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Abstract. One of the aims of computer vision in the past 30 years has been to recognize shapes
by numerical algorithms. Now, what are the geometric features on which shape recognition can be
based? In this paper, we review the mathematical arguments leading to a unique definition of planar
shape elements. This definition is derived from the invariance requirement to not less than five classes
of perturbations, namely noise, affine distortion, contrast changes, occlusion, and background. This
leads to a single possibility: shape elements as the normalized, affine smoothed pieces of level lines
of the image. As a main possible application, we show the existence of a generic image comparison
technique able to find all shape elements common to two images.
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1. What is shape? “Shape” can have different meanings. Most authors refer to
shape as a common denominator between several identical or similar three-dimensional
(3D) objects seen from different points of view. The problem of “recognizing a 3D
object from a single view” has been extensively studied [22, 26, 34, 41]. When sev-
eral uncalibrated views of the same 3D object are available, its 3D model can be
reconstructed [21, 24].

From another, more restrictive point of view adopted in phenomenology [5, 37],
shape means a subset of an image, digital or perceptual, endowed with some qualities
permitting its recognition. We call such perceptual objects planar shapes. The very
notion of shape is linked to the recognition problem. Thus, it is licit to use recognition
processes as a way to define classes of shape: one then calls shape any part of an image
which can be recognized in another image.

Here again, some restriction must be made. The common use of planar shape al-
ways involves a set of possible deformations. The usual ones are translation, rotation,
and zoom. Now, authors have explored in recent years more general deformations,
particularly elastic ones. In [18, 51], the matching of images or shapes is made up
to a flow of diffeomorphisms deforming one of the images (or shapes) onto the other
one. These papers, and many references therein, give a well developed mathemati-
cal treatment of a problem raised as early as 1983 in [6]: the matching of deformed
radiographic images to idealized atlas images.

We therefore have two meanings for shape: one is the 3D bulk of an object
and the other one denotes an equivalence class of planar shapes, or images, under a
deformation group.
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Fig. 1.1. According to the theory of G. Kanizsa and his school, shapes can be recognized even
when they undergo several occlusions. Our perception is trained to recognize shapes which are only
seeable in part.

Shape recognition must be performed in spite of occlusion. The phenomenology of
occlusion was thoroughly studied by Kanizsa [27] and his school. Figure 1.1 illustrates
how invariant our vision is to occlusion. Most viewers describe it as made of circles and
rectangles; they do not even notice that such a description is inferential, rectangles
and disks simply not being there. Kanizsa argues that occlusion is always present
in every day’s vision: most objects we see are partially hidden by other ones. Our
perception must therefore perform a recognition of partial shapes.

Another structural difficulty arising in shape recognition was first pointed out in
perception psychology as the figure-background problem, studied by Rubin [45]. It is
the other face of the occlusion problem: a shape is superimposed to a background,
which can be made of various objects. How does one extract, or single out, the shape
from that clutter? This can also be viewed as a dilemma: do we first extract the shape
and then recognize it or, conversely, do we extract it because we had it recognized?

There are other perturbations affecting the identity of shapes. Shapes are easily
recognized in images in spite of a change in the color and luminance scale; shapes are
also easily recognized when noise and blur are present. Thus, we can list not less than
five kinds of perturbations for planar shapes, which do not affect shape recognition:

• elastic or projective deformations;
• the classical noise and blur, inherent to any perception and any image by

Shannon’s theory;
• changes of contrast;
• the occlusions;
• the background.

We should notice that the last two mentioned perturbations are of a very different
nature: indeed, occlusion is related to a removal of parts of the shape, while the
background can lead to additions as well. This means only that we are not able to
define the shape as a whole but rather as a conjunction of geometric features, which
we shall call shape elements. Thus, a natural strategy to the definition of shape has
two main steps.

1. Define shape elements as any local, contrast invariant, and affine invariant
part of the image.

2. Define shape as a conjunction of shape elements which can be recognized in
several different images.

This strategy is classical and adopted (e.g.) in the book [44] and many references
therein. We notice that shape elements are then defined by invariance arguments only
and are therefore fully accessible to a mathematical discussion.

Shapes, instead, are of empirical nature and will be learned by the recognition of
several shape elements. We shall focus first on shape elements and then, only in the



ON THE THEORY OF PLANAR SHAPE 3

Fig. 1.2. Sleeping cat? According to the perception psychologist Attneave [5], the main infor-
mation in shapes is contained in the high curvature points: “Common objects may be represented
with great economy, and fairly striking fidelity, by copying the points at which their contours change
direction maximally, and then connecting these points appropriately with a straightedge.”

final part, outline several uses which can be made of the shape elements in various
recognition and image comparison contexts.

Let us end this introduction with some cues about how we shall compute the
shape elements. Not later than 1954, a visionary paper [5] by the perception psychol-
ogist Attneave outlined most of the shape encoding program we intend to describe.
“Information”, he wrote, “is concentrated along contours (i.e., regions where color
changes abruptly), and is further concentrated at those points on a contour at which
its direction changes most rapidly (i.e., at angles or peaks of curvature)” (see Figure
1.2). As we shall see in the citation of section 2.4, he also defined, in literary but ac-
curate terms, how a smoothing of the contours should be performed. His description
was shown afterwards to correspond to curvature motion [36, 28].

If we follow step by step the propositions of Attneave, made at a time where no
computer vision, and almost no computers, existed, we are led to solve the following
problems:

• extract curves as contours of the image;
• smooth such curves by a curvature motion (we shall improve here Attneave’s

proposition by using affine invariant curve motion);
• encode locally such curves so as to get an encoding robust to occlusion and

background. Those invariant codes will be the shape elements.
Our plan follows from the preceding discussion. In section 2, we translate the four

invariance arguments into as many geometric and algorithmic requirements for the
extraction, filtering, and encoding of shapes in digital images. The affine invariant
shape smoothing algorithm is analyzed in detail in sections 3 and 6. We describe the
final encoding method, after smoothing of the extracted curves, in section 4. Section
5 shows several image comparison experiments.

2. Invariance arguments: A derivation of shape elements. In this section,
we address the problem of deciding which information in a digital image is relevant
to define or recognize shapes. We shall show that invariance arguments enforce the
definition of the most basic shape elements. The problematic is illustrated in Figure
2.1, with two different paintings of Georges de la Tour containing similar shapes. Our
presentation method here, and in the next sections, follows [33].

2.1. The local contrast invariance argument. “The concentration of infor-
mation in contours is illustrated by the remarkable similar appearance of objects alike
in contour and different otherwise. The ‘same’ triangle, for example, may be either
white on black or green on white. Even more impressive is the familiar fact that an
artist’s sketch, in which lines are substituted for sharp color gradients, may constitute



4 J. L. LISANI, L. MOISAN, P. MONASSE, AND J. M. MOREL

Fig. 2.1. Original images. These images correspond to different paintings from the French
painter Georges de la Tour. The painting on the left is called “Le tricheur à l’as carré” (Kimball
Art Museum, Ft. Worth, TX). The painting on the right is a fragment of “Le tricheur à l’as de
diamants” (Louvre, Paris, France). Images used with permission from Olga’s Gallery—Online Art
Museum, www.abcgallery.com.

a readily identifiable representation of a person or thing.” (Attneave [5], 1954).

“I stand at the window and see a house, trees, sky. Theoretically I might say
there were 327 brightnesses and nuances of colour. Do I have ‘327’? No. I have sky,
house, and trees. It is impossible to achieve ‘327’ as such. And yet even though such
droll calculation were possible and implied, say, for the house 120, the trees 90, the
sky 117—I should at least have this arrangement and division of the total, and not,
say, 127 and 100 and 100; or 150 and 177.” (Wertheimer [49], 1923).

The above quotes in the founding papers of the gestaltists Attneave and Werthei-
mer point out the same invariance principle: shape perception is independent of the
grey level scale or of the measured colors. This perceptual axiom is easily explained
by physical arguments. Indeed, the response of the various captors receiving the light
varies according to several unknown factors such as brightness of the sky, aperture of
the optical apparatus, and physical sensibility range of the captor. The only reliable
information left is actually the order of brightness. As Wertheimer says, we do not
see “327,” but he noticed that we are at least able to see some contrast between 327
and 150.

We define a digital image as a function u(x), where u(x) represents the grey level
or luminance at x.1 According to the contrast invariance principle, our first task is to
extract from the image a topological information fairly independent from the varying
and unknown contrast change function of the optical and/or biological apparatus. We
can model such a contrast change function as any continuous increasing function g
from R

+ to R
+. The real datum when we observe u could be as well any image g(u).

This simple argument leads to select the set of level sets of the image [47], or its set
of level lines, as a complete contrast invariant image description [10].

Definition 2.1. The upper topographic map of an image is the family of the
connected components of the level sets of u, [u ≥ λ], λ ∈ R.

1Shape recognition algorithms do not use much color. The geometric information brought by
color usually is redundant with respect to luminance [11].
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Fig. 2.2. Left: original image. Right: meaningful level lines. These lines make a sparse nested
set of Jordan curves. Each one of the Jordan curves can be used directly for shape based image
comparison.

An image can be reconstructed from its upper level sets by the formula

u(x) = sup{λ, u(x) ≥ λ}.(2.1)

We define the level lines as the boundaries of the level sets. There are several
frameworks to define the level lines: if u is considered to be a function with bounded
variation, the level lines can be defined as a set of nested Jordan curves [3]. The set
of all level lines is called the topographic map of the image.

2.2. The concentration of information argument. The preceding subsec-
tion led us to define the set of the image level lines as a complete contrast invariant
information. Somewhat in contradiction with this contrast invariance principle, many
authors assert, like Attneave, that “Information is concentrated along contours (i.e.,
regions where color changes abruptly).” One can argue that not all of the level lines
are really needed to have a complete description. Some of them are due to noise or
to small, hardly noticeable, changes in illumination. Thus, it makes sense to prune
the tree of level lines by only keeping a selection of the most contrasted level lines.
This is not an essential step, but it permits one to accelerate a lot shape recognition
algorithms. A simplification of the tree of level lines can be performed by using the
method proposed in [14], which retains roughly all “meaningful” level lines. These
level lines are defined by applying Helmholtz’s perception principle: an observed ge-
ometric structure is perceptually “meaningful” if its number of occurrences would
be very small in a random situation. Desolneux, Moisan, and Morel [14] propose a
method that, based on contrast measurements, assigns an expectation to each level
line. Only those level lines with small expectation are retained, i.e., the ones which
are contrasted enough to be “above the noise.” We shall show in the experiments
only those well-contrasted, “meaningful” level lines. This method usually reduces by
a factor 10 the number of level lines and therefore speeds up the recognition method
by a 100 factor. Figure 2.2 shows an example of the set of meaningful level lines for
a given image.

2.3. The occlusion and figure-background arguments. In section 2.1, we
have reduced an image, from the shape parsing viewpoint, to the set of all its level
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Fig. 2.3. Left: oval occluding a cross. Right: the level lines of the resulting image. While the
oval’s boundaries can be recovered as a full level line, the boundary of the cross concatenates with
the oval’s boundary. Thus recognition cannot be based on level lines, but it can still be based on
pieces of level lines.

Fig. 2.4. Left: cross on a background with an oval occluding a rectangle. The cross is wholly
in view. All the same, its shape does not appear as a level line because of the background. As in
Figure 2.3, one sees that the level lines must be broken into pieces to get clues of each single shape.

lines, otherwise called the topographic map. The topographic map is in no way the
ultimate description of shape elements. When a shape A partially occludes a shape
B, the level lines of the resulting image are a concatenation of pieces of the level
lines belonging to A and to B. Thus, the Jordan curves of the topographic map are
not simple shape elements and must be further decomposed: a segmentation of them
into their parts belonging to different objects is requested. This is shown with a very
simple example in Figure 2.3. Thus, we are led to the following definition.

Definition 2.2. We call shape element of an image u any piece of any level line
of the image.

Even if a shape is not occluded but simply occludes its own background, there
may be no level line surrounding the whole shape, as we show in Figure 2.4. This
situation is quite general: the level lines of the background can be concatenated with
the level lines of an object in view.

2.4. The smoothing argument. In order to justify the necessity of a multiscale
smoothing for shapes, we can again rely on Attneave:

“It appears, then, that when some portion of the visual field contains a quantity
of information grossly in excess of the observer’s perceptual capacity, he treats those
components of information which do not have redundant representation somewhat as
a statistician treats ‘error variance,’ averaging out particulars and abstracting certain
statistical homogeneities. Such an averaging process was involved in drawing the cat
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Fig. 2.5. One can immediately see that those two objects are disks, with approximately the same
size. The second one is obtained from the first by the affine curvature equation [2]. Such a curvature
equation was anticipated by Attneave, who proposed to smooth the silhouette of a cat by (a) blurring
the cat image and (b) enhancing the resulting image to get a smooth silhouette: “somewhat as if the
photograph of the object were blurred and then printed on high-contrast paper.”

for Figure 1.2. It was said earlier that the points of the drawing corresponded to places
of maximum curvature on the contour of the cat, but this was not strictly correct; if the
principle had been followed rigidly, it would have been necessary to represent the ends
of individual hairs by points. In observing a cat, however, one does not ordinarily
perceive its hairs as individual entities; instead one perceives that the cat is furry.
( . . . ) The perceived contour of a cat (e.g., the contour from which the points of
Figure 1.2 were taken) is the resultant of an orthogonal averaging process in which
texture is eliminated or smoothed out almost entirely, somewhat as if a photograph
of the object were blurred and then printed on high-contrast paper.”

A correct shape encoding, which does not get lost in textural details, asks for a
previous blurring. The process suggested (in bold in the citation) is to convolve the
silhouette of the object (“blurred”) and then to enhance the result, which amounts to
thresholding the image (“high-contrast paper”) (see Figure 2.5). This algorithm is by
now known as the Bence, Merriman, and Osher algorithm [36] (an early version of the
algorithm is due to Koenderink and van Doorn [28]) and was proved to be equivalent
to the curvature motion [7, 19]:

∂u

∂t
= |Du|curv(u).(2.2)

3. Affine invariant mathematical morphology and affine scale space.
The general process by which an image or a shape is smoothed at several scales in
order to eliminate spurious or textural details and extract its main features is called
“scale space.” The main developments of scale space theory in the past 10 years
involve invariance arguments: indeed, a scale space will be useful to compute invariant
information only if it is itself invariant. Let us summarize a series of arguments given
(e.g.) in [2]: a scale space computing contrast invariant information must in fact
deal directly with the image level lines; in order to be local (not dependent upon
occlusions), it must in fact be a PDE. In order to be a smoothing, this PDE must be
of a parabolic kind. Then, the further affine invariance requirement and the invariance
with respect to reverse contrast (if we want a self-dual operator, in the mathematical
morphology terminology [47]) lead to a single PDE,

∂u

∂t
= |Du|curv(u)

1
3 ,(3.1)
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Fig. 3.1. Two similar level lines (in white) in the paintings of Figure 2.1. How similar they
locally are will be decided by an algorithm performing affine scale space and local affine invariant
comparison.

where Du denotes the gradient of the image, curv(u) denotes the curvature of the level

line, t denotes the scale parameter, and the power 1
3 is signed, i.e., s

1
3 = sign(s)|s| 13 .

This equation is equivalent to the “affine curve shortening” [46] of all of the level lines
of the image, given by the equation

∂x

∂t
= |Curv(x)| 13�n,(3.2)

where x denotes a point of a level line, Curv(x) denotes its curvature, and �n denotes
the signed normal to the curve, always pointing towards the concavity.

This equation is the only possible smoothing under the invariance requirements
mentioned above. This gives a helpless bottleneck to the local shape recognition
problem, since it is easily checked [2] that no further invariance requirement is possible:
(3.1) is the only affine invariant local contrast invariant smoothing. In particular,
despite some interesting attempts [20], there is no practical way to define a projective
invariant local smoothing.2

The use of curvature-based smoothing for shape analysis is well established.
Founding papers are [4, 39, 17]. These authors define a multiscale curvature which
is similarity invariant but not affine invariant. Abbasi and Mokhtarian [1] used the
curvature motion (2.2) and an affine length parameterization of the boundary of the
shapes in order to get an affine shape encoding. Of course, such a coding cannot be
fully affine invariant, since the curvature motion is not affine invariant. It is much
more natural to use directly (3.1).

An algorithm performing affine scale space and local affine invariant comparison
will allow us to measure the similarity between any two given curves, like the ones
displayed in Figure 3.1.

3.1. Affine erosions and dilations. In this subsection we shall describe a prac-
tical derivation of the affine invariant smoothing, which is quite useful for the design

2A recent paper [15] proposes, however, a new model for the motion in a planar image which is
consistent with the displacement of a pinhole camera. By using the 3D representation of a projective
deformation and the reciprocity principle, a new group with six parameters (the registration group)
is proposed instead of the projective group (eight parameters) for which multiscale smoothing can
be performed.
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Fig. 3.2. Affine distance.

of a fast algorithm. In order to do so, we go back to the mathematical morphology
formalism [47, 35] and define first an affine distance and then affine invariant set ero-
sions and dilations. We shall prove how from a very simple (probably the simplest
possible) definition of affine invariant distance of a point to a set we are in a position
to design fast affine invariant set erosions and dilations. These filters are consistent
with (3.1) and yield a natural formal derivation for a fast algorithm introduced by
Moisan [38] and described in section 6. This section follows the general line of the
book in preparation [23].

We consider ways to erode or dilate a shape in an affine invariant way.

Let A = (ac
b
d ) be an arbitrary matrix such that detA = ad − cb = 1. The set of

such matrices is the so-called special linear group, SL(R2). We say that an operator
T is special affine invariant if T commutes with A for every A in SL(R2): AT = TA.

We first define an “affine invariant distance” which will be a substitute to the
classical euclidean one. We consider shapes X, that is, in whole generality, closed
nonempty subsets of R

2. Let x ∈ R
2, and let ∆ be an arbitrary straight line passing

by x. We consider all connected components of R
2 \ (X ∪ ∆). If x /∈ X, two and

only two of them contain x in their boundary. We denote them by CA1(x,∆, X),
CA2(x,∆, X) (see Figure 3.2). We call these sets the “chord-arc sets” defined by x,
∆, and X, and we order them so that area(CA1(x,∆, X)) ≤ area(CA2(x,∆, X)).

Definition 3.1. Let X be a “shape” and x ∈ R
2, x /∈ X. We call affine distance

of x to X the real number δ(x,X) = inf∆ area(CA1(x,∆, X))1/2, δ(x,X) = 0 if
x ∈ X.

Remark. Obviously, we take the power 1/2 in order that the affine distance be
homogeneous to a length. The affine distance can be infinite: take, e.g., a convex set
X and x outside X. Then it is easily seen that δ(x,X) = +∞ because all chord-arc
sets defined by all straight lines ∆ are unbounded.

Definition 3.2. Let X be a shape, i.e., a closed nonempty subset of R
2. We call

affine a-dilate of a set X the set D̃aX = {x, δ(x,X) ≤ a1/2}. We call affine a-eroded
of set X the set ẼaX = {x, δ(x,Xc) > a1/2} = (D̃aX

c)c.

Proposition 3.3. The affine invariant erosions and dilations Ẽa and D̃a are
special affine invariant monotone operators.

Proof. It is easily seen that if X ⊂ Y , then for every x, δ(x,X) ≥ δ(x, Y ). From
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Fig. 3.3. An affine structuring element: all lines passing by 0 divide B into several connected
components. All of them which contain 0 in their boundary have an area larger than or equal to b.

this, we deduce that X ⊂ Y ⇒ D̃aX ⊂ D̃aY . The monotonicity of Ẽa follows by the
duality relation ẼaX = (D̃aX

c)c. The special affine invariance of D̃a and Ẽa follows
from the fact that if detA = 1, then area(X) = area(AX).

We shall now use Matheron theorem (Theorem 6.2 in [23]) in order to give a
standard form to Ẽa and D̃a.

Theorem 3.4 (Matheron). Let T be a translation invariant monotone operator
acting on a set of subsets of R

N . Then, there exists a family of sets B ⊂ P(RN ),
which can be defined as B = {X, 0 ∈ T (X)}, such that

T (X) =
⋃
B∈B

⋂
y∈B

X − y = {x,∃B ∈ B, x+B ⊂ X}.

The sets B ∈ B are called “structuring elements” of the operator T . Let us start
by defining structuring elements adapted to Ẽa.

Definition 3.5. We say that B is an affine structuring element if B is a set
whose interior contains 0 and if there is some b > 1 such that for every line ∆
containing 0 both connected components of B \∆ containing 0 in their boundary have
an area larger or equal to b (see Figure 3.3). We denote the set of affine structuring
elements by Baff .

Proposition 3.6. For every set X,

ẼaX =
⋃

B∈Baff

⋂
y∈a1/2B

X − y = {x,∃B ∈ Baff , x+ a1/2B ⊂ X}.

Proof. We simply apply Theorem 3.4. The set of structuring elements associated
with Ẽa is B = {X, ẼaX � 0}. Now,

ẼaX � 0 ⇔ δ(0, Xc) > a1/2 ⇔ inf∆area(CA1(0,∆, X))1/2 > a1/2.

This means that for every ∆, both connected components of X \∆ containing 0 have
an area larger than some number b > a. Thus, X belongs to a1/2Baff by the definition
of Baff .
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By Proposition 3.6, x belongs to ẼaX if and only if for every straight line ∆
chord-arc sets containing x have an area strictly larger than a.

Conversely we can state the following corollary.

Corollary 3.7. ẼaX can be obtained from X by removing, for every straight
line ∆, all chord-arc sets contained in X which have an area smaller than or equal to
a.

Hence, Definitions 3.2 and 3.5 are equivalent to Definition 2 in [38]. As we shall
see in the next subsection, alternating affine erosions and dilations on the set X
surrounded by a Jordan curve yields a numerical scheme that computes the affine
shortening (3.2) of the curve. In section 6, we shall also explain how this scheme is
implemented.

3.2. Consistency of the affine erosion-dilation scheme with the affine
invariant PDE. The main difficulty for showing the consistency of a fully affine
invariant scheme with a PDE lies in its nonlocality. Indeed, the set of affine structuring
elements contains stretched sets of any size. The arguments we now develop permit
us to localize affine invariant sets of structuring elements. This localization is the key
point to prove the announced consistency.

Definition and Proposition 3.8. We shall say that B is localizable if it is
made of compact connected sets containing 0 and if there exists a constant c > 0
such that for every ρ > c we can assert that ∀B ∈ B,∃B′ ∈ B, B′ ⊂ D(0, ρ), and
B′ ⊂ D c

ρ
(B) = {x, d(x,B) ≤ c

ρ}, where d denotes the euclidean distance, d(x,B) =

infy∈B d(x, y).

As a consequence, if we define Bs = {s1/2B,B ∈ B}, we also have ∃c > 0,∀s ≤
c−1r2,∀B ∈ Bs,∃B′ ∈ Bs, B

′ ⊂ D(0, r), and B′ ⊂ D cs
r

(B).

Proof. In order to deduce the second relation from the first, we simply set r =
ρs1/2. We have B ∈ B if and only if s1/2B ∈ Bs. We therefore replace B by s1/2B
and B′ by s1/2B′ and we get for the new B and B′ in Bs

d(B,B′) ≤ cs1/2

ρ
=
cs

r
,

provided ρ > c, i.e., r > cs1/2 or s < c−2r2.

Proposition 3.9. Let B be made of subsets of R
2 containing 0. Assume that

there exists c > 0 such that if B ∈ B and r > c, then the connected component of
D 1

r
(B) ∩ D(0, r) containing 0 is in B (resp., contains an element of B). Then B is

localizable (we denote by D 1
r
(B) the dilate of B, {x, d(x,B) ≤ 1

r}).
Proof. For any B in B, we consider B′, the connected component of D 1

r
(B) ∩

D(0, r) containing 0. In the second case, we consider an element B′ of B contained in
this connected component.

Proposition 3.10. If B = Baff is the set of all chord-arc sets, then B is localiz-
able.

Proof. We want to apply Proposition 3.9. Let B′ be the connected component
of D 2b

r
(B) ∩ D(0, r) containing 0. Let ∆ be a line passing by 0 (see Figure 3.4).

We consider one of the two connected components C′ of B′ \ ∆ containing 0 in their
boundary. We also consider C the connected component of B \∆ containing 0 in their
boundary and such that C ∩D(0, r) ⊂ B′.

Two cases: if C is contained in D(0, r), then by definition of chord-arc sets the
area of C is larger than b. Therefore, the area of C′ is larger than b.
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Fig. 3.4. Proof of Proposition 3.10.

Second case: if C is not contained inD(0, r), we consider the connected component
C1 of C \ ∂D(0, r − 2b

r ) which contains 0. C1 ⊂ C meets ∂D(0, r − 2b
r ) at some

points; then, by connectedness, each line orthogonal to [0, x] and passing by tx, with

0 ≤ t ≤ 1, meets C1 at at least one point x(t) ∈ D(0, r − 2b
r ). Noting ν = x⊥

‖x‖ , a unit

vector orthogonal to x, we notice that the interval [x(t) − 2ν
r , x(t) + 2ν

r ] is contained
in D 2b

r
(C1) ⊂ D 2b

r
(C) ⊂ B′. In addition, at least one half of this interval is contained

in C′. Thus, provided r ≥ 2b, area(C′) ≥ (r − 2b
r ) 2b

r = 2b− 4b2

r2 ≥ b.
The relevance of Proposition 3.10 is explained by the following theorem (see [23]).
Theorem 3.11. Assume that B is a localizable affine invariant set of subsets of

R
2. Set Bs = s

1
2 B its scaled version, with s → 0. Consider the alternate operator

ISsSIs, where for any real valued image u(x) on the plane

ISsu(x) = inf
B∈Bs

sup
y∈B

u(x+ y), SIsu(x) = sup
B∈Bs

inf
y∈B

u(x+ y).

Then, there exists a constant cB ≥ 0 such that for every C3 function u(x) one has

lim
s→0

ISsSIsu(x) − u(x)
s

2
3

= cB|Du|(curv(u)(x))
1
3 .

The relevance of this theorem can be explained as follows. Applying the alternate
scheme ISsSIs to u is equivalent to applying alternate affine erosions and dilations
to each level curve of u. Thus, Theorem 3.11 means that this algorithm moves these
curves, as we take s small and iterate the alternate scheme, according to (3.2) (indeed,
as we mentioned above, it is equivalent to moving all level curves of u by this equation
or to move u by (3.1)) (see Figure 3.5). We have indicated the main steps and refer
to [23] for a detailed exposition of the mathematical framework for these results.

Remarks. In this section it has been proved that if we apply (3.1) to an image and
then level lines are extracted, we get the same result as when extracting level lines
of the original image and then applying the affine erosion-dilation scheme on them.
When dealing with digital images, this theoretical equivalence no longer holds due to
the sampling effects. All finite difference schemes implementing (3.1) do not commute
with contrast changes; they create new grey levels and a blur effect. In consequence,
new level lines are created and the blur induces wrong connections between level
lines. Now, it is extremely important to have a scheme as accurate and consistent as
possible to get a high quality shape matching. Experience proves that this accuracy is
obtained only by a fully invariant scheme as the affine erosion-dilation scheme we have
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Fig. 3.5. Evolution of the selected curve in the first image of Figure 3.1 under increasing scales
of filtering (alternate affine erosions and dilations). From left to right: original curve, eroded area
= 1, and eroded area = 5. This numerical scheme is consistent with the affine shortening equation
(3.2).

introduced. It may be objected that this scheme is computationally heavy. This is not
the case; as we comment further in our remarks on complexity at the end of subsection
4.2, the complexity of the filtering algorithm is proportional to the total variation of
the image; the complexity of a good difference scheme would be proportional to the
image size. The complexity ratio between both is about 10, but this does not matter
since the heavy term in the final complexity is due to code matching and not to
filtering.

4. Shape local affine invariant encoding.

4.1. From global to local recognition methods. In global recognition meth-
ods, the shape is considered as a whole and is described by a sequence of characteristics
of the shapes [43, 16], such as perimeter, algebraic moments [48, 25, 40], or Fourier
coefficients [29, 32, 42]. A comparison of two shapes is led back to the comparison of
the vectors of computed characteristics. Most of the methods we just mentioned are
Euclidean but not affine invariant. It is possible, however, to compute affine invari-
ant moments. In that case, we face another difficulty: how do we define the relative
weights of each moment in a shape comparison distance? This difficulty is overcome
by the more clever normalization methods [12]. Normalization methods allow the
transformation of any element of an equivalence class of shapes under a group of geo-
metric transforms into a specific one, fixed once forever in each class. A good account
of global normalization methods can be found in [43]. Affine normalization [25] can
be used as a tool to match both final invariance requirements on shape recognition,
namely the locality (robustness to occlusion) and the affine invariance (invariance with
respect to orthoprojections). Indeed, the affine invariance entails an affine normal-
ization of the level lines. In addition, the robustness under partial occlusions implies
that the normalization of the level lines must be done with respect to several local
reference systems. Thus, several pieces of the same level line are normalized by using
different reference systems, providing a local and redundant description of the level
line.

Affine invariant robust semilocal descriptors are given by the lines which are bi-
tangent to the curve. These descriptors will be used as starting points for an invariant
sampling of the set of the tangent lines to the curve. A bitangent to a given curve is
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Fig. 4.1. Affine invariant encoding of a piece of curve. Left: a bitangent found in the selected
curve from the first image (after affine erosion with area = 1). Right: description of the encoding
method: L2 is a tangent to the curve parallel to the original bitangent (L1). If we call d the
distance from L1 to L2, lines L3 and L4 are parallel to L1 and at distances d/3 and 2d/3 from L1,
respectively. Points P1 and P2 are the intersection of L3 and L4 with the curve, respectively. L5

is a line passing through P1 and P2, and L6 is a tangent to the curve parallel to L5. The reference
points Ri for the normalization are the intersections of lines L1 and L5 (R1), L2 and L5 (R2), and
L1 and L6 (R3).

any straight line tangent to the curve at two different points.

From each bitangent, one can define a local system of coordinates. These coor-
dinate systems shall be invariant under affine transforms, and they will be used to
normalize a portion of the curve. This method is systematically used in [31] and in
the recent shape recognition prototype described in the book [44]. As pointed out
in this last reference, an affine normalization of a curve needs three affine invariant
reference points (see Figure 4.1). We describe in the following such an algorithm,
which we tested extensively [33].

4.2. Local affine normalization and coding algorithm.

1. Orient each level curve in a unambiguous way, e.g., by the Maxwell rule.
Thus, given a point x on the curve, we can talk about the “next” point on the curve
having some property. For each bitangent L1 to the curve, we consider the next
tangent L2 to the curve which is parallel to L1.

2. Call L3 and L4 the straight lines parallel to L1 located between L1 and L2,
at distances 1

3d and 2
3d from L1, d being the distance between L1 and L2.

3. Consider the intersection points P1 and P2 between L3 and L4 and the portion
of the curve limited by the tangency points of L1 and L2.

4. Call L5 the line passing through P1 and P2 and find the previous tangent to
the curve parallel to this line (call it L6).

5. Find the intersection points between L1 and L5, L2 and L5, and L1 and L6;
call them R1, R2, and R3 respectively.

6. Affine normalization: R1, R2, and R3 form an affine reference system since
they can be mapped to the triangle (0, 0)− (1, 0)− (0, 1) of the plane. The rest of the
curve can be normalized according to this mapping.
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7. Encoding of a piece of curve: the portion of the curve to be normalized is
proportional to the distance between R1 and R2 (the proportionality factor is typically
set to 3). The normalized portion of the curve is sampled with a fixed number p of
points (typically 9), equidistant along the normalized curve. The central point of
the normalization is the intersection point between the piece of curve limited by the
tangency points of L1 and L2 and the straight line parallel to L1 and equidistant from
L1 and L2 (C). We take p−1

2 samples on both sides of this central point. The set of
2p normalized point coordinates form the affine invariant code of the piece of curve.

To summarize, an algorithm performing shape comparison between two images
will proceed with the following steps:

1. Extraction of all the level lines for each image.
2. Affine filtering of the extracted level lines at several scales.
3. Local encoding of pieces of level lines after affine normalization.
4. Comparison of the vectors of features of the images.

Since the scale space filtering is affine invariant, the geometric transform between
two images can be correctly estimated in spite of the different scales of smoothing
which have been performed.

Remarks on the computational cost of the algorithm. We shall give an estimate
in the case where all level lines of the image are considered. The number of level lines
of the image is finite because of the grey level quantization effect, which allows one
to take only integer levels. In that case, the total length of the level lines is equal to
the total variation of the image, which we denote in the following by TV (u) =

∫ |∇u|.
Now, it is always possible to subquantize the image without much decay in recognition
performance. We also mentioned a method to extract the most meaningful level lines.
In practice, this means that we consider only a proportion ε1TV of the whole total
variation. Usually, ε1 = 1

10 . We shall give the complexity in terms of TV , which is
usually proportional to the image size (in practice, the total variation of most digital
images is about 10 times their size).

We give in the following an estimate for each step of the matching algorithm,
assuming that we compare images with the same order of magnitudes for sizes and
total variation.

• Extraction of the level lines: ε1TV .
• Filtering of the level lines: Cε1TV , where C is proportional to the (usually

fixed) smoothing scale and is larger than 1. The order of magnitude of C is 30.
• Level line encoding. The number of codes is proportional to the length of

the level lines, which yields another ε2TV and ε2 is small with respect to 1 (about
1
10 ).

• Comparison of codes. This is proportional to ε22ε
2
1TV

2.

In conclusion, the complexity of the described algorithm is O(Cε1TV + ε21ε
2
2TV

2),
which yields with realistic values, comparing two images of size 512 × 512:

• TV = 3.106.
• Cε1TV = 107.
• ε21ε

2
2TV

2 = 109.

Thus the estimated complexity is 109 operations, which can be performed in times
less than one minute. This time corresponds to the practice with a personal computer
having a 1 Gigahertz microprocessor. Let us remark, however, that filtering reduces
the number of bitangents in the curve. Thus, higher speed is attained by more filtering,
and this is the main reason for the necessity of a filtering step.
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Fig. 5.1. Matching between the selected curves in Figure 3.1. Left: both curves are displayed
under the same reference system. Right: curves displayed under the normalized reference system.
They coincide very accurately in a long portion.

5. Experimental results in image comparison. According to the preced-
ing description, a generic image comparison algorithm works as follows. For each
quantized code of the first image do the following:

1. Search in turn each value of the code describing the curve. Since codes are
ordered, the search is fast and generates pairs of candidate matches.

2. Compute the actual distance between them. Reject the matching if this
distance is larger than some threshold (usually one pixel).

3. Extend the matching beyond the initial portion of curves, provided that
the distance between the corresponding points in the curves is below the distance
threshold.

Figure 5.1 displays an example of the partial matching between two level lines
coming from different images (the ones in Figure 3.1).

The information provided by the image comparison algorithm gives a very accu-
rate local estimation of the matching of some level lines of the image (the ones which
could be coded). In most cases a dominant motion can be estimated from all the local
motions of the matched level lines.

As a first test, we show in Figure 5.2 (in white) all pieces of level lines which
matched accurately between both paintings of de la Tour (Figure 2.1). The knowledge
of these roughly 50 codes permits us to compute an accurate affine transform between
both images.

The question of comparing and registering two images with different illuminations
and viewpoints is essential in satellite imaging. Figure 5.3 shows, as an extreme
test, two images corresponding to different channels of a satellite image (green and
infrared). Both images have a small common part.

From the motion information provided by the found matching pairs of pieces
of level curves, a mosaic can be constructed that combines the information of both
images (Figure 5.4).
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Fig. 5.2. All pieces of level lines matching accurately between both Georges de la Tour paintings.

Fig. 5.3. Satellite images to be registered (CNES database). Remark that there is a common
part between the images (the lower right corner of the first image).

As a third test, we used two very different images that display the same logo
(Superman logo, Figure 5.5). One of the images is a drawing of the logo and the
second one is a snapshot of an alarm clock with the logo printed on it. Remark that
in this second image there is an occlusion effect due to the fingers of the clock and
an unknown geometrical transformation between the original logo and the one in the
snapshot. The found matchings between both images are shown in Figure 5.6, and
the result of applying the estimated affine transform to the second image is displayed
in Figure 5.7.

5.1. Conclusions and bibliographical notes. The shape recognition problem
has been the subject of years of intense research. As we mentioned in the introduction,
the literature on the subject is huge, and it is impossible to give a complete account of
it. Thus, our strategy in this paper has been to refer mainly to references proposing
general shape recognition principles.

We have focused on invariant planar shape recognition, which is afterall a tiny
part of the gigantic problem of 3D shape recognition. Now, on this problem, enough
progress has been done, both on the principles and on their applicability to a generic
shape recognition algorithm. In this paper, we have therefore tried to prove the exis-
tence of at least one fully generic shape recognition algorithm. This algorithm is fully
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Fig. 5.4. Mosaic for the images in Figure 5.3.

Fig. 5.5. Original Superman logo images. Superman logo TM and c© DC Comics. All rights
reserved. Used with permission.

“principle-based.” To the best of our knowledge, there is no fully generic and fully
invariant shape recognition algorithm, either published or disclosed as software. By
generic algorithm we mean an algorithm taking any two images and yielding all shapes
common to both. This paper describes one such algorithm, yielding for any pair of
images a list of matching shapes, depending on a single distance threshold. As we have
tried to show, there is no fully new idea or principle involved in such an algorithm.
It is the mere concatenation of algorithmic consequences of invariance principles. We
have in place quoted as well as we could the discoverers of those principles.
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Fig. 5.6. Matching pieces of level lines in Superman logos.

Fig. 5.7. Figure 5.5 right after applying the affine transform estimated from the pairs of
matching pieces of curves.

There are instead many dedicated object recognition algorithms, whose aim it is
to solve one or the other practical problem. We have presented registration results
(Figures 5.3 and 5.4), where registration is obtained as a by-product of shape recog-
nition. Let us mention (e.g.) [9], which gives a survey on image registration. There
are indeed other possible, and simpler, registration techniques, since the registration
problem amounts to estimating between six and 12 motion parameters. See, e.g., the
excellent registration results given in [30] and the David Sarnoff group. These results
are not obtained by shape recognition techniques and, actually, the technique giving
such remarkable results is not really explained.

As far as we can gather, the technique is not contrast invariant, and neither is it
for most of the dedicated or generic algorithms usually proposed. As an example of a
finalized algorithm, let us mention the one described in the Rothwell book [44]. His
algorithm is very close in all aspects to the one we described here, and it was explicitly
designed to the same aim of showing the existence of a finalized shape recognition
algorithm. Now, the shapes treated by Rothwell are a few flat tools occluding each
other and for which a model is available. Thus, the problem treated is not shape
recognition but again object recognition; thus in many aspects it is specifically designed
for the chosen objects.
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There are, however, generic shape recognition algorithms, which stem from the
founding paper by Wolfson [50] under the generic name of geometric hashing. Let us
mention [8] as a very recent extension of this technique. The idea of geometric hashing
is this: a shape is described by local descriptors, usually points with an orientation
(minutiae in the fingerprint recognition terminology), or corners [13]. Thus, the shape
matching problem can be reduced to the problem of finding a given configuration of
minutiae, describing a target shape, in a clutter of minutiae computed in another
image. In the affine invariant case, the complexity of such a method grows as N3,
where N is the number of minutiae in the explored image. The reason is that no order
is given between the minutiae, and any group or subgroup can belong or not belong
to a given shape. Our aim here has been to demonstrate that one can single out
preformed chains of minutiae in an image, namely the encoded pieces of level lines.
The existence of these chains reduces considerably the complexity of a shape search,
since a single chain may be enough to characterize a target shape, when it is complex
enough.

Most techniques used in object recognition are not invariant enough. For instance
the very interesting method of [1] includes a fair part of what we presented here
(curvature scale space, similarity invariance), but this paper does not explain how to
extract the shapes in generic images.

As a first conclusion, we would rather promote shape recognition as the main
problem, as opposed to the rather infinite object recognition problem. While the first
one can receive a generic and general answer by invariance arguments, the second
relies on specificities of the objects to recognize and leads to as many algorithms
as objects. As a second conclusion, the generic shape recognition algorithms like
geometric hashing have suffered from their lack of accuracy and invariance in the
starting points, namely the minutiae. Thus, the contribution of this survey, if any,
is to promote very accurate and invariant steps in the first stages of any recognition
algorithm.

6. A fast invariant curve affine erosion-dilation scheme. A fast algo-
rithm. In general, the affine erosion of X is not simple to compute, because it can
be strongly nonlocal. However, if X is convex, then it has been shown in [38] that
it can be exactly computed in linear time. In practice, c will be a polygon and the
exact affine erosion of X—whose boundary is made of straight segments and pieces
of hyperbolae—is not really needed; numerically, a good approximation by a new
polygon is enough. Now the point is that we can approximate the combination of
an affine erosion plus an affine dilation of X by computing the affine erosion of each
convex component of c, provided that the erosion-dilation area is small enough.

The algorithm consists of the iteration of a four-step process:

1. Break the curve into convex components. This operation permits us to apply
the affine erosion to convex pieces of curves, which is much faster (the complexity
is linear) and can be done simply in a discrete way. The main point is to take into
account the finite precision of the computer in order to avoid spurious (small and
almost straight) convex components only due to numerical artifacts.

2. Sample each component. At this stage, points are removed or added in order
to guarantee an optimal representation of the curve that is preserved by step 3.

3. Apply discrete affine erosion to each component.
4. Concatenate the pieces of curves obtained at step 3. This way, we obtain a

new closed curve on which the whole process can be applied again.
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6.1. Extracting convex components. We start with a closed polygonal curve
P0P1 . . . Pn−1, with the convention that Pi+n = Pi and the notation Pi = (xi, yi).

The curve has to be broken at points where the sign of the determinant

di = [Pi−1Pi, PiPi+1]

changes. Numerically, we use the formula

di = (xi − xi−1)(yi+1 − yi) − (yi − yi−1)(xi+1 − xi).(6.1)

Since we are interested in the sign of di, we must be careful because the finite numerical
precision of the computer can make this sign wrong. Let us introduce the relative
precision of the computer

ε0 = max{x > 0, (1.0 ⊕ x) � 1.0 = 0.0}.(6.2)

In this definition, ⊕ (resp., �) represent the computer addition (resp., substraction),
which is not associative. When computing di using (6.1), the computer gives a result
d̃i such that |di − d̃i| ≤ ei, with

ei = ε0
(|xi − xi−1|(|yi+1| + |yi|) + (|xi| + |xi−1|)|yi+1 − yi|

+ |yi − yi−1|(|xi+1| + |xi|) + (|yi| + |yi−1|)|xi+1 − xi|
)
.

In practice, we take ε0 a little bit larger than its theoretical value to overcome other
possible errors (in particular, errors in the computation of ei). For four-bytes C
float numbers, we use ε0 = 10−7, whereas the theoretical value (that can be checked
experimentally using (6.2)) is ε0 = 2−24 � 5.96 10−8. For eight-bytes C double
numbers, the correct value would be ε0 = 2−53 � 1.11 10−16.

The algorithm that breaks the polygonal curve into convex components consists
of the iteration of the following decision rule:

1. If |d̃i| ≤ ei, then remove Pi (which means that the new polygon to be con-
sidered from this point is P0P1 . . . Pi−1Pi+1 . . . Pn−1).

2. If |d̃i+1| ≤ ei+1, then remove Pi+1.
3. If d̃i and d̃i+1 have opposite signs, then the middle of Pi, Pi+1 is an inflexion

point where the curve must be broken.
4. If d̃i and d̃i+1 have the same sign, then increment i.

This operation is performed until the whole curve has been visited. The result is
a chained (looping) list of convex pieces of curves.

6.2. Sampling. At this stage, we add or remove points from each polygonal
curve in order to ensure that the euclidean distance between two successive points lies
between ε and 2ε (ε being the absolute space precision parameter of the algorithm).

6.3. Discrete affine erosion. This is the main step of the algorithm: compute
quickly an approximation of the affine erosion of scale σ of the whole curve.

The first step consists of the calculus of the “area” Aj of each convex component

Cj = P j
0P

j
1 . . . P

j
n−1, given by

Aj =
1

2

n−2∑
i=1

[
P j

0P
j
i , P

j
0P

j
i+1

]
.
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Then, the effective area used to compute the affine erosion is

σe = max

{
σ

8
,min

j
Aj

}
.

We restrict the erosion area to σe (which is less than σ in general) because the simpli-
fied algorithm for affine erosion (based on the breaking of the initial curve into convex
components) may give a bad estimation of the continuous affine erosion + dilation
when the area of one component is less than the erosion parameter. The term σ/8 is
rather arbitrary and guarantees an upper bound to the number of iterations required
to achieve the final scale.

Once σe is computed, the discrete erosion of each component is defined as the
succession of each middle point of each segment [AB] such that

1. A and B lie on the polygonal curve,
2. A or B is a vertex of the polygonal curve,
3. the area enclosed by [AB] and the polygonal curve is equal to σe.

These points are easily computed by keeping in memory and updating the points A
and B of the curve plus the associated chord area.

Notice that if the convex component is not closed (which is the case if the initial
curve is not convex), then its endpoints are kept.

6.4. Iteration of the process. To iterate the process, we use the fact that
if Eσ denotes the affine erosion plus dilation operator of area σ, and h = (hi) is a

subdivision of the interval [0, H] with H = T/ω and ω = 1
2

(
3
2

)2/3
, then

E(h1−h0)3/2 ◦ E(h2−h1)3/2 ◦ ... ◦ E(hn−hn−1)3/2

(
c0

)
−→ cT

as |h| = maxi hi+1 − hi → 0, where cT is the affine shortening of c0 described above
by (3.2).

6.5. Comments. The algorithm takes a curve (closed or not) as input and pro-
duces an output curve representing the affine shortening of the input curve (it can be
empty if the curve has disappeared). The parameters are the following:

• T , the scale to which the input curve must be smoothed.
• εr, the relative spatial precision at which the curve must be numerically

represented (between 10−5 and 10−2 when using four-bytes C float numbers).
• n, the minimum number of iterations required to compute the affine short-

ening (it seems that n � 5 is a good choice). From n, the erosion area σ used in step
3 is computed with the formula

σ2/3 =
α · T 4/3

n
.

Notice that thanks to the σ/8 lower bound for σe, the effective number of iterations
cannot exceed 4n.

• R, the radius of a disk containing the input curve, used to obtain homoge-
neous results when processing simultaneously several curves. The absolute precision
ε used at step 2 is defined by ε = Rεr.

The algorithm has linear complexity in time and memory, and its stability is en-
sured by the fact that each new curve is obtained as the set of the middle points of
some particular chords of the initial curve, defined themselves by an integration pro-
cess (an area computation). Hence, no derivation or curvature computation appears
in the algorithm.
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