
Perspective invariant movie analysis for depth recoveryLionel MoisanCEREMADE, Universit�e Paris Dauphine75775 Paris cedex 16, Francee-mail : lionel@ceremade.dauphine.frABSTRACTProcessing entire movies and taking advantage of the inter-frame redundancy is the key of shape-from-motionanalysis. Thus, recovering the depth of a �xed scene from an image sequence can be viewed as a movie processingproblem : how to focus the redundant depth information of a noisy image sequence into a perfect depth-coherentmovie ? We present a natural set of axioms in agreement with the depth recovery, in the simple case of astraight movement of the camera parallel to the focal plane. According to these axioms, we show that there isa unique depth-coherent way of processing movies, described by a nonlinear partial di�erential equation. Thecorresponding multiscale analysis has the property of smoothing the motion �eld of a movie, leading naturallyto a perfect motion �eld compatible with a depth interpretation. Moreover, in the case of an ideal movie, i.e.coherent with the observation of a �xed 3D scene, this analysis can be viewed as a simple �ltering of the cameramovement preserving the depth interpretation given by the movie, and is thereby perspective invariant. Last, westudy a numerical scheme, compatible with the theoritical axioms, and produce some experiments on syntheticnoisy movies.key-words : shape from motion, image sequence processing, perspective invariance, multiscale analysis.1 INTRODUCTIONOne fundamental problem in robotics is the reconstruction of a geometric environment from one or severalobservations. This depth recovery problem has many applications, like navigation, cartography, and shape anal-ysis. Among explorated techniques in image processing, often referenced as \shape from X", where X is one ofstereovision, shading, texture, etc : : : , we focused our attention on shape from motion. By analyzing a sequenceof images, we can hope to recover depth more accurately than other techniques do, according to general propertiesof active vision1, which states that the redundancy resulting from camera motin should naturally bring robustnessand accuracy. In a way, the analysis of image sequences (20 or more frames) with known camera movement is ageneralization of stereovision (2 images).In order to take advantage of this redundancy, we need to analyze movies globally. Thus, the depth recoveryproblem can be reformulated in terms of movie processing : how to �lter a noisy and depth-incoherent movie,from which a direct scene reconstruction is almost impossible, into a perfect, depth-coherent movie ? We give ananswer in the case of a simple camera movement, a translation parallel to the focal plane. After introducing thegeneral framework, we state by an axiomatic approach the existence and unicity of such a movie analysis. Then,



we study its properties in terms of image and scene interpretation, showing that it is perspective invariant in acertain sense. Last, we present a numerical scheme to apply this process to digitized image sequences, and showsome conclusive experiments on noisy synthetic movies.2 GEOMETRIC FRAMEWORKLet Z(X;Y ) represent a surface in R3, observed by a unit focal length camera located at (C; 0; 0), lookingtowards the Z axis (cf. �gure 1). Then under perspective projection, a point M (X;Y; Z(X;Y )) of the surface isprojected onto P (x; y) in the image plane, withx = X � CZ(X;Y ) and y = YZ(X;Y ) : (1)We now suppose that the camera has a straight movement along the X axis, given by its position C(�) where �is the time variable. Thus, calling U (X;Y ) the perceived isotropic luminosity of M (X;Y; Z(X;Y )), we can statethe fundamental relation between the image and the scene space,u�X �C(�)Z(X;Y ) ; YZ(X;Y ) ; �� = U (X;Y ): (2)The function u is a movie : u(x; y; �) measures the luminosity (grey-level) of the image point (x; y) at time �.Taking the derivative of (2) with respect to �, we obtain the well-known Motion Constraint Equation,uxdxd� + uy dyd� + u� = 0: (3)Since dyd� = 0 under our hypotheses, this equation de�nes a scalar apparent velocity on the moviev = dxd� = �u�ux ; (4)which is related to the scene geometry by v = �C 0(�)Z : (5)We can de�ne as well the derivative of any function f along the movement v, also called total derivative of f ,by DfD� = f� + vfx:As the luminosity of a point of the scene does not change while the camera moves, we have DuD� = 0, whichis nothing but the previous Motion Constraint Equation. We can also compute the apparent acceleration on themovie by � = DvD� = v� + vvx: (6)According to the equations (4) and (5), reconstructing the scene geometry seems easy : �rst calculate theapparent velocity �eld of the movie by v = � u�ux and then deduce the depth by Z = �vC 0(�). However, many
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Figure 1: Scene geometryproblems occur if we try to proceed this way : the estimation of v is di�cult and very sensitive to noise, andthe camera movement, C(�), is not always known, so that the redundant depth information expressed along themovie is not easy to collect. In order to solve these di�culties, we need to regularize the movie in a way coherentwith the depth recovery. We study in the next section such analyses, using an axiomatic approach.3 AXIOMATIC FORMULATIONA multiscale analysis of movies is a family of operators (Tt)t>0 which, applied to an initial movie u0, leads to�ltered versions u(t) = Ttu0 at all scales t. It has been shown2 that under fundamental hypotheses of locality,causality, and space/time/grey-level translation invariance, multiscale analyses of movies can be described bypartial di�erential equations of the type @u@t = F (D2u;Du; t), with initial condition u(:; 0) = u0. In addition tothese hypotheses, we constrain the analysis to satisfy several invariance properties.� [Morphological Invariance]. The analysis commutes with any one-to-one grey-level rescaling :8h; Tth(u) = h(Ttu):� [Transversal Invariance]. The analysis commutes with any nondecreasing y-rescaling :8f %; Tt(u �Rf ) = (Ttu) �Rf ; where Rf (x; y; �) = (x; f(y); �):� [Galilean Invariance]. The analysis commutes with the superimposition of any uniform straight transla-tion movement on the movie :8�; (Ttu) �B� = Tt(u �B�); where B�(x; y; �) = (x� ��; y; �):� [Zoom Invariance]. The analysis commutes with any spatial zoom :8�; (Ttu) �H� = Tt(u �H�); where H�(x; y; �) = (�x; �y; �):



The morphological invariance and the transversal invariance are natural axioms from the depth recovery pointof view, since the associated operators u 7! h(u) and Rf leave invariant the estimation of the velocity �eld, i.e.v[h(u)] = v[u] and v[u � Rf ] = v[u] � Rf , where v[ ] denotes the velocity �eld operator u 7! � u�ux . The galileaninvariance, already used in movie analysis2, is here adjusted to the camera movement, along the x axis. Last, thezoom invariance states that the analysis will not depend on the focal length of the camera.Theorem 3.1. There is a unique multiscale analysis which satis�es both the fundamental axioms and [Mor-phological Inv.], [Transversal Inv.], [Galilean Inv.] and [Zoom Inv.]. It is given, up to a rescaling, by the partialdi�erential equation @u@t = u�� (7)with � = (�u�ux ; 0; 1) and u�� = [D2u](�; �):This theorem propounds a unique depth-compatible multiscale analysis (DCMA) to solve our problem. Notethat the evolution equation (7) makes sense in terms of viscosity solutions. The proof of theorem 3.1 has beenexplained in a previous article11.4 PROPERTIES OF THE DEPTH-COMPATIBLE MULTISCALEANALYSIS (DCMA)4.1 Di�usion of the apparent movementTheorem 4.1. The DCMA di�uses each component of the movement (velocity v = dPd� , acceleration d2Pd�2 ; : : :),in the same direction as u, i.e @@t (dnPd�n ) = (dnPd�n )�� :In particular, the apparent velocity v follows an intrinsic, polynomial and causal di�usion equation,@v@t = v�� = v�� + 2vv�x + v2vxx:This proposition highlights an interesting property of the DCMA : applying equation (7) on a movie allowsto �lter indirectly the whole movement �eld of this movie. The velocity �eld {what we want to recover �nally{is processed in an intrisic way, and therefore two movies of the same scene (and having consequently the samevelocity �eld) would be analyzed the same way.To prove these properties, it is interesting to introduce the Lie brackets between the partial derivatives@@x ; @@� ; @@t , which commute together, and the total derivative DD� . Thus, we de�ne[ @@x; DD� ] = @@x DD� � DD� @@x;which can be e�ectively computed into[ @@x; DD� ] = @@x ( @@� + v @@x )� ( @@� + v @@x ) @@x = vx @@x :



As well, [ @@� ; DD� ] = v� @@x and [ @@t ; DD� ] = vt @@x:Now the notation f�� = [D2f ](�; �) can be clari�ed :( )�� = @2@�2 + 2v @2@�@x + v2 @2@x2= ( @@� + v @@x ) @@� + v( @@� + v @@x ) @@x= DD� @@� + v DD� @@x= DD� ( @@� + v @@x )� DvD� @@xand �nally ( )�� = D2D�2 � � @@x: (8)In particular, if we call  = D�D� the total derivative of �, we obtainv�� =  � �vx: (9)Lemma 4.2. For any evolution equation,[ @@t � ( )��; DD� ] = (vt � v��) @@x: (10)Proof of the lemma :We just need to compute the Lie bracket[( )��; DD� ] = [ D2D�2 � � @@x; DD� ]= [ D2D�2 ; DD� ]� [� @@x; DD� ]= 0� �[ @@x; DD� ] + D�D� @@x= ( � �vx) @@x= v�� @@xand by linearity, [ @@t � ( )��; DD� ] = [ @@t ; DD� ]� [( )��; DD� ] = (vt � v��) @@xProof of the theorem 4.1 :Applying this lemma to u in the case of the evolution ut = u��, we can notice that the left term is null, whichproves that @v@t = v��. Consequently, the Lie bracket in (10) is a null operator, so that the di�usion equationextends to all derivatives of v.



4.2 Evolution of the scene interpretationWe now give another property of the DCMA, in terms of scene interpretation. Let us say a movie u(x; y; �)is ideal if we can �nd some functions C(�), Z(X;Y ) and U (X;Y ) so that equation (2) holds, meaning that themovie u can be interpreted as a scene Z(X;Y ); U (X;Y ) (depth and isotropic luminosity) observed by a unit focallength camera under the translation movement X = C(�).Theorem 4.3. The DCMA produces, from an ideal movie u0, a sequence of ideal movies u(t), with the samedepth interpretation as u0, but for which the underlying camera movement is a linearly �ltered version of u0'sone. More precisely, the scene space interpretation is given byZ(X;Y; t) = Z(X;Y; 0) ; @C@t (�; t) = @2C@�2 :The �rst equation simply states the conservation of the depth in the case of an ideal movie, which is a kindof perspective invariance : the DCMA preserves the perspective interpretation of a movie. This property isfundamental for our equation : it proves that the concept of ideal movie is compatible with the DCMA. Thesecond one shows that the camera movement is regularized by the heat equation along the analysis. Then we cansuppose that this movement is constant after �ltering, which makes the reconstruction step more simple.Remark : It has been proved11 that the DCMA is the unique equation which satis�es these properties.Proof :Given an ideal movie u0 satisfyingu0�X � C0(�)Z(X;Y ) ; YZ(X;Y ) ; �� = U (X;Y );let us de�ne a sequence of movies ~u(t) by~u�X � C(�; t)Z(X;Y ) ; YZ(X;Y ) ; �; t� = U (X;Y ); (11)where C(�; t) is the unique solution of the heat equation Ct = C 00 with initial condition C(�; 0) = C0(�). Takingthe derivative of equation (11) with respect to � and t,� C0(�; t)Z(X;Y ) ~ux + ~u� = 0; (12)� C 00(�; t)Z(X;Y ) ~ux + ~ut = 0: (13)Then, eliminating C00 between (12) and (13), we obtain~ut = ~uxZ(X;Y ) DD� (Z(X;Y ) ~u�~ux ) = ~ux DD� ( ~u�~ux ) = ~u��:The movie ~u is solution of the equation ut = u�� with initial condition u(:; 0) = u0 : since we now that theseconditions determine a unique movie, we deduce that u(t) = ~u(t). We can now conclude that u(t) is idealfor all t (because ~u(t) is ideal by de�nition), with depth interpretation Z(X;Y ) and �ltered camera movementinterpretation C(t).
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hFigure 2: Illustration of the numerical scheme for the DCMA.4.3 IdealizationTheorem 4.4. Let u(t) be a sequence of four times di�erentiable periodic movies satisfying the DCMA, thenthe following properties hold :1. RR u2(x; �; t)dxd� does not depend on t.2. E(t) = 12 RR �2(x; �; t)dxd� decreases with respect to t and E0(t) = � RR (D�D� )2dxd�.The �rst property can be simply interpreted as the conservation of the light energy 12 RR u2dxd� by the DCMA.The second one, which states the global decreasing of �2, proves that the DCMA operates an \idealization" onthe movie, meaning that as scale t increases, the movie goes closer to an ideal movie with null acceleration. Theproof of this theorem is given in appendix A.5 NUMERICAL SHEME AND EXPERIMENTSAs we said in section 2, the direct estimation of v by equation (5) is quite di�cult and too sensitive to noise.To avoid this di�culty, we will use an implicit numerical scheme which does not need to evaluate v properly. Letus consider the following operators (cf. �gure. 2) :Ihu(x0; y0; �0) = infv2R sup�h6�6hu(x0 + v�; y0; �0 + �);Shu(x0; y0; �0) = supv2R inf�h6�6h u(x0 + v�; y0; �0 + �);Th = Ih � Sh:This concept of inf-sup operators has been introduced in mathematical morphology13. They are easy to compute,even on a dicrete lattice, and do not require the estimation of image derivatives. One can check easily that theTh operator given above satis�es the axioms which de�ne the DCMA.



Theorem 5.1. Let be u : R 7! R a 3 times di�erentiable movie, then in each point where ux 6= 0,Thu = u+ h2u�� + O(h3)Thus, iterating Th allows us to process a real digitized movie by the DCMA in a robust way.We implemented this scheme in order to produce some numerical experiments (�gure 3). We �rst synthetizedtwo ideal movies, explorations of a half-sphere by a uniform translation camera movement (lines 1 and 5). Forthe �rst movie, we took only some �xed points on the half-sphere, whereas the second movie is a continuous one.Then we obtained two noisy movies (lines 2 and 6) by replacing some grey values of the ideal ones by randomuniform white noise. Last, we �ltered these noisy movies by the discrete scheme of the DCMA at three di�erentscale (lines 3 to 5 for the �rst movie, lines 8 to 10 for the second one). As expected, we see that the redundancy ofthe depth information into the noisy movies allows us to remove noise and to recover gradually the ideal moviesas the scale increases. 6 CONCLUSIONFrom an axiomatic point of view, we have studied how to �lter movies in a depth-compatible way, in thecase of a simple camera motion. We proved that this movie processing focus the coherent and redundant depthinformation of a movie into a ideal movie of depth-equivalent frames. Thus, we regularize the shape from motionproblem by introducing a preprocessing step after which one can apply standard techniques of depth recovery ina more e�cient way. This work still needs to be extended to more complex camera movements, in order to beintegrated in a real depth-recovery device.APPENDIX A : PROOF OF THEOREM 4.41. RR u2(x; �; t)dxd� does not depend on t.Let A(t) = RR u2dxd�, we have A0(t) = 2 ZZ uu��dxd�= �2 ZZ u�uxdxd�= �2 ZZ uux(v� + vvx)dxd�= �2 ZZ uuxv� � uu�vxdxd�After integration by parts, which eliminates integrated terms because of periodicity,A0(t) = 2 ZZ (uux)�v � (uu�)xvdxd� = 0;so that A(t) = A(0), which does not depend on t.



Figure 3: Filtering of a two noisy movies.
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