and bilinear interpo-
lation (right part). Our algorithm, using the geometric implementation of the
affine morphological scale space gives the result shown in Fig. 7 right.

7 Conclusion

In this paper, we described how the Affine Morphological Scale Space of an
image can be implemented in a geometric manner. Compared to classical scalar
schemes, the main advantages are a much higher accuracy both in terms of
image definition and in terms of fidelity to the scale space properties (contrast-
invariance and affine-invariance). The algorithm needs a large amount of memory
but it still is rather fast, and the representation it induces also allows very fast
geometric image deformations and contrast changes.
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Our method relies on a level-set decomposition/reconstruction and on a par-
ticular geometric algorithm for affine curve shortening, but it could be gen-
eralized to other curve evolutions, as similar geometric algorithm for general
curvature-driven curve evolutions are likely to appear soon. Another generaliza-
tion could be made by using some image interpolation for the extraction of the
level-sets : however, in this case the representation will generally no be contrast-
invariant any more. A more geometric extension of the algorithm relying on the
interpolation of new level lines using the Absolute Minimizing Lipschitz Exten-
sion (see [4]) could also be investigated for visualization tasks.
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Fig. 3. AMSS of giraffe, original top left, level lines on the right.

This_ 1S AN A\NN
an ellipse W W

Fig. 4. Affine transform of an ellipse image.
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Fig. 7. Projective view of satellite image.



