Perspective invariant movie analysis for depth recovery
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ABSTRACT

Processing entire movies and taking advantage of the inter-frame redundancy is the key of shape-from-motion
analysis. Thus, recovering the depth of a fixed scene from an image sequence can be viewed as a movie processing
problem : how to focus the redundant depth information of a noisy image sequence into a perfect depth-coherent
movie 7 We present a natural set of axioms in agreement with the depth recovery, in the simple case of a
straight movement of the camera parallel to the focal plane. According to these axioms, we show that there is
a unique depth-coherent way of processing movies, described by a nonlinear partial differential equation. The
corresponding multiscale analysis has the property of smoothing the motion field of a movie, leading naturally
to a perfect motion field compatible with a depth interpretation. Moreover, in the case of an ideal movie, i.e.
coherent with the observation of a fixed 3D scene, this analysis can be viewed as a simple filtering of the camera
movement preserving the depth interpretation given by the movie, and is thereby perspective invariant. Last, we
study a numerical scheme, compatible with the theoritical axioms, and produce some experiments on synthetic
noisy movies.
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1 INTRODUCTION

One fundamental problem in robotics is the reconstruction of a geometric environment from one or several
observations. This depth recovery problem has many applications, like navigation, cartography, and shape anal-
ysis. Among explorated techniques in image processing, often referenced as “shape from X”, where X is one of
stereovision, shading, texture, etc ..., we focused our attention on shape from motion. By analyzing a sequence
of images, we can hope to recover depth more accurately than other techniques do, according to general properties
of active vision', which states that the redundancy resulting from camera motin should naturally bring robustness
and accuracy. In a way, the analysis of image sequences (20 or more frames) with known camera movement is a
generalization of stereovision (2 images).

In order to take advantage of this redundancy, we need to analyze movies globally. Thus, the depth recovery
problem can be reformulated in terms of movie processing : how to filter a noisy and depth-incoherent movie,
from which a direct scene reconstruction is almost impossible, into a perfect, depth-coherent movie 7 We give an
answer in the case of a simple camera movement, a translation parallel to the focal plane. After introducing the
general framework, we state by an axiomatic approach the existence and unicity of such a movie analysis. Then,



we study its properties in terms of image and scene interpretation, showing that it is perspective invariant in a
certain sense. Last, we present a numerical scheme to apply this process to digitized image sequences, and show
some conclusive experiments on noisy synthetic movies.

2 GEOMETRIC FRAMEWORK

Let Z(X,Y) represent a surface in R3 observed by a unit focal length camera located at (C,0,0), looking
towards the Z axis (cf. figure 1). Then under perspective projection, a point M (X,Y, Z7(X,Y)) of the surface is
projected onto P(x,y) in the image plane, with
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We now suppose that the camera has a straight movement along the X axis, given by its position C'(f) where @
is the time variable. Thus, calling U(X,Y") the perceived isotropic luminosity of M (X,Y, Z(X,Y)), we can state
the fundamental relation between the image and the scene space,
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The function u is a movie : u(z, y, #) measures the luminosity (grey-level) of the image point (z,y) at time 6.
Taking the derivative of (2) with respect to @, we obtain the well-known Motion Constraint Equation,
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Since Z—Z = 0 under our hypotheses, this equation defines a scalar apparent velocity on the movie

dx Uy
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which is related to the scene geometry by
c'(6)

We can define as well the derivative of any function f along the movement v, also called total derivative of f,

by
Df
Da = Jo+vfe.
As the luminosity of a point of the scene does not change while the camera moves, we have % = 0, which

is nothing but the previous Motion Constraint Equation. We can also compute the apparent acceleration on the
movie by
o _ Dv

. _ﬁ:vg—i—vvx. (6)

According to the equations (4) and (5), reconstructing the scene geometry seems easy : first calculate the
ug

apparent velocity field of the movie by v = —u and then deduce the depth by Z = —v(C’(f). However, many
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Figure 1: Scene geometry

problems occur if we try to proceed this way : the estimation of v i1s difficult and very sensitive to noise, and
the camera movement, C'(6), is not always known, so that the redundant depth information expressed along the
movie is not easy to collect. In order to solve these difficulties, we need to regularize the movie in a way coherent
with the depth recovery. We study in the next section such analyses, using an axiomatic approach.

3 AXIOMATIC FORMULATION

A multiscale analysis of movies is a family of operators (7});»0 which, applied to an initial movie ug, leads to
filtered versions u(t) = Tiug at all scales ¢. It has been shown? that under fundamental hypotheses of locality,

causality, and space/time/grey-level translation invariance, multiscale analyses of movies can be described by
partial differential equations of the type % = F(D?u, Du,t), with initial condition u(.,0) = ug. In addition to

these hypotheses, we constrain the analysis to satisfy several invariance properties.

[Morphological Invariance]. The analysis commutes with any one-to-one grey-level rescaling :
Vh, Tih(u) = h(Tiu).

¢ [Transversal Invariance]. The analysis commutes with any nondecreasing y-rescaling :

Vi Ti(uo Re) = (Tyu) o Ry, where Ry(z,y,0) = (z, f(y),0).

¢ [Galilean Invariance]. The analysis commutes with the superimposition of any uniform straight transla-
tion movement on the movie :

Ve, (Thu) o By = Ti(uo By), where By(z,y,0) = (2 — ab,y,0).

[Zoom Invariance]. The analysis commutes with any spatial zoom :

VA, (Tyu) o Hy = Ty(uo Hy), where Hy(z,y,0) = (Az, Ay, 0).



The morphological invariance and the transversal invariance are natural axioms from the depth recovery point
of view, since the associated operators u — h(u) and R; leave invariant the estimation of the velocity field, i.e.
v[h(u)] = v[u] and v[u o Ry] = v[u] o Ry, where v[] denotes the velocity field operator u +— —g¢. The galilean
invariance, already used in movie analysis?, is here adjusted to the camera movement, along the x axis. Last, the

zoom invariance states that the analysis will not depend on the focal length of the camera.

THEOREM 3.1. There is a unique mulliscale analysis which satisfies both the fundamental axioms and [Mor-
phological Inv.], [Transversal Inv.], [Galilean Inv.] and [Zoom Inv.]. Ii is given, up to a rescaling, by the partial
differential equation

Ju
a7 = e (7)

with € = (_3_9,0,1) and uge = [D](€, €).
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This theorem propounds a unique depth-compatible multiscale analysis (DCMA) to solve our problem. Note
that the evolution equation (7) makes sense in terms of viscosity solutions. The proof of theorem 3.1 has been
explained in a previous article!!.

4 PROPERTIES OF THE DEPTH-COMPATIBLE MULTISCALE
ANALYSIS (DCMA)

4.1 Diffusion of the apparent movement

THEOREM 4.1. The DCMA diffuses each component of the movement (velocity v = %, acceleration Cfo, o)

in the same direction as u, t.e
o, d*p. _ d'P

In particular, the apparent velocity v follows an intrinsic, polynomial and causal diffusion equation,

v
ot
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This proposition highlights an interesting property of the DCMA : applying equation (7) on a movie allows
to filter indirectly the whole movement field of this movie. The velocity field —what we want to recover finally—
is processed in an intrisic way, and therefore two movies of the same scene (and having consequently the same
velocity field) would be analyzed the same way.

To prove these properties, it is interesting to introduce the Lie brackets between the partial derivatives

g’—x, %, %, which commute together, and the total derivative %. Thus, we define
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which can be effectively computed into
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As well,
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In particular, if we call ¢ = % the total derivative of 7, we obtain
05521/)—?1)1;. (9)
LEMMA 4.2. For any evolution equation,
0 D 0
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Proof of the lemma :
We just need to compute the Lie bracket
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and by linearity,
0 D 0 D D 0
[a = (e m] = [E’ m] = [Oee m] = (v — Uﬁﬁ)ﬁ_x

Proof of the theorem 4.1 :

Applying this lemma to u in the case of the evolution u; = u¢e, we can notice that the left term is null, which
proves that % = vge. Consequently, the Lie bracket in (10) is a null operator, so that the diffusion equation
extends to all derivatives of v.



4.2 Evolution of the scene interpretation

We now give another property of the DCMA, in terms of scene interpretation. Let us say a movie u(x,y, )
is ideal if we can find some functions C'(), Z(X,Y) and U(X,Y’) so that equation (2) holds, meaning that the
movie u can be interpreted as a scene Z(X,Y),U(X,Y) (depth and isotropic luminosity) observed by a unit focal
length camera under the translation movement X = C(9).

THEOREM 4.3. The DCMA produces, from an ideal movie ug, a sequence of ideal movies u(t), with the same
depth interpretation as ug, but for which the underlying camera movement s a linearly filtered version of ug’s
one. More precisely, the scene space interpretation is given by

ocC 02C

The first equation simply states the conservation of the depth in the case of an ideal movie, which is a kind
of perspective invariance : the DCMA preserves the perspective interpretation of a movie. This property is
fundamental for our equation : it proves that the concept of ideal movie is compatible with the DCMA. The
second one shows that the camera movement is regularized by the heat equation along the analysis. Then we can
suppose that this movement is constant after filtering, which makes the reconstruction step more simple.

Remark : It has been proved!'! that the DCMA is the unique equation which satisfies these properties.

Proof :

Given an ideal movie ug satisfying

X—Co(0) Y
W(Zunq’ﬂxy

)ﬁ):U@ﬂ%

let us define a sequence of movies @(t) by

~<X—C@ﬂ %

Z2(X,Y) ’Z(X,Y)’g’t):U(X’Y)’ (11)

where C'(0,1) is the unique solution of the heat equation Cy = C" with initial condition C'(6,0) = Cy(#). Taking
the derivative of equation (11) with respect to 6 and ¢,

oty
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Then, eliminating C*" between (12) and (13), we obtain

Uy D Ug . D ug
(4 X,)Y)—) =t (=) = Uge.
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The movie @ is solution of the equation u; = wuge with initial condition u(.,0) = wug : since we now that these
conditions determine a unique movie, we deduce that u(t) = w(t). We can now conclude that w(t) is ideal
for all ¢ (because #(t) is ideal by definition), with depth interpretation Z(X,Y’) and filtered camera movement
interpretation C'(t).
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Figure 2: Illustration of the numerical scheme for the DCMA.

4.3 1Idealization

THEOREM 4.4. Let u(t) be a sequence of four times differentiable periodic movies satisfying the DCMA, then
the following properties hold :

1. [ u?(z,0,t)dzdf does not depend on t.
2. E(t) =3 [[72%(x,0,t)dxd0 decreases with respect to t and E'(t) = — ff(%)zdxdﬁ.

)

The first property can be simply interpreted as the conservation of the light energy % [ w?dxdf by the DCMA.
The second one, which states the global decreasing of 72, proves that the DCMA operates an “idealization” on
the movie, meaning that as scale ¢ increases, the movie goes closer to an ideal movie with null acceleration. The
proof of this theorem is given in appendix A.

5 NUMERICAL SHEME AND EXPERIMENTS

As we said in section 2, the direct estimation of v by equation (5) is quite difficult and too sensitive to noise.
To avoid this difficulty, we will use an implicit numerical scheme which does not need to evaluate v properly. Let
us consider the following operators (cf. figure. 2) :

Thu(zo, yo,00) = inf sup w(wo+ vl yo,00 + 0),
vER _p<ogh
Shu(wo, yo,00) = iléﬁ_hlgnefghuwo+v9,yo,90+9),
Th = Ih OSh.

This concept of inf-sup operators has been introduced in mathematical morphology'3. They are easy to compute,
even on a dicrete lattice, and do not require the estimation of image derivatives. One can check easily that the
T, operator given above satisfies the axioms which define the DCMA.



THEOREM b5.1. Let be u : IR — R a 3 times differentiable movie, then in each point where uy # 0,

Thu = u+ hZU§§ + O(hS)

Thus, iterating 73 allows us to process a real digitized movie by the DCMA in a robust way.

We implemented this scheme in order to produce some numerical experiments (figure 3). We first synthetized
two ideal movies, explorations of a half-sphere by a uniform translation camera movement (lines 1 and 5). For
the first movie, we took only some fixed points on the half-sphere, whereas the second movie is a continuous one.
Then we obtained two noisy movies (lines 2 and 6) by replacing some grey values of the ideal ones by random
uniform white noise. Last, we filtered these noisy movies by the discrete scheme of the DCMA at three different
scale (lines 3 to 5 for the first movie, lines 8 to 10 for the second one). As expected, we see that the redundancy of
the depth information into the noisy movies allows us to remove noise and to recover gradually the ideal movies
as the scale increases.

6 CONCLUSION

From an axiomatic point of view, we have studied how to filter movies in a depth-compatible way, in the
case of a simple camera motion. We proved that this movie processing focus the coherent and redundant depth
information of a movie into a ideal movie of depth-equivalent frames. Thus, we regularize the shape from motion
problem by introducing a preprocessing step after which one can apply standard techniques of depth recovery in
a more efficient way. This work still needs to be extended to more complex camera movements, in order to be
integrated in a real depth-recovery device.

APPENDIX A : PROOF OF THEOREM 4.4

L. [[u?(%,0,t)dxdf does not depend on t.

Let A(t) = [[ u*dxdd, we have

A1)

2// uugedxdd

-2 // u? uydedf

= -2 // uthy (vg + vug )dedl
= -2 // UULVg — UUgUzdxdl

After integration by parts, which eliminates integrated terms because of periodicity,

Al(l) = 2//(uux)9v — (uug)pvdedd = 0,

so that A(¢) = A(0), which does not depend on ¢.



Figure 3: Filtering of a two noisy movies.



2. E(t) = i ff72 (x,0,t)dxdf decreases with respect tot and E'(t) = — [[( g— dxdf.
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First notice that 7¢¢e = 5z — 77 &

—..xW1th\I!_BI;:79—|—v7 Then,

= //?(\I/9+U\Ifx —7?7,)dedl

= //7\1,9 + (V) — 227, .dzdd
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The integration of the first two terms gives
E't) = // o0+ (v?)p U + 727 .dxdd
// Te+v7, + v, 7)—1—727 dxdf

= —//\Ilzdxdﬁ—//vx?\ll—i—?z?xdxdﬁ.

As [[7 727 dedf = L ff (73)dxd = 0, the second term can be simplified into

t) ://vxrf\ll—l—?z?xdwdﬁ = //vxrf\ll—?z?xdl‘dﬁ
//7(79% + ovypTp — Tpve — vy ? g )dadd
= // 2774) (277 4 )vedadd.

1
-5 //?2(%9 — vpy)dxdf = 0,
E'(t) = —// V2 dzdf < 0.
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