
ADMISSIBILITY IN STRENGTH-BASED ARGUMENTATION:
COMPLEXITY AND ALGORITHMS

EXTENDED VERSION WITH PROOFS

Yohann Bacquey
Université Paris Cité, LIPADE

F-75006 Paris
yohann.bacquey@etu.u-paris.fr

Jean-Guy Mailly
Université Paris Cité, LIPADE

F-75006 Paris
jean-guy.mailly@u-paris.fr

Pavlos Moraitis
Université Paris Cité, LIPADE

F-75006 Paris
pavlos.moraitis@u-paris.fr

Julien Rossit
Université Paris Cité, LIPADE

F-75006 Paris
julien.rossit@u-paris.fr

ABSTRACT

Recently, Strength-based Argumentation Frameworks (StrAFs) have been proposed to model situa-
tions where some quantitative strength is associated with arguments. In this setting, the notion of
accrual corresponds to sets of arguments that collectively attack an argument. Some semantics have
already been defined, which are sensitive to the existence of accruals that collectively defeat their
target, while their individual elements cannot. However, until now, only the surface of this framework
and semantics have been studied. Indeed, the existing literature focuses on the adaptation of the
stable semantics to StrAFs. In this paper, we push forward the study and investigate the adaptation
of admissibility-based semantics. Especially, we show that the strong admissibility defined in the
literature does not satisfy a desirable property, namely Dung’s fundamental lemma. We therefore
propose an alternative definition that induces semantics that behave as expected. We then study
computational issues for these new semantics, in particular we show that complexity of reasoning
is similar to the complexity of the corresponding decision problems for standard argumentation
frameworks in almost all cases. We then propose a translation in pseudo-Boolean constraints for
computing (strong and weak) extensions. We conclude with an experimental evaluation of our
approach which shows in particular that it scales up well for solving the problem of providing one
extension as well as enumerating them all.

1 Introduction

Among widespread knowledge representation and reasoning techniques proposed in the literature of Artificial Intelli-
gence over the last decades, Abstract Argumentation [1] is an intuitive but yet powerful tool for dealing with conflicting
information. Since then, the initial work of Dung has been actively extended and enriched in many directions, e.g.
considering other kinds of relations between arguments [2] or additional information associated with arguments or
attacks [3, 4]. Among them, Strength-based Argumentation Frameworks (StrAFs) [5] allow to associate a quantitative
information with each argument. This information is a weight that intuitively represents the intrinsic strength of an
argument, and is then naturally combined with attacks between arguments to induce a defeat relation that allows either
to confirm an attack between two arguments or to cancel it, if the attacked argument is stronger than the attacker (w.r.t.
their respective weights). StrAFs extend further this notion of defeat among arguments by building a defeat that is
based on a collective attack of a group of arguments (or accrual) and by offering associate semantics. Within these
semantics, arguments can collectively defeat arguments that they cannot defeat individually. Intuitively speaking, these
accrual-sensitive semantics allow some kind of compensation among arguments, where the accumulation of weak

ar
X

iv
:2

20
7.

02
25

8v
1

 [
cs

.A
I]

 5
 J

ul
 2

02
2

arguments can create a synergy and get rid of a stronger one they collectively attack. This reasoning approach allows to
produce extensions that are not considered when applying classical semantics.

In [5] the authors presented the basics of StrAFs inspired by Dung’s semantics for abstract argumentation along
with some theoretical and computational results concerning classical issues related to abstract argumentation (i.e.
acceptability semantics, semantics inclusion, extensions existence and verification, etc.). In this paper we propose a
state of the art advancement in StrAFs by presenting original theoretical and computational results related to different
aspects. More particularly the contribution of this work lies into the following aspects. The semantics proposed in
[5] exist in two versions (namely strong, and weak). Roughly speaking, a set is strongly conflict-free iff none of its
elements attacks another one, whereas a set is weakly conflict-free iff it does not contain any (successful) accrual
against one of its elements. After detecting that strong admissibility fails to satisfy a desirable property in Dung’s
abstract argumentation frameworks, namely his Fundamental Lemma [1], we propose an alternative definition for strong
admissibility in order to remedy this issue and we define new admissibility-based semantics for StrAFs. Furthermore,
we study the complexity of reasoning with these semantics and in particular we show that, surprisingly, the complexity
does not increase with respect to the complexity of reasoning with standard AFs. For computing the extensions under
these semantics, we propose algorithms based on pseudo-Boolean constraints.

2 Background Notions

We assume that the reader is familiar with abstract argumentation [1]. We consider finite argumentation frameworks
(AFs) 〈A,R〉, whereA is the set of arguments, andR ⊆ A×A is the attack relation. We will use cf(AF) and ad(AF)
to denote, respectively, the conflict-free and admissible sets of an AF AF , and co(AF), pr(AF) and st(AF) for its
extensions under the complete, preferred and stable semantics. For more details on the semantics of AFs, we refer the
interested reader to [1, 6].

A Strength-based Argumentation Framework (StrAF) [5] is a triple StrAF = 〈A,R,S〉 where A andR are arguments
and attacks, and S : A → N is a strength function. An example of such a StrAF is depicted at Figure 1, where nodes
represent arguments, edges represent attacks, and the numbers close to the nodes represent the arguments strength.
These strengths intuitively represent the intrinsic robustness associated with an argument and allow to induce a defeat

a1

2

a4

4

a2

1

a3

2

a5

1

Figure 1: A StrAF Example

relation: an argument a defeats another argument b when a attacks b and the strength associated with b does not
overcome that with a. This framework also offers the notion of collective defeat, i.e. sets of arguments that can jointly
defeat their target while they cannot do so separately. First, we call an accrual a set of arguments that collectively attack
a same target, i.e. a set κ ⊆ A s.t. ∃c ∈ A s.t. ∀ a ∈ κ, (a, c) ∈ R. Moreover, we say that κ is an accrual that attacks
c. Then, for κ′ ⊆ A an accrual, κ attacks κ′ iff ∃a ∈ κ′ s.t. κ attacks a.
Example 1. Consider again StrAF from Figure 1. We can observe several examples of accruals, e.g. κ1 = {a1, a2}
and κ2 = {a1, a3}, that both attack a4. Notice that any attack (ai, aj) ∈ R induces an accrual {ai} attacking aj .

We need to assess the collective strength of an accrual.
Definition 1 (Collective Strength). Let StrAF = 〈A,R,S〉 be a StrAF and κ = {a1, ..., an} ⊆ A be an accrual. Then
the collective strength associated with κ is coval⊕(κ) = ⊕(S(a1), . . . ,S(an)) where ⊕ is an aggregation operator.

The operator ⊕ must satisfy some properties discussed in [5]. An example of suitable operator is ⊕ =
∑

. If ⊕ is clear
from the context, we simply write coval for coval⊕.
Definition 2 (Collective Defeat). Let StrAF = 〈A,R,S〉 be a StrAF, a ∈ A, and ⊕ an aggregation operator. Then,
an accrual κ defeats a with respect to coval⊕, denoted by κ B⊕ a, iff κ ⊆ A is an accrual that attacks a and
coval⊕(κ) ≥ S(a). If ⊕ is clear from the context, we use κB a instead of κB⊕ a.

In the rest of the paper, we focus on ⊕ =
∑

in examples and the pseudo-Boolean encoding defined in Section 4.2. But,
unless explicitly stated otherwise, our results remain valid for any ⊕ satisfying the properties from [5].
Definition 3. Let StrAF = 〈A,R,S〉 be a StrAF, ⊕ an aggregation operator and κ ⊆ A, κ′ ⊆ A two accruals. Then
κ defeats κ′, denoted by κB⊕ κ′, iff ∃a ∈ κ′ s.t. κB⊕ a.
Example 2. Continuing Example 1, notice that coval∑(κ1) = 3 < S(a4), so κ1 6Ba4. On the contrary, coval∑(κ2) =
4 ≥ S(a4), so κ2 B a4.

2

StrAF semantics rely on two possible adaptations of the notion of conflict-freeness:

Definition 4 (Conflict-freeness/Defense). Given StrAF = 〈A,R,S〉 a StrAF, ⊕ an aggregation operator, and S ⊆ A,

• S is strongly conflict-free iff @a, b ∈ S s.t. (a, b) ∈ R.

• S is weakly conflict-free iff there are no accruals κ1 ⊆ S and κ2 ⊆ S s.t. κ1 B⊕ κ2.

• S defends an element a ∈ A iff for all accruals κ1 ⊆ A, if κ1 B⊕ a, then there exists an accrual κ2 ⊆ S s.t.
κ2 B⊕ κ1.

Intuitively, strongly conflict-free sets are “classically" conflict-free, i.e. there is no attack between two arguments
members of such a set. On the contrary, weakly conflict-free sets are “defeat-free": attacks between arguments are
permitted as long as they do not result in a defeat neither individual nor collective. We use (respectively) cf⊕S and cf⊕W
to denote these sets (or simply cfS and cfW when ⊕ is clear from the context). Then, admissibility and extension-based
semantics can be defined either strong or weak. Namely:

Definition 5 (Semantics for StrAFs [5]). Given StrAF = 〈A,R,S〉 a StrAF, ⊕ an aggregation operator, and S ⊆ A
a strong (resp. weak) conflict-free set,

• S is a strong (resp. weak) admissible set iff S defends all elements of S.

• S is a strong (resp. weak) preferred extension iff S is a ⊆-maximal strong (resp. weak) admissible set.

• S is a strong (resp. weak) stable extension iff ∀a ∈ A\S, ∃κ ⊆ S s.t. κB⊕ a.

For σ an extension-based semantics and X ∈ {S,W} meaning respectively strong and weak, we use σ⊕X(StrAF) to
denote the X-σ extensions of StrAF . We drop ⊕ from the notation where there is no possible ambiguity.

It is proven in [5] that Dung’s AFs are a subclass of StrAFs, where strong and weak semantics coincide. This result
is useful for proving complexity results. However, in [5] authors only focus on complexity issues for the (weak and
strong) stable semantics.

3 Admissibility-based Semantics for StrAFs

In our study, we investigate computational issues for admissibility-based semantics. A formal definition of (weak or
strong) complete semantics is missing in [5], but matching the definition of (weak or strong) admissibility with the
classical definition of the complete semantics, a straightforward definition can be stated as follows:

Definition 6. Let StrAF = 〈A,R,S〉 be a StrAF, and ⊕ an aggregation operator. A strong (resp. weak) admissible
set S ⊆ A is a strong (resp. weak) complete extension of StrAF if S contains all the arguments that it defends.

Now we study these semantics and in particular, we show that surprisingly this intuitive definition of the complete
semantics based on strong admissibility fails to satisfy a desirable property, namely the Fundamental Lemma, which
states that admissible sets can be extended by the arguments that they defend. This leads us to redefine strong
admissibility (and the associated complete and preferred semantics) in Section 3.1. On the contrary, the definition of
weak admissibility is proved to be suitable in Section 3.2.

3.1 Revisiting Strong Admissibility

First, we observe that the usual inclusion relation between the preferred and complete semantics is not satisfied for the
strong semantics of StrAFs. Moreover, the universal existence of complete extensions does not hold either.

Proposition 1. There exists StrAF s.t. prS(StrAF) * coS(StrAF), and coS(StrAF) = ∅.

Proof. The strong conflict-free sets of StrAF from Figure 2 are cfS(StrAF) = {∅, {a}, {b},
{c}}. Trivially, ∅ is strongly admissible (since it is not defeated). Similarly, {a} is strongly admissible (it is
only attacked by c, but not defeated). {b} is not strongly admissible ({a}B {b}, and {b} does not defend itself), neither
{c} ({b}B {c}, and {c} does not defend itself). With adS(StrAF) = {∅, {a}}, {a} is the (only) ⊆-maximal strongly
admissible set, i.e. prS(StrAF) = {{a}}. However, {a} is not complete: {a} defends c against all its defeaters, but
does not contain it. Hence prS(StrAF) * coS(StrAF). Moreover, ∅ is not complete either: ∅ defends a against all its
defeaters. Thus coS(StrAF) = ∅.

3

a

5

b

4

c

3

Figure 2: Example proving that prS(StrAF) * coS(StrAF)

The StrAF from Figure 2 shows that the Fundamental Lemma does not hold for strong semantics of StrAFs: {a} is
strongly admissible, and defends c, but {a} ∪ {c} is not strongly admissible. A way to solve this issue is to redefine
strong admissibility:
Definition 7 (Strong Semantics Revisited). Let StrAF = 〈A,R,S〉 be a StrAF and ⊕ an aggregation operator. A set
S ∈ cfS(StrAF) strongly defends an argument a if S defends a against all the accruals that defeat it, i.e. ∀κ ⊆ A
s.t. κB a, ∃κ′ ⊆ S s.t. κ′ B κ, and S ∪ {a} is strongly conflict-free. Then, a set S ⊆ A is strongly admissible if it is
strongly conflict-free and it strongly defends all its elements. Moreover,

• S is a strong preferred extension iff S is a ⊆-maximal strong admissible set.

• S is a strong complete extension iff S contains all the arguments that it strongly defends.

If we consider again the StrAF from Figure 2, observe that this time, the strongly admissible set {a} does not strongly
defends c, since {a, c} is not strongly conflict-free. Thus {a} is a strong complete extension of this StrAF, following
Definition 7. Now, Dung’s Fundamental Lemma can be adapted to strong admissibility.
Lemma 1 (Fundamental Lemma for Strong Admissibility). Let StrAF = 〈A,R,S〉 be a StrAF and ⊕ an aggregation
operator. Let S ⊆ A be a strongly admissible set, and a, a′ two arguments that are strongly defended by S against all
their defeaters. Then, S′ = S ∪ {a} is strongly admissible.

Proof. The proof follows the definitions of strong defense and strong admissibility: since S strongly defends all its
elements, and strongly defends a, then S′ = S ∪ {a} is strongly conflict-free and strongly defends all its elements,
hence it is strongly admissible.

Lemma 1 implies a relation between strong preferred and complete extensions:
Proposition 2. For any StrAF and ⊕, pr⊕S (StrAF) ⊆ co⊕S (StrAF).

Proof. Reasoning with a proof by contradiction, suppose that there is a strong preferred extension S of StrAF , which
is not a strong complete extension. Since S is strongly admissible, it means that it strongly defends an argument
a ∈ A \ S. According to Lemma 1, S ∪ {a} is strongly admissible. Thus we have a strongly admissible set S′ ⊃ S,
which contradicts the fact that S is a strong preferred extension (i.e. a⊆-maximal strong admissible set). This concludes
the proof that S is a strong complete extension.

This guarantees the existence of at least one strong complete extension for any StrAF: since ∅ is a strong admissible
set for any StrAF , then StrAF admits some ⊆-maximal strong admissible sets, i.e. prS(StrAF) 6= ∅, which implies
coS(StrAF) 6= ∅.
Example 3. Let us consider again the StrAF provided by Figure 1. Its strongly admissible sets are adS(StrAF) =
{∅, {a1}, {a2}, {a3}, {a1, a2}, {a1, a3, a5}}. Then, the strong preferred and complete extensions are prS(StrAF) =
coS(StrAF) = {{a1, a2}, {a1, a3, a5}}.

Finally, we prove that the new definition of strong admissibility does not change the fact that strong stable extensions
are strongly admissible (and even strong preferred).
Proposition 3. For any StrAF and ⊕, st⊕S (StrAF) ⊆ pr⊕S (StrAF).

Proof. Let S ∈ stS(StrAF) be a strong stable extension. By definition, S is strongly conflict-free. Let us prove that
it is strongly admissible, i.e. it strongly defends all its elements. Since it is strongly conflict-free, we only need to
prove that it (classically) defends all its elements. Indeed, given a ∈ S, the fact that S ∪ {a} is strongly conflict-free is
obvious. Let κ be an accrual that defeats a. The strong conflict-freeness of S implies that there is no b ∈ κ belonging to
S, i.e. κ ⊆ A\ S. Then, since S defeats all the arguments in A\ S (because it is a strongly stable extension), S defeats
all the arguments in κ. So a is strongly defended. Which proves that S is admissible.

Now, prove that it is a strongly preferred extension. Assume that it is not, i.e. ∃S′ ∈ adS(StrAF) s.t. S ⊂ S′. This
implies the existence of an argument b ∈ S′ \ S. Since S is strongly stable, there is some accrual κ ⊆ S that defeats b.

4

This implies that S′ is not strongly conflict-free, which contradicts the assumption that S′ is a strongly admissible set.
So we conclude that no such S′ exists, i.e. S is strongly preferred.

3.2 Properties of the Weak Semantics

Regarding now weak semantics as defined in [5], the usual result still holds for StrAFs.

Lemma 2 (Fundamental Lemma for Weak Admissibility). Let StrAF = 〈A,R,S〉 be a StrAF and ⊕ an aggregation
operator. Given S ⊆ A a weakly admissible set, and a, a′ two arguments that are defended by S,

1. S′ = S ∪ {a} is weakly admissible,

2. S′ defends a′.

Proof. 1. Suppose that S is weakly admissible and S defends a. We need to prove that S ∪ {a} is weakly
conflict-free. Reasoning with a proof by contradiction, suppose it is not the case. We split the reasoning in two
parts: ∃κ ⊆ S ∪ {a} s.t. κB a, or κB a′ with a′ ∈ E.

(a) First case: ∃κ ⊆ S ∪ {a} s.t. κB a. It means that there is an accrual κ ⊆ S s.t. κB a. By hypothesis S
defends a against κ, it means that ∃κ′ ⊆ S s.t. κ′ B κ, thus S is not weakly conflict-free. Contradiction.

(b) Second case: ∃κ ⊆ S ∪ {a} s.t. κ B a′ with a′ ∈ S. By hypothesis, S defends itself against all its
defeaters, so ∃κ′ ⊆ S s.t. κ′ B κ. Since κ ⊆ S ∪ {a}, either κ′ defeats a (thus case (a) applies, and this
is a contradiction), or κ′ defeats some argument from S, which is also a contradiction.

2. Obvious from the fact that S defends a′.

Proposition 4. For any StrAF and ⊕, pr⊕W (StrAF) ⊆ co⊕W (StrAF).

Similarly to what we have noticed previously for strong admissibility, ∅ is weakly admissible for any StrAF. This
implies the existence of at least one weak preferred extension, and then one weak complete extension for any StrAF.

Example 4. Consider again the StrAF from Figure 1. One identifies the weakly admissible sets adW (StrAF) =
adS(StrAF) ∪ {{a1, a3, a5}, {a2, a3}, {a1, a2, a3}, {a1, a2, a3, a5}}}. Then, prW (StrAF) = coW (StrAF) =
{{a1, a2, a3, a5}}.

Notice that, contrary to the case of stable semantics [5], we do not have coS(StrAF) ⊆ coW (StrAF). This comes
from the fact that our strong and weak complete semantics are not based on the same notion of defense. However, we
observe that each strong complete extension is included in some weak preferred (and complete) extension. We prove
that this is true for any StrAF.

Proposition 5 (Strong/Weak Semantics Relationship). Given StrAF = 〈A,R,S〉 and ⊕ an aggregation operator,
∀E ∈ coS(StrAF), ∃E′ ∈ prW (StrAF) s.t. E ⊆ E′.

Proof. The results holds because each strongly admissible set is also a weakly admissible set. Indeed,E ∈ adS(StrAF)
is (by definition) strongly conflict-free, which implies its weak conflict-freeness. It also strongly defends all its elements,
which implies that it (classically) defends all its elements. Thus E ∈ adW (StrAF). Then, for any E ∈ coS(StrAF),
by definition E ∈ adS(StrAF), thus E ∈ adW (StrAF). Since weak preferred extension are ⊆-maximal weakly
admissible set, the existence of E′ ∈ prW (StrAF) s.t. E ⊆ E′ holds.

Notice finally that we do not need a counterpart to Proposition 3: the definition of semantics based on weak admissibility
is not modified, so the result from [5, Proposition 1] still holds in this case.

3.3 Dung Compatibility

Previous work on StrAFs showed that this framework generalizes Dung’s AF, with a correspondence of StrAF semantics
with AF semantics in this case. Following the new definition of strong admissible sets, one might fear that this property
does not hold for strong admissibility-based semantics. However, we show here that it still does, as well as for weak
complete semantics. Let us recall the transformation of an AF into a StrAF [5].

Definition 8. Given an argumentation framework AF = 〈A,R〉, the StrAF associated with AF is StrAFAF =
〈A,R,S〉 with S (a) = 1,∀a ∈ A and coval =

∑
.

5

Observation 1. Since all the arguments have the same strength, (a, b) ∈ R implies {a} B b, thus strong and weak
conflict-freeness coincide in StrAFAF .

We also recall useful lemmas from [5].
Lemma 3. LetAF = 〈A,R〉 be an AF, and StrAFAF = 〈A,R,S〉 its associated StrAF. The set S ⊆ A is conflict-free
in AF iff it is strongly conflict-free in StrAFAF .

Lemma 3 is obvious from the definition of strong conflict-freeness. Then Lemma 4 is useful for proving Dung
Compatibility in the context of weak semantics.
Lemma 4. Let AF = 〈A,R〉 be an AF, and StrAFAF = 〈A,R,S〉 its associated StrAF. The set S ⊆ A defends the
argument a ∈ A in AF iff S ⊆ A defends the argument a ∈ A in StrAFAF .

See [5] for the proof of this Lemma. We can also state a stronger version, that will be useful for proving that Dung
Compatibility holds with the revisited definition of strong admissibility.
Lemma 5. Let AF = 〈A,R〉 be an AF, and StrAFAF = 〈A,R,S〉 its associated StrAF. The set S ⊆ A defends the
argument a ∈ A in AF iff S ⊆ A strongly defends the argument a ∈ A in StrAFAF .

Proof. Let us suppose that S ⊆ A defends the argument a ∈ A in AF . This means that for each b ∈ A such that
(b, a) ∈ R, ∃c ∈ S such that (c, b) ∈ R. Moreover, from the Fundamental Lemma by [1], S ∪ {a} is admissible, hence
it is conflict-free. This implies the strong conflict-freeness of S ∪ {a}. Now, let us consider an accrual κ1 ⊆ A such
that κ1 B a. As established previously, ∀b ∈ κ1, ∃c ∈ S such that (c, b) ∈ R, i.e. ∃κ2 = {c} ⊆ S such that κ2 attacks
b. Since coval(κ2) = S(c) = 1 = S(b), κ2 B b and thus κ2 B κ1. So S strongly defends the argument a in StrAFAF .

Now we suppose that S ⊆ A strongly defends the argument a ∈ A in StrAFAF , i.e. S ∪ {a} is strongly conflict-free,
and for all accruals κ1 that defeat a, ∃κ2 ⊆ S such that κ2 B κ1. Since all arguments strengths are equal to 1, every
argument b ∈ A attacking a corresponds to an accrual κ1 = {b} defeating a. So ∃κ2 ⊆ S such that κ2 B κ1 = {b},
and thus ∃c ∈ κ2 ⊆ S such that (c, b) ∈ R. So we conclude that S defends the argument a in AF .

Now we can state the following proposition, that extends Dung Compatibility from [5] to the semantics studied in this
paper.
Proposition 6 (Dung Compatibility). Let AF = 〈A,R〉 be an AF, and StrAFAF = 〈A,R,S〉 from Def. 8. For
σ ∈ {ad,pr, co}, σ(AF) = σX(StrAFAF), for X ∈ {S,W}.

Proof. From Lemmas 3 and 5, S is admissible in AF iff S is strongly admissible in StrAFAF . So the ⊆-maximal
admissible sets in AF coincide with the ⊆-maximal strong admissible sets in StrAFAF , hence Dung Compatibility for
strong preferred semantics. For strong complete semantics, notice that an admissible set S defends (in AF) an argument
a ∈ A \ S iff S strongly defends a in StrAFAF , thus S is a complete extension of AF iff it is a strong complete
extension of StrAFAF , and similarly for weak complete semantics using Lemma 4. Results for weak admissibility and
weak preferred semantics come from [5].

4 Complexity and Algorithms

Now we provide some insight on computational issues for admissibility-based semantics of StrAFs, i.e. we identify the
computational complexity of several classical reasoning problems under these semantics, and we provide algorithms
(based on pseudo-Boolean encoding) for solving them. While the complexity results are generic regarding the choice of
⊕, the algorithms focus on ⊕ =

∑
.

4.1 Complexity Analysis

We assume that the reader is familiar with basic notions of complexity, and otherwise we refer the interested reader to
[7] for details on complexity in formal argumentation, and [8] for a more general overview of computational complexity.

We focus on three classical reasoning problems in abstract argumentation, namely verification (“Is a given set of
arguments an extension?"), credulous acceptability (“Is a given argument member of some extension?") and skeptical
acceptability (“Is a given argument member of each extension?"). Formally, for σ ∈ {ad,pr, co} and X ∈ {S,W}:

• σ-X-Ver: Given StrAF = 〈A,R,S〉 and S ⊆ A, is S a member of σX(StrAF)?
• σ-X-Cred: Given StrAF = 〈A,R,S〉 and a ∈ A, is a in some S ∈ σX(StrAF)?

6

• σ-X-Skep: Given StrAF = 〈A,R,S〉 and a ∈ A, is a in each S ∈ σX(StrAF)?

We recall that these reasoning problems are already considered only for the (weak and strong) stable semantics in
[5]. In the following, we assume a fixed ⊕, that can be computed in polynomial time. This is not a very strong
assumption, since it is the case with the classical aggregation operators (e.g.

∑
,max, . . .). Proposition 6 implies that

the complexity of reasoning with standard AFs provides a lower bound complexity of reasoning with StrAFs. So we
focus on identifying upper bounds.
Proposition 7 (Verification). For X ∈ {S,W}, σ-X-Ver ∈ P , for σ ∈ {ad, co}, and pr-X-Ver is coNP-complete.

Proof. Let us start with strong (resp. weak) admissible sets. Given S ⊆ A, to verify whether S is a strong (resp. weak)
admissible set, one must:

• check whether it is a strong (resp. weak) conflict-free set: doable in polynomial time (see [5]),

• for each κ s.t. κB S (that can be identified in polynomial time by checking the attackers of S), check whether
∃κ′ ⊆ S s.t. κ′ B κ (doable in polynomial time by checking the attackers of κ).

Hence ad-X-Ver ∈ P , for X ∈ {S,W}.

Now we focus on strong (resp. weak) complete semantics. One first needs to check (polynomially) whether
S is a strong (resp. weak) admissible set. If yes, then check whether it defends some a 6∈ S (doable in polynomial time
by checking if there are accruals κ defeating a, and whether some κ′ ⊆ S defeats κ). For strong complete semantics,
restrict this part to arguments a ∈ A \ S s.t. S ∪ {a} is strongly conflict-free (this can also be verified in polynomial
time). Thus co-X-Ver ∈ P , for X ∈ {S,W}.
Finally, for checking whether a set S ⊆ A is a strong (resp. weak) preferred extension, first check whether it is strongly
(resp. weakly) admissible, then non-deterministically guess a proper superset S′ ⊃ S, and check whether S′ is strongly
(resp. weakly) admissible. A positive answer proves that S is not a strong (resp. weak) preferred extension. Hence
pr-X-Ver ∈ coNP, for X ∈ {S,W}. Then, Dung compatibility (Proposition 6) and known complexity results about
AFs [7] prove that pr-X-Ver is coNP-complete.

Proposition 8 (Credulous Acceptability). σ-X-Cred is NP-complete, for σ ∈ {ad, co,pr} and X ∈ {S,W}.

Proof. A classical non-deterministic algorithm can be used for checking the credulous acceptability of an argument a:
guess a set of arguments S ⊆ A s.t. a ∈ S, then (polynomially) check whether S is a strong (resp. weak) admissible
set. This approach guarantees that ad-X-Cred ∈ NP, for X ∈ {S,W}. Since the verification is also polynomial for
strong (resp. weak) complete extensions, the reasoning holds for proving that co-X-Cred ∈ NP. Finally, from known
complexity results [7] and Dung compatibility (Proposition 6), we deduce that ad-X-Cred and co-X-Cred are NP-hard,
thus we conclude that these problems are NP-complete.

Finally, since strong (resp. weak) preferred extensions are ⊆-maximal strong (resp. weak) admissible sets, credulous
acceptability under strong (resp. weak) preferred semantics is equivalent to credulous acceptability under strong (resp.
weak) admissibility. So pr-X-Cred is NP-complete too.

Proposition 9 (Skeptical Acceptability). For X ∈ {S,W}, ad-X-Skep is trivial, co-X-Skep ∈ coNP, and pr-X-Skep
is ΠP

2 -complete.

Proof. Since ∅ ∈ adX(StrAF), for any StrAF , with X ∈ {S,W}, the answer is trivially “NO" for any ad-X-Skep
instance.

We give an upper bound for the complexity of skeptical acceptance under the strong (resp. weak) complete semantics.
A non-deterministic algorithm solves it by guessing a set of arguments S ⊆ A s.t. a 6∈ S, and checking (in polynomial
time) whether S is a strong (resp. weak) complete extension. So co-X-Skep ∈ coNP.

Finally, known complexity results [7] and Dung compatibility (Proposition 6) allow us to deduce that pr-X-Skep is
ΠP

2 -hard for X ∈ {S,W}. Then, this problem is solved by non-deterministically guessing a set of arguments S ⊆ A
s.t. a 6∈ S, and then checking (with a coNP oracle) that S is not a strong (resp. weak) preferred extension (proving that
a is not skeptically accepted). This proves that pr-X-Skep is actually ΠP

2 -complete.

Proposition 10 summarizes the results given above.
Proposition 10. The complexity of the decision problems σ-X-Ver, σ-X-Cred and σ-X-Skep is as described in Table 1.

7

σ-X-Ver σ-X-Cred σ-X-Skep
adX P NP-c Trivial
coX P NP-c in coNP
prX coNP-c NP-c ΠP

2 -c
Table 1: Complexity of reasoning for σX with σ ∈ {ad, co,pr} and X ∈ {S,W}. Trivial means that all instances are
trivially “NO" instances, and C-c means C-complete, for C a complexity class in the polynomial hierarchy.

As it is the case for the strong (resp. weak) stable semantics [5], we prove here that the higher expressivity of StrAFs
(compared to AFs) does not come at the price of a complexity blow-up. Only the case of skeptical acceptability under
strong (resp. weak) complete semantics requires a deeper analysis, since we only provide the coNP upper bound. We
observe that the choice of the weak or strong variant of the semantics does not have an impact on the complexity of
reasoning.

4.2 Algorithms

For computing the strong (resp. weak) admissible sets and complete extensions, we propose a translation of StrAF
semantics in pseudo-Boolean (PB) constraints [9]. Such a constraint is an (in)equality

∑
i wi × li#k where wi and k

are positive integers, and # ∈ {>,≥,=, 6=,≤, <}. li is a literal, i.e. li = vi or li = vi = 1− vi, where vi is a Boolean
variable. Determining whether a set of PB constraints has a solution is a NP-complete problem, that generalizes the
Boolean satisfiability (SAT) problem. Despite the high complexity of this problem, it can be efficiently solved in many
cases, see e.g. [10, 11].

Strong and Weak Conflict-freeness Now we describe our PB encoding of StrAF semantics. For ensuring self-
containment of the paper, we recall the encoding of strong and weak conflict-freeness [5]. Given StrAF = 〈A,R,S〉
and coval =

∑
, we define a set of Boolean variables {xi | ai ∈ A} associated with each argument, where xi = 1

means that ai belongs to the set of arguments characterized by the solutions of the PB constraints. Then, strong
conflict-freeness is encoded by:

(1) ∀(ai, aj) ∈ R, add the constraint xi + xj ≤ 1

and weak conflict-freeness is encoded by:

(1’) ∀a ∈ A, add the constraint
∑

ai∈Γ−(a) S(ai)× xi < x× S(a) + x×M

with M an arbitrary large natural number that is greater than the sum of the strengths of the arguments (i.e. M >∑
a∈A S(a)), Γ−(a) = {b | (b, a) ∈ R} is the set of attackers of a ∈ A, and x is the Boolean variable associated with

a.1 A solution to the set of constraints (1) (resp. (1’)) yields a strong (resp. weak) conflict-free set E = {ai | xi = 1}.
We prove this claim with Proposition 11. First, let us introduce some notations. Given S ⊆ A, ωS : {xi | ai ∈ A} →
{0, 1} is a mapping s.t. ωS(xi) = 1 iff ai ∈ S.

Proposition 11. Given StrAF = 〈A,R,S〉 and S ⊆ A, S ∈ cfS(StrAF) (resp. S ∈ cfW (StrAF)) iff ωS satisfies
the set of constraints (1) (resp. (1’)).

Proof. We start with strong conflict-freeness. Suppose that S is strongly conflict-free. This means that, for any attack
(ai, aj) ∈ R, at most one of ai and aj belongs to S, i.e. at most one xi and xj is equal to one, hence xi + xj ≤ 1.

On the contrary, suppose that ωS satisfies the set of constraints (1). This means that, for any two arguments ai, aj ∈ S
(i.e. both xi and xj are equal to 1), if there is an attack between them, the constraint xi + xj ≤ 1 is falsified. This is a
contradiction with the hypothesis that ωS satisfies the constraint, thus there cannot be an attack between arguments in
S, i.e. S is strongly conflict-free.

Now we focus on weak conflict-freeness. Suppose that S is weakly conflict-free. This means that there is no κ ⊆ S and
a ∈ S s.t. κB a. First, if S is actually strongly conflict-free, then all the constraints from the set (1’) with an argument
a ∈ S in the right-hand part are trivially satisfied (they are reduced to 0 < S(a), because xj = 0 for any attacker
aj ∈ A \ S of a). Now consider the case where S is weakly conflict-free without being strongly conflict-free. This
means that there are attacks between arguments in S. Consider some a ∈ S that is attacked by at least one argument
b ∈ S. The constraint from the set (1’) with a in its right-hand side becomes

∑
aj∈S,(aj ,a)∈R S(aj) < S(a). This

1Notice that the constraints referring to Γ−(a) must be added even when Γ−(a) = ∅.

8

constraint is satisfied iff the accrual κ = {aj ∈ S | (aj , a) ∈ R} (and any κ′ ⊆ κ) does not defeat a. This is the case
since S is weakly conflict-free. Finally, consider the constraints from (1’) with some argument a 6∈ S on the right-hand
side. The right-hand side is reduced to M , which is arbitrarily large, thus the constraint is satisfied.

Now suppose that ωS is a solution of the set of constraints (1’). For any a ∈ S without any attack in S, the constraint
with a on the right-hand side is trivially satisfied (it becomes 0 < S(a)). Then, for any a ∈ S with some attackers in S,
the constraint with a on the right-hand side becomes

∑
aj∈S,(aj ,a)∈R S(aj) < S(a). This constraint is satisfied iff the

accrual κ = {aj ∈ S | (aj , a) ∈ R} (and any κ′ ⊆ κ) does not defeat a, hence the conclusion.

Strong and Weak Admissibility For encoding strong (resp. weak) admissibility, one must add to the set of constraints
(1) (resp. (1’)) some new constraints that represent the strong defense (resp. defense) property. To do so, one needs
to introduce new Boolean variables {yi | ai ∈ A} s.t. yi = 1 means that ai is defeated by the set of arguments
characterized by the solution of the PB constraints. Then, three constraints are added (the same ones for strong and
weak admissibility):

(2) ∀a ∈ A, add the constraint
∑

ai∈Γ−(a) S(ai)× xi ≥ y × S(a)

(3) ∀a ∈ A, add the constraint
∑

ai∈Γ−(a) S(ai)× xi ≤ y × S(a) + y ×M
(4) ∀a ∈ A, add the constraint

∑
ai∈Γ−(a) S(ai)× yi ≤ x× S(a) + x×M

The sets of constraints (2) and (3) ensure that y = 1 iff a is defeated by some κ ⊆ E = {ai | xi = 1}, and the
constraints (4) ensure that E defends all its elements. The following proposition shows the correctness of the encodings.
Proposition 12. Given StrAF = 〈A,R,S〉 and S ⊆ A, S ∈ adS(StrAF) (resp. S ∈ adW (StrAF)) iff ωS satisfies
the sets of constraints (1) (resp. (1’)), (2), (3) and (4).

Proof. We start with strong admissibility. Suppose that S is a strongly admissible set. Strong conflict-freeness implies
that ωS satisfies the set of constraints (1) (see Proposition 11).

Now, let a be an argument defeated by some accrual κ ⊆ S. The constraint from set (2) with a on the right-hand side
becomes

∑
aj∈S,(aj ,a)∈R S(aj) ≥ y×S(a). The constraint is satisfied, since the sum of the strengths of the arguments

in κ is greater than the strength of a, the value of y does not matter. The constraint from set (3) with a on the right-hand
side becomes

∑
aj∈S,(aj ,a)∈R S(aj) ≤ y × S(a) + y ×M . Since the collective strength of the attackers of a in κ is

greater than the strength of a, the constraint is satisfied when y = 1 (recall that M is an arbitrary large integer).

Now consider an argument a that is not defeated by any accrual κ ⊆ S. This means that the sum of the strengths of
the arguments in S that attack a is lesser than the strength of a, thus the constraint

∑
aj∈S,(aj ,a)∈R S(aj) ≥ y × S(a)

is satisfied iff y = 0. Then, the constraint
∑

aj∈S,(aj ,a)∈R S(aj) ≤ y × S(a) + y ×M is satisfied for any value of y
(since the collective strength of the attacks of a in S is lesser than the strength of a, and lesser than M).

Observe that ωS satisfies both the sets of constraints (2) and (3), and implies that y = 1 iff the associated argument a is
defeated by some accrual κ ⊆ S.

Now we focus on the set of constraints (4). For any argument a ∈ A\S, the right-hand side of the constraint is reduced
to M , which is (by definition) greater than the left-hand side. Thus the constraint is satisfied. Now consider some
argument a ∈ S. The constraint becomes S(a1) × y1 + S(a2) × y2 + · · · + S(an) × yn ≤ S(a). Recall that a is
defended against all the accruals κ s.t. κB a (because of the strong admissibility of S). For all the attackers aj that are
defeated by S, yj = 0. Let Atta = {aj ∈ Γ−(a) | S 6 Baj} be the set of attackers of a that are not defeated by S. The
constraint can be re-written

∑
aj∈Atta

S(aj) ≤ S(a). The constraint is satisfied, because otherwise Atta would be an
accrual that defeats a and that is not defeated by S, which is impossible because of the strong admissibility of S.

Now we prove the opposite direction, i.e. we suppose that ωS satisfies the sets of constraints (1), (2), (3) and (4). The
satisfaction of the constraints (1) implies that S is strongly conflict-free (see Proposition 11). We must prove that S
strongly defends all its elements. Let a ∈ S be an argument. Strong conflict-freeness of S implies that S ∪ {a} is
strongly conflict-free, thus S strongly defends a iff S “classically" defends a, i.e. ∀κ ⊆ A s.t. κ B a, ∃κ′ ⊆ S that
defeats κ.

Consider an argument a s.t. ωS(y) = 0. Then the constraints from the sets (2) and (3), with a on the right-hand side,
become (respectively)

∑
aj∈S,(aj ,a)∈R S(aj) ≥ 0 (which is trivially satisfied) and

∑
aj∈S,(aj ,a)∈R S(aj) ≤ S(a).

This last constraint implies that a is not defeated by κ = {aj ∈ S | (aj , a) ∈ R} nor any κ′ ⊆ κ, i.e. there
is no κ ⊆ S s.t. κ B a. On the contrary, consider a s.t. ωS(y) = 1. The constraint from (2) with a in the
right-hand side becomes

∑
aj∈S,(aj ,a)∈R S(aj) ≥ S(a). This means that there is an accrual κ = {aj ∈ S |

9

(aj , a) ∈ R} ⊆ S s.t. κ B a. So, for any a ∈ A, ωS(y) = 1 iff a is defeated by some κ ⊆ S. Now look at the
constraints from the set (4). For any a ∈ A \ S, ωS(x) = 0, so the constraint with a on the right-hand side becomes
S(a1)× y1 + S(a2)× y2 + · · ·+ S(an)× yn ≤M , which is trivially satisfied. Now for a ∈ S, ωS(x) = 1, thus the
constraint becomes S(a1)× y1 + S(a2)× y2 + · · ·+ S(an)× yn ≤ S(a). The left-hand side can be reduced to the
sum of the strengths of the attackers of a that are not defeated. Since the constraint implies that this strength is lesser
than the strength of a, there is no accrual κ that defeats a and that is not in turn defeated by some κ′ ⊆ S. So we can
conclude that S strongly defends all its elements, and thus it is strongly admissible.

The proof is analogous for weak admissibility.

Strong and Weak Complete Semantics Now, for computing the strong (resp. weak) extensions, one must consider
the sets of constraints (1) (resp. (1’)), (2), (3) and (4), and add a last set of constraints, respectively (5) for strong
complete semantics, and (5’) for weak complete semantics:

(5) ∀a ∈ A, add the constraint
∑

ai∈Γ−(a)(S(ai)× yi) +
∑

ai∈Γ−(a)(M × xi) +
∑

a′i∈Γ+(a)(M × x′i) ≥ x× S(a)

(5’) ∀a ∈ A, add the constraint
∑

ai∈Γ−(a) S(ai)× yi ≥ x× S(a)

where Γ+(a) = {b ∈ A | (a, b) ∈ R} is the set of arguments attacked by a. These constraints ensure that an argument
is not accepted only if it is not (strongly) defended. Again, we prove the correctness of the encodings:

Proposition 13. Given StrAF = 〈A,R,S〉 and S ⊆ A, S ∈ coS(StrAF) (resp. S ∈ coW (StrAF)) iff ωS satisfies
the sets of constraints (1) (resp. (1’)), (2), (3), (4) and (5) (resp. (5’)).

Proof. Let S ⊆ A be a strong complete extension of StrAF . Strong admissibility and Proposition 12 imply that
ωS satisfies the set of constraints (1), (2), (3) and (4). Let us focus on the set of constraints (5). For any a ∈ S,
ωS(x) = 1, and the constraint is trivially satisfied (the right-hand side becomes 0). Now consider a ∈ A \ S. Let us
define Atta = {aj ∈ A | (aj , a) ∈ R, ωS(yj) = 0} the set of attackers of a that are not defeated by any κ ⊆ S, and
Tara = {ak ∈ A | (a, ak) ∈ R, ak ∈ S}. The constraint becomes

∑
aj∈Atta

S(aj) + |Tara| ×M ≥ S(a). Suppose
first that Tara = ∅, i.e. there is no argument in S attacked by a. The constraint is then

∑
aj∈Atta

S(aj) ≥ S(a). Since
S is a strong complete extension, it does not strongly defend a, i.e. there is an accrual κ ⊆ Atta s.t. κB a, and @κ′ ⊆ S
with κ′ B κ. This implies that the collective strength of the arguments in κ is greater than the strength of a, which
means that the constraint is satisfied. No, if Tara 6= ∅, the constraint is satisfied as well because of |Tara| ×M on the
left-hand side.

Now, for the other direction of the proof, let us suppose that ωS satisfies the set of constraints (1), (2), (3), (4) and
(5). The satisfaction of the sets (1), (2), (3) and (4) implies that S is strongly admissible (see Proposition 12). Let
us show that S is a strong complete extension, i.e. it does not strongly defend any a ∈ A \ S. Reasoning towards a
contradiction, suppose that there is a ∈ A \ S that is strongly defended by S. a ∈ A \ S implies that ωS(x) = 0, so the
constraint from the set (5) becomes S(a1)× y1 +S(a2)× y2 + · · ·+S(an)× yn +M × x′1 + · · ·+M × x′m ≥ S(a).
Let Atta = {aj ∈ A | (aj , a) ∈ R, ωS(yj) = 0} be the set of attackers of a that are not defeated by any κ ⊆ S and
Tara = {ak ∈ A | (a, ak) ∈ R, ak ∈ S} the set of arguments in S that are attacked by a. The constraint can then be
rewritten

∑
aj∈Atta

S(aj) + |TarA| ×M ≥ S(a). Since the constraint is satisfied, it means that

• either there is an accrual κ = Atta s.t. κB a, and there is no κ′ ⊆ S with κ′ B κ;

• or there is an argument ak ∈ S such that (a, ak) ∈ R, i.e. S ∪ {a} is not strongly conflict-free.

In both cases, there is a contradiction with the assumption that S strongly defends a. So there is no such a: S is a strong
complete extension.

The proof for weak complete semantics is analogous.

Acceptability and Verification Obtaining one (resp. each) solution for one of the sets of constraints defined
previously corresponds to obtaining one (resp. each) extension of the StrAF under the corresponding semantics. For
checking whether a given argument ai is credulously accepted, one simply needs to add the constraint xi = 1. If a
solution exists, then it corresponds to an extension that contains ai, proving that this argument is credulously accepted.
Otherwise, ai is not credulously accepted. For skeptical acceptability, one needs to add the constraint xi = 0. In this
case, a solution exhibits an extension that does not contain ai, thus this argument is not skeptically accepted. In the case
where no solution exists, then the argument is skeptically accepted. Finally, for checking whether a set of arguments

10

S ⊆ A is an extension, one needs to add the constraints xi = 1 for each ai ∈ S, as well as xi = 0 for each ai ∈ A \ S.
A solution exists for the new set of constraints iff S is an extension under the considered semantics.

Strong and Weak Preferred Semantics Finally, let us mention an approach to handle reasoning with strong and
weak preferred semantics. Because of the higher complexity of skeptical reasoning under these semantics (recall
Proposition 10), it is impossible (under the usual assumption that the polynomial hierarchy does not collapse) to find a
(polynomial) encoding of these semantics in PB constraints. However, PB solvers can be used as oracles to find (with
successive calls) preferred extensions. Algorithm 1 describes our method to do this for strong preferred semantics
(replacing (1) by (1’) provides an algorithm for weak preferred semantics). At start, we add the four constraints
corresponding to a strong (resp. weak) admissible set and solve the instance, with the PB solver as a coNP oracle. Then
we force the arguments within the extension to stay in the next one by adding the constraint on line 4. To avoid getting
the same solution as in the previous step, we make sure that at least one argument outside the previous extension will
be in the next one (line 5). This method iteratively extends an admissible set into a preferred extension, that is finally
returned when the solver cannot find any (larger) solution.

Algorithm 1 Compute a strong preferred extension
P = PB problem with constraints (1), (2), (3) and (4)
while P.solve() 6= null do
E ← P.solve()
P.add_constraint(x1 + x2 + · · ·+ xn = n), with E = {a1, a2, . . . , an}
P.add_constraint(x1 + x2 + · · ·+ xn ≥ 1), with A \ E = {a′1, a′2, . . . , a′n}

end while
return E

5 Experimental Evaluation

For estimating the scalability of our method based on pseudo-Boolean constraints, we present now some results obtained
from our experimental evaluation using two prominent PB solvers: Sat4j [12] and RoundingSat [11]. While Sat4j is
based on saturation, RoundingSat uses the division rule (see [11] for a discussion on both approaches). We focus here
on the most relevant results; full results are presented in the appendix.

Benchmark Generation We generate benchmarks in a format adapted to StrAFs, inspired by ASPARTIX formalism
[13]. We consider two classes of randomly generated graphs. First, with the Erdös–Rényi model (ER) [14], given a set
of arguments A, and p ∈ [0, 1], we generate a graph such that for each (a, b) ∈ A×A, a attacks b with a probability p.
We consider two values for the probability, namely p ∈ {0.1, 0.5}. Then, with the Barabási–Albert (BA) model [15],
a graph of n nodes is grown by attaching new nodes with m edges that are preferentially attached to existing nodes
with a high degree. These types of graphs have been frequently used for studying computational aspects of formal
argumentation, in particular during the ICCMA competitions [16]. The choice of a generation model provides the
arguments A and attacks R. We attach a random strength S(a) ∈ {1, . . . , 20} to each a ∈ A. For each generation
model, we build 20 StrAFs for each |A| ∈ {5, 10, 15, . . . , 60}. Parameters (p ∈ {0.1, 0.5} for ER, m = 1 for BA)
are chosen to avoid graphs with a high density of attacks, that would prevent the existence of meaningful extensions
(e.g. non-empty ones). Larger StrAFs (with |A| ∈ {5, 10, . . . , 250}) have been generated with the same parameters
(p ∈ {0.1, 0.5} for ER, m = 1 for BA) for studying the problem of providing one extension.

Experimental Setting The experiments were run on a Windows computer (using Windows Subsystem for Linux),
with an Intel Core i5-6600K 3.50GHz CPU and 16GB of RAM. The timeout is set to 600 seconds (same as the timeout
at ICCMA [17]).

Results We are interested in the semantics σX , with σ ∈ {pr, st, co} and X ∈ {S,W}. The encodings for stX
(X ∈ {S,W}) are those proposed in [5], while the encoding for the other semantics are those described in Section 4.2.
For each generated StrAF , and each of these semantics σX , the two tasks we are interested in consist in enumerating
all extensions and finding one extension. We first focus on the runtime for enumerating σX extensions, which provides
an upper bound of the runtime for solving other classical reasoning tasks. To do so, we use a Python script that converts
a StrAF into a set of PB constraints. The set of extensions is then obtained in a classical iterative way: once an extension
is returned by the PB solver, we add a new constraint that forbids this extension, and we call again the solver on this
updated set of PB constraints. This process is repeated until the set of constraints becomes unsatisfiable, which means
that all the extensions have been obtained. Concerning the preferred extensions, this iterative approach is combined with

11

Algorithm 1. In order to measure the performance of our approach, and since there is no other computational approach
for StrAF semantics yet, we also implemented a so-called naive algorithm that enumerates all sets of arguments and
then checks, for each of them, if it is a σX extension. Figure 3 presents the average runtimes w.r.t. instance sizes
(i.e. |A|) for various semantics and StrAF families as described before. As a first result, we observe in Figure 6a that
runtime for enumerating extensions (with the PB approach) is reasonable (i.e. less than a minute) for most of the
cases considered in our study, when the PB approach is used, while the naive approach reaches the timeout for most
of the large instances (in particular, all the instances with |A| ≥ 45). The average runtimes are higher in only two
situations: the enumeration of strong preferred and strong complete extensions, with the BA graphs. However, even in
such situations where the enumeration is harder (e.g. for prS-extensions on BA graphs, as depicted on Figure 3b), the
PB solvers clearly outperform the naive algorithm, which reaches the timeout in every instance when |A| ≥ 30, while
the PB approach can enumerate extensions for larger graphs.

(a) coW on ER graphs (p = 0.1) (b) prS on BA graphs

Figure 3: Enumeration runtime

We also study the classical problem of providing one extension, for StrAFs of larger sizes (recall that here |A| ∈
{5, 10, . . . , 250}). Figure 4 shows that the PB solvers (in particular, Sat4j) provide one extension for these large graphs
under two minutes, even for the preferred semantics (which is the hardest one, in our study, from the computational point
of view). Concerning the respective performances of the two PB solvers, Figure 4 shows that RoundingSat processes
faster for fast-to-compute instances (i.e. the smallest ones), while Sat4j outperforms it for instances of larger size. While
we do not have explanations for this phenomenon, a plausible assumption is that it is related to the difference of the
underlying algorithms (saturation for Sat4j and division rule for RoundingSat). Similar things have been observed for
SAT solvers used in the case of standard AFs [18].

Figure 4: Finding one extension runtime under prs on BA graphs

As a general conclusion on our experimental analysis, we observe that the PB approach for reasoning with StrAFs
generally scales up well, for both problems of enumerating extensions and providing one extension.

6 Conclusion

Strength-based Argumentation Frameworks (StrAFs) have originally been proposed in [5]. Contrary to this work, in this
paper we focused on admissibility-based semantics. We showed that the weak admissibility-based semantics defined in
the original work satisfy some expected properties, namely Dung’s Fundamental Lemma. However, the definition for

12

strong admissibility proposed in [5] does not yield semantics that behave as expected. This has conducted us to revisit
the definition of strong admissibility, and this allowed us to introduce strong complete and preferred semantics. We
have also enhanced the StrAFs literature by studying the computational complexity of classical reasoning problems for
these semantics, and we have shown that it is the same as for the corresponding tasks in Dung’s framework, in spite of
the increase of expressivity. Then we have proposed a method based on pseudo-Boolean constraints for computing
the extensions of a StrAF under the various semantics defined in this paper, and we have empirically evaluated the
scalability of this approach for the new semantics defined in this paper, as well as the (weak and strong) stable semantics
from [5].

As future work we have identified several promising research tracks, including the study of (weak and strong) grounded
semantics, and tight complexity results for the skeptical reasoning under the (weak and strong) complete semantics. We
are also interested in an analysis of the relation between StrAFs and other frameworks, in particular the comparison of
the signatures of StrAFs semantics and SETAFs semantics [19, 20, 21]. Finally, we want to study argument strength
and accrual in a context of structured argumentation.

A Experimental Results

This section describes additional experimental results, not presented in the main part of the paper because of space
constraints.

(a) ER graphs with p = 0.1 (b) ER graphs with p = 0.5

(c) BA graphs

Figure 5: Enumeration runtime under coS for various types of graphs

References

[1] Phan Minh Dung. On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic
programming and n-person games. Artif. Intell., 77(2):321–358, 1995.

[2] Claudette Cayrol and Marie-Christine Lagasquie-Schiex. Bipolarity in argumentation graphs: Towards a better
understanding. Int. J. Approx. Reason., 54(7):876–899, 2013.

[3] Leila Amgoud and Claudette Cayrol. A reasoning model based on the production of acceptable arguments. Annals
of Mathematics and Artificial Intelligence, 34(1-3):197–215, 2002.

13

(a) ER graphs with p = 0.1 (b) ER graphs with p = 0.5

(c) BA graphs

Figure 6: Enumeration runtime under coW for various types of graphs

[4] Trevor Bench-Capon. Value-based argumentation frameworks. In Proc. of NMR’02, pages 443–454, 2002.
[5] Julien Rossit, Jean-Guy Mailly, Yannis Dimopoulos, and Pavlos Moraitis. United we stand: Accruals in strength-

based argumentation. Argument Comput., 12(1):87–113, 2021.
[6] Pietro Baroni, Martin Caminada, and Massimiliano Giacomin. Abstract argumentation frameworks and their

semantics. In Handbook of Formal Argumentation, pages 159–236. College Publications, 2018.
[7] Wolfgang Dvorák and Paul E. Dunne. Computational problems in formal argumentation and their complexity. In

Handbook of Formal Argumentation, pages 631–688. College Publications, 2018.
[8] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach. Cambridge UP, 2009.
[9] Olivier Roussel and Vasco M. Manquinho. Pseudo-boolean and cardinality constraints. In Handbook of Satisfia-

bility, pages 695–733. 2009.
[10] Ruben Martins, Vasco M. Manquinho, and Inês Lynce. Open-wbo: A modular maxsat solver,. In Proc. of SAT’14,

pages 438–445, 2014.
[11] Jan Elffers and Jakob Nordström. Divide and conquer: Towards faster pseudo-boolean solving. In Proc. of

IJCAI’18, pages 1291–1299, 2018.
[12] Daniel Le Berre and Anne Parrain. The sat4j library, release 2.2. J. Satisf. Boolean Model. Comput., 7(2-3):59–6,

2010.
[13] Wolfgang Dvorák, Sarah Alice Gaggl, Anna Rapberger, Johannes Peter Wallner, and Stefan Woltran. The

ASPARTIX system suite. In Proc. of COMMA’20, pages 461–462, 2020.
[14] Paul Erdös and Alfréd Rényi. On random graphs. i. Publicationes Mathematicae, 6:290–297, 1959.
[15] Albert-Laszlo Barabasi and Reka Albert. Emergence of scaling in random networks. Science, 286(5439):509–512,

1999.
[16] Sarah Alice Gaggl, Thomas Linsbichler, Marco Maratea, and Stefan Woltran. Design and results of the second

international competition on computational models of argumentation. Artif. Intell., 279, 2020.
[17] Jean-Marie Lagniez, Emmanuel Lonca, Jean-Guy Mailly, and Julien Rossit. Introducing the fourth international

competition on computational models of argumentation. In Proc. of SAFA’20, pages 80–85, 2020.

14

(a) ER graphs with p = 0.1 (b) ER graphs with p = 0.5

(c) BA graphs

Figure 7: Enumeration runtime under prS for various types of graphs

[18] Serigne Gning and Jean-Guy Mailly. On the impact of SAT solvers on argumentation solvers. In Proc. of SAFA’20,
volume 2672, pages 68–73, 2020.

[19] Søren Holbech Nielsen and Simon Parsons. A generalization of dung’s abstract framework for argumentation:
Arguing with sets of attacking arguments. In Proc. of ArgMAS’06, pages 54–73. Springer, 2006.

[20] Wolfgang Dvorák, Jorge Fandinno, and Stefan Woltran. On the expressive power of collective attacks. Argument
Comput., 10(2):191–230, 2019.

[21] Giorgos Flouris and Antonis Bikakis. A comprehensive study of argumentation frameworks with sets of attacking
arguments. Int. J. Approx. Reason., 109:55–86, 2019.

15

(a) ER graphs with p = 0.1 (b) ER graphs with p = 0.5

(c) BA graphs

Figure 8: Enumeration runtime under prW for various types of graphs

(a) ER graphs with p = 0.1 (b) ER graphs with p = 0.5

(c) BA graphs

Figure 9: Enumeration runtime under stS for various types of graphs

16

(a) ER graphs with p = 0.1 (b) ER graphs with p = 0.5

(c) BA graphs

Figure 10: Enumeration runtime under stW for various types of graphs

17

	1 Introduction
	2 Background Notions
	3 Admissibility-based Semantics for StrAFs
	3.1 Revisiting Strong Admissibility
	3.2 Properties of the Weak Semantics
	3.3 Dung Compatibility

	4 Complexity and Algorithms
	4.1 Complexity Analysis
	4.2 Algorithms

	5 Experimental Evaluation
	6 Conclusion
	A Experimental Results

