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Background in time to event analysis

I We study a positive continuous time to event variable T .

I T represents the time difference between event of interest and patient entry.

Study start Patient entry Ev. of interest

T

I Examples : time to relapse of Leukemia patients, time to onset of cancer,
time to death . . .
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Background in time to event analysis : right censoring

Study start End of study

T1

T obs
2

T2

T obs
3

T3

T4

T obs
4
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The hazard rate

I Observations :{
T obs
i = Ti ∧ Ci

∆i = 1Ti≤Ci

I Independent censoring : T ⊥⊥ C

I A key relation :

λ(t) := lim
4t→0

P[t ≤ T < t +4t | T ≥ t]

4t

= lim
4t→0

P[t ≤ T obs < t +4t,∆ = 1 | T obs ≥ t]

4t
·

Many estimators (Nelson Aalen, Kaplan-Meier, . . .) are based on this relation.
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Likelihood and the Cox model

I The likelihood of the observed data is equal to :

n∏
i=1

f (T obs
i )∆iS(T obs

i )1−∆i =
n∏

i=1

λ(T obs
i )∆i exp

(
−
∫ T obs

i

0

λ(t)dt

)
,

where f is the density of T and S(t) = P[T > t].

I Regression modelling : let Z ∈ Rd be a covariate.

λ(t | Zi ) = λ0(t) exp(βZi ) (Cox Model)

For a binary covariate,

λ(t | Zi = 1)

λ(t | Zi = 0)
= exp(β).
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The piecewise constant hazard model

I The model :

λ(t) =
K∑

k=1

λk1ck−1<t≤ck

I Goal : estimate the λks.

The log-likelihood is equal to :

`n(λ) =
K∑

k=1

{
Ōk log (λk)− λk R̄k

}
,

where

I Ōk =
∑

i ∆i1ck−1<T obs
i ≤ck

: number of observed events in interval (ck−1, ck ]

I R̄k =
∑

i (T
obs
i ∧ ck − ck−1)1T obs

i >ck−1
: total time at risk in interval (ck−1, ck ]
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The piecewise constant hazard model

I Ōk : number of observed events in interval (ck−1, ck ]

I R̄k : total time at risk in interval (ck−1, ck ]

The maximum likelihood estimator is explicit :

λ̂mle
k =

Ōk

R̄k

O. Aalen, Ø. Borgan, H. Gjessing, Survival and Event History Analysis. (2008)

I We want to choose the number and location of the cuts from the data

I We start from a large grid of cuts (K = 100, 1 000, . . .)

I We use a penalization technique to constrain similar adjacent hazard values
to be equal.

Olivier Bouaziz (MAP5) The AR procedure for time to event data March 04, 2021 10 / 43



The piecewise constant hazard model
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Penalizing the maximum likelihood estimator

Set log λk = ak . Estimation of a is achieved through penalized log-likelihood :

`pen
n (a) = `n(a)︸ ︷︷ ︸

log-likelihood

− pen

2

{
K−1∑
k=1

wk (ak+1 − ak)2

}
︸ ︷︷ ︸

regularization term

,

I w represents a weight.

I pen is a penalty term.
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Two types of regularization

1. L2 regularization (Ridge) with w = 1.

2. L0 regularization with the iterative adaptive ridge procedure.
At the mth step, we update the weights

w
(m−1)
k =

((
a

(m−1)
k+1 − a

(m−1)
k

)2

+ ε2

)−1

,

with ε� 1, and we maximize with respect to a

`pen
n (a) = `n(a)− pen

2

{
K−1∑
k=1

w
(m−1)
k (ak+1 − ak)2

}
.

F. Frommlet and G. Nuel, An Adaptive Ridge Procedure for L0 Regularization.
PlosOne (2016).
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L0 norm approximation - Heuristic

When ε� 1,

(ak+1 − ak)2

(ak+1 − ak)2 + ε2
' ‖ak+1 − ak‖2

0 =

{
0 if ak+1 = ak

1 if ak+1 6= ak

●
ε
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Maximization of the penalized log-likelihood

I The penalized estimator is no longer explicit.

I Maximization is performed from the Newton-Raphson algorithm. For a given
sequence of weights w , the `th Newton Raphson iteration step is obtained
from the equation

a(`) = a(`−1) + I (a(`−1),w)−1U(a(`−1),w),

where I is the opposite of the Hessian matrix, U is the score vector.

I The Hessian matrix is tri-diagonal.

I =⇒ computation time for the inversion of the Hessian is O(K )
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The Adaptive Ridge procedure for a given penalty

procedure Adaptive-Ridge(O,R, pen)
(a,w , sel) ← (0,1,0)
while not converge do

anew ← Newton-Raphson(O,R, pen, a,w)

wnew
k ←

(
(anew

k+1 − anew
k )2 + ε2

)−1

selnew
k ← wnew

k (anew
k+1 − anew

k )2

(a,w ,sel) ← (anew,w new,selnew)
end while

ˆcuts ← cuts[sel> 0.99]

Compute (O ˆcuts,R ˆcuts)

exp(âmle) ← O ˆcuts/R ˆcuts

return âmle

end procedure

Olivier Bouaziz (MAP5) The AR procedure for time to event data March 04, 2021 15 / 43



The Adaptive Ridge procedure for a given penalty

procedure Adaptive-Ridge(O,R, pen)
(a,w , sel) ← (0,1,0)
while not converge do

anew ← Newton-Raphson(O,R, pen, a,w)

wnew
k ←

(
(anew

k+1 − anew
k )2 + ε2

)−1

selnew
k ← wnew

k (anew
k+1 − anew

k )2

(a,w ,sel) ← (anew,w new,selnew)
end while

ˆcuts ← cuts[sel> 0.99]

Compute (O ˆcuts,R ˆcuts)
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end procedure

Olivier Bouaziz (MAP5) The AR procedure for time to event data March 04, 2021 15 / 43



Comparison of the two regularization methods

pen = 0 =⇒ â = âmle

pen =∞ =⇒ â = constant
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pen =∞ =⇒ â = constant
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Model selection for the Adaptive Ridge estimator (n = 400)
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I In red the true hazard function

I In black the hazard estimator for pen = 0.1
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Model selection for the Adaptive Ridge estimator (n = 400)
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Model selection for the Adaptive Ridge estimator (n = 400)
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Model selection for the Adaptive Ridge estimator (n = 400)

0 20 40 60 80

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Time

H
az

ar
d

I In red the true hazard function

I In black the hazard estimator for pen = 1.54

Olivier Bouaziz (MAP5) The AR procedure for time to event data March 04, 2021 17 / 43



Model selection for the Adaptive Ridge estimator (n = 400)
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Model selection for the Adaptive Ridge estimator (n = 400)
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Model selection for the Adaptive Ridge estimator

Three different methods to perform model selection :

1. BIC(D) = −2`n(âmle
D ) + D log n

2. AIC(D) = −2`n(âmle
D ) + 2D

3. K-fold Cross Validation (CV),

with D the dimension of the model :

D =
K−1∑
k=0

1{âmle
k+1,D − âmle

k,D 6= 0}.

I O. Bouaziz and G. Nuel, L0 regularization for the estimation of piecewise
constant hazard rates in survival analysis. Applied Mathematics (2017).

I Package pchsurv available on GitHub :
install github("obouaziz/pchsurv")
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Model selection for the Adaptive Ridge estimator using the
BIC (n = 400)
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The adaptive ridge as an approximation for the L0 “norm”

I Let ∆ak := ak+1 − ak , k = 1, . . . ,K − 1, and ‖∆a‖0 :=
∑K−1

k=1 1∆ak 6=0.

I For β ∈ R, ε > 0, let

p(β) :=
log(1 + β2/ε2)

log(1 + 1/ε2)
−−−→
ε→0

1β 6=0.

We have :
∑K−1

k=1 p(∆ak) −−−→
ε→0

‖∆a‖0.

Theorem (V. Goepp, J-C. Thalabard, G. Nuel and O. Bouaziz)

The adaptive-ridge algorithm solves the maximization problem :

â = arg max
a

˜̀pen
n (a),

with ˜̀pen
n (a) := `n(a)− κ

∑K−1
k=1 p(∆ak), κ > 0.
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Local Quadratic Approximation (LQA)

Local Quadratic Approximation (see J. Fan and R. Li 2001, D. R. Hunter and R. Li 2005) of
p(β) . We prove that for all β(m) ∈ R, for all β ∈ R,

p(β) ≤ q(β | β(m)) :=
log(1 + (β(m))2/ε2)

log(1 + 1/ε2)
+
β2 − (β(m))2

ε2 + (β(m))2
·

1

log(1 + 1/ε2)
,

with q(β(m) | β(m)) = p(β(m)). (β(m) = 0.5 and ε = 10−2 in the plot)

0.00

0.25

0.50

0.75

1.00

1.25

−1.0 −0.5 0.0 0.5 1.0
β

p(β) =
log(1+β2 ε2)

log(1+1/ε2)

LQA : q(β|β(m))
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The adaptive ridge as an MM algorithm

Minorize-Maximization (MM) algorithm

I For κ > 0, we have

˜̀pen
n (a) = `n(a)− κ

K−1∑
k=1

p(∆ak) ≥ `n(a)− κ
K−1∑
k=1

q(∆ak | ∆a
(m)
k )︸ ︷︷ ︸

g(a|a(m))

,

with g(a(m) | a(m)) = ˜̀pen
n (a(m)).

I Let a(m+1) = arg maxa g(a | a(m)). Then :

˜̀pen
n (a(m+1)) ≥ g(a(m+1) | a(m)) ≥ g(a(m) | a(m)) = ˜̀pen

n (a(m)).

I a(m+1) = arg maxa g(a | a(m)) is the update obtained from our adaptive-ridge
algorithm ! The adaptive-ridge algorithm solves the maximization problem :

â = arg max
a

˜̀pen
n (a).
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The SEER data

I Huge american registry dataset of breast cancer https ://seer.cancer.gov

I Primary, unilateral, malignant and invasive cancers

I 1.2 million of patients, 60% of censoring

I The cancer diagnosis range from 1973 to 2014

I The time from cancer diagnosis to death or censoring ranges from 0 to 41
years.

I The variable of interest is the time from cancer diagnosis until death.

Aim : estimate the hazard of death as a function of both date of cancer diagnosis
and time since diagnosis.

I We use the adaptive ridge procedure

I Penalization over the two directions.

I V. Goepp, J-C. Thalabard, G. Nuel and O. Bouaziz. Regularized Bidimensional
Estimation of the Hazard Rate. To appear in International Journal of
Biostatistics.

I Package hazreg available on GitHub : install github("goepp/hazreg")
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The SEER data

I λj,k : true hazard in rectangle (j , k)

I Oj,k : number of observed events in rectangle (j , k)

I Rj,k : total time at risk in rectangle (j , k)

The log-likelihood is equal to :

`n(λ) =
J∑

j=1

K∑
k=1

{Oj,k log (λj,k)− λj,kRj,k}

Set log λj,k = aj,k . Estimation of a through penalized log-likelihood :

`pen
n (a) = `n(a)︸ ︷︷ ︸

log-likelihood

− pen

2

∑
j,k

{
vj,k (aj+1,k − aj,k)2 + wj,k (aj,k+1 − aj,k)2

}
︸ ︷︷ ︸

regularization term

.
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The SEER data
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The dental dataset

Data collected from Eva Lauridsen at the hospital Rigshospitalet (Denmark).

I Study of 322 patients with 400 avulsed and replanted permanent teeth from
1965 to 1988.

I The variable of interest is time from replantation until the ankylosis
complication.

I Patients are examined at intermittent visits to the dentist.
I Left-censoring (28%) if ankylosis occurred before the first visit.
I Interval-censoring (35.75%) if ankylosis occurred between two visits.
I Right-censoring (36.25%) if ankylosis did not occur yet after the last visit.

I Covariates :
I stage of root formation : 72.5% mature teeth, 27.5% immature teeth
I length of extra-alveolar storage : mean time is 30.9 minutes
I type of storage media : 85.25% physiologic, 14.75% non physiologic
I age of the patient : mean age for mature teeth is 16.81 years
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complication.

I Patients are examined at intermittent visits to the dentist.
I Left-censoring (28%) if ankylosis occurred before the first visit.
I Interval-censoring (35.75%) if ankylosis occurred between two visits.
I Right-censoring (36.25%) if ankylosis did not occur yet after the last visit.

I Covariates :
I stage of root formation : 72.5% mature teeth, 27.5% immature teeth
I length of extra-alveolar storage : mean time is 30.9 minutes
I type of storage media : 85.25% physiologic, 14.75% non physiologic
I age of the patient : mean age for mature teeth is 16.81 years
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The raw data on a subsample of size 100
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The observed likelihood

The observations are Li , Ri , i = 1, . . . , n.

I 0 = Li < Ri < +∞ for left-censored observation (δi = 1)

I 0 < Li < Ri < +∞ for interval-censored observation (δi = 1)

I 0 < Li < Ri = +∞ for right-censored observation (δi = 0)

With these types of data, the observed likelihood is equal to :

Lobs(θ) =
n∏

i=1

{S(Li | Zi ,θ)− S(Ri | Zi ,θ)}δi ×
{
S(Li | Zi ,θ)

)}1−δi
.
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The observations are Li , Ri , i = 1, . . . , n.

I 0 = Li < Ri < +∞ for left-censored observation (δi = 1)

I 0 < Li < Ri < +∞ for interval-censored observation (δi = 1)

I 0 < Li < Ri = +∞ for right-censored observation (δi = 0)

With these types of data, the observed likelihood is equal to :

Lobs(θ) =
n∏

i=1

{
exp

(
−
∫ Li

0

λ0(t)dteβZi

)(
1− exp

(
−
∫ Ri

Li

λ0(t)dteβZi

))}δi

×

{
exp

(
−
∫ Li

0

λ0(t)dteβZi

)}1−δi

,

for the Cox model λ(t | Zi ) = λ0(t) exp(βZi ).
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The observed likelihood

I The piecewise constant model for the baseline :

λ0(t) =
K∑

k=1

exp(ak)1ck−1<t≤ck

I The model parameter is : θ = (a1, . . . , aK , β) ∈ RK+d

Maximization of :

Lobs(θ) =
n∏

i=1

{
exp

(
−
∫ Li

0

λ0(t)dteβZi

)(
1− exp

(
−
∫ Ri

Li

λ0(t)dteβZi

))}δi

×

{
exp

(
−
∫ Li

0

λ0(t)dteβZi

)}1−δi

,

requires to use the Newton-Raphson algorithm.

I The Hessian is of full rank !

I Intractable solution if K is large !
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The EM algorithm
The complete likelihood is defined as

L(θ) =
n∏

i=1

f (Ti | Zi ,θ).

Introduce data = (Li ,Ri ,Zi ).

I E-step :

E[log(f (Ti | Zi ,θ))|data,θold] =

∫
f (t | data,θold) log f (t | Zi ,θ)dt

I Under the assumptions
I P(T ∈ [L,R]) = 1,
I P(T ≤ t | L = l ,R = r ,Z) = P(T ≤ t | l ≤ T ≤ r ,Z) (see Zhang, Sun, Zhao,

and Sun, Canadian J. of Stat., 2005),

we have

f (t | data,θold) =
f (t | Zi ,θold)1(Li < t < Ri )

S(Li | Zi ,θold)− S(Ri | Zi ,θold)
·
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Using the EM algorithm

I The M-step corresponds of maximizing, with respect to θ,

Q(θ|θold) := ET1:n|data,θold
[log(L(θ))]

=
n∑

i=1

K∑
k=1

{(
ai,k −

k−1∑
j=1

(cj − cj−1)eai,j
)
Aold
k,i − eai,kBold

k,i

}
,

with ai,k := ak + βZi and with explicit expressions of Aold
k,i and Bold

k,i .

I Aold
k,i and Bold

k,i depend only on θold, Li ,Ri ,Zi .
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}
,

with ai,k := ak + βZi and with explicit expressions of Aold
k,i and Bold

k,i .

I Aold
k,i and Bold

k,i depend only on θold, Li ,Ri ,Zi .

I In the absence of covariates (Zi = 0, ai,k = ak , θ = (a1, . . . , aK )) : the
M-step is explicit.
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I The M-step corresponds of maximizing, with respect to θ,

Q(θ|θold) := ET1:n|data,θold
[log(L(θ))]

=
n∑

i=1

K∑
k=1

{(
ai,k −

k−1∑
j=1

(cj − cj−1)eai,j
)
Aold
k,i − eai,kBold

k,i

}
,

with ai,k := ak + βZi and with explicit expressions of Aold
k,i and Bold

k,i .

I Aold
k,i and Bold

k,i depend only on θold, Li ,Ri ,Zi .

I In the absence of covariates (Zi = 0, ai,k = ak , θ = (a1, . . . , aK )) : the
M-step is explicit.

I In the general regression framework : the M-step is solved using the
Newton-Raphson procedure.
I The block matrix of the Hessian for the aks is diagonal !
I Using the Schurr complement, inversion of the Hessian is of order O(K) in the

case K >> d .
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A penalized EM algorithm

I We want to choose the number and location of the cuts from the data

I We start from a large grid of cuts (K = 100, 1 000, . . .)

I We use a penalization technique : the adaptive ridge (see Frommlet and
Nuel, PloS one, 2016).

I The adaptive ridge procedure consists in maximizing at the mth step

`(θ|θold) = Q(θ|θold)− pen

2

K−1∑
k=1

w
(m−1)
k (ak+1 − ak)2,

with

w
(m−1)
k =

((
a

(m−1)
k+1 − a

(m−1)
k

)2

+ ε2

)−1

,

and ε� 1.

I The block matrix of the Hessian for the aks is now tri-diagonal !

I Using the Schurr complement, inversion of the Hessian is still of order O(K )
in the case K >> d .
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Dental dataset - without covariates
I The adaptive ridge method finds four cuts : 100, 500, 800, 900.

I 95% confidence intervals computed using the bootstrap.
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Dental dataset - Cox model

Covariates HR= eβ̂ 95% CI p-value
Mature 2.00 [1.74; 2.29] 1.89× 10−5

Storage time (hours) 1.23 [1.11; 1.34] 0.0017
Physiologic storage 0.93 [0.81; 1.06] 0.6980

Age>20 (mature teeth) 1.27 [0.99; 1.61] 0.1272

Risk of ankylosis of 400 avulsed and replanted human teeth in relation to length
of dry storage. A re-evaluation of a previous long-term clinical study.
E. Lauridsen, J. Andreasen, O. Bouaziz, L. Andersson.
Dental Traumatology (2019).
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Asymptotic results

We consider the following estimator.

I Only one step for the AR procedure :

θ̂ = (â1, . . . , âK , β̂) = arg max
θ∈RK+d

{
log(Lobs

n (θ))− pen

2

K−1∑
k=1

ŵ
(1)
k (ak+1 − ak)2

}
,

with ŵ
(1)
k =

(
(â

(1)
k+1 − â

(1)
k )2 + ε2

)−1

and â(1) is a consistent estimator. Using

a hard-thresholding, we obtain an estimated set of cuts An = {ĉ1, . . . , ĉK̂}.

I The final estimator is the unpenalised MLE with set of cuts An,
ˆ̂θAn = (ˆ̂a1,An , . . . , ˆ̂aK̂ ,An

, ˆ̂βAn).
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Asymptotic results
O. Bouaziz, E. Lauridsen, G. Nuel. Regression modelling of interval-censored data based
on the adaptive-ridge procedure. To appear in Journal of Applied Statistics.

We define the true parameter θ∗ = (a∗1 , . . . , a
∗
K∗ , β∗) with true cuts

A∗ = {c∗1 , . . . , c∗K∗}.

Theorem

Assume that A∗ ⊂ {c1, . . . , cK}, and some standard conditions. Then, if
pen/n→ 0 as n→∞ we have :

1. limn→∞ P[An = A∗] = 1.

2.
√
n( ˆ̂βAn − β∗) converges in distribution toward a centered Gaussian variable

with variance equal to (Σβ∗)−1,

where Σβ∗ is the optimal variance obtained from the maximum likelihood
estimator with true cuts.

Proof is inspired from H. Zou, The adaptive Lasso and its oracle properties. JASA
(2006).
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Extensions : inclusion of exact observations

For an exact observation i ,

E[log(f (Ti | Zi ;θ))|data,θold] = log(f (Ti | Zi ;θ))

=
K∑

k=1

{
Oi,kai,k − exp(ai,k)Ri,k

}
.

Q can be decomposed as

Q(θ | θold) =
∑

i not exact

K∑
k=1

{(
ai,k −

k−1∑
j=1

(cj − cj−1)eai,j
)
Aold
k,i − eai,kBold

k,i

}

+
∑
i exact

K∑
k=1

{
Oi,kai,k − exp(ai,k)Ri,k

}
.
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Extensions : the cure model

I Latent variable Y ∈ {0, 1}.
I Cox model for the susceptible individuals :

λ(t | Y ,Z ) = Yλ(t | Y = 1,Z )

= Yλ0(t) exp(βZ ).

I Logistic link for the probability of being cured :

P[Y = 1 | X ] =
exp(γX )

1 + exp(γX )
·
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Extensions : the cure model

I Latent variable Y ∈ {0, 1}.
I Cox model for the susceptible individuals :

λ(t | Y ,Z ) = Yλ(t | Y = 1,Z )

= Yλ0(t) exp(βZ ).

I Logistic link for the probability of being susceptible (cured) :

pi := P[Yi = 1 | Xi ] =
exp(γXi )

1 + exp(γXi )
·

I The complete likelihood is defined as

L(θ) =
n∏

i=1

pYi

i (1− pi )
1−Yi

n∏
i=1

{f (Ti | Yi = 1,Zi ;θ)}Yi .
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Summary and take-away messages

I The Adaptive Ridge algorithm is fast and easy to implement : derivatives of
the penalized criterion can be computed.

I For interval-censored data, the EM algorithm + piecewise constant baseline
hazard leads to tractable solutions !

I Use of the Adaptive Ridge for a piecewise constant baseline hazard provides a
flexible model and interpretable results.

I In several time to event situations it is no longer possible to consider a
non-parametric baseline. For example :
I Mixture model (Y is a latent variable) :

λ(t | Z ,Y = k) = λk(t | Z) exp(βkZ).

This model is not identifiable when using the non-parametric baseline.
I Frailty models.
I Joint models.
I . . .
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