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Bladder tumour data analysis

Data-set of Byar (1980) on bladder tumour recurrences :
n = 116 patients.
N∗i (t) : number of tumour recurrences experienced by patient i
before time t, where i ∈ {1, . . . ,n}, t ≥ 0 (maximum= 5).
Xi (t) : four dimensional covariates process. Number of initial
tumours, size of the largest tumour, two treatment variables.
Goal : estimation of the probability of having a tumour
recurrence at any time t.

Some patients died from the bladder disease or were censored :
further recurrence times are not observed.
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Modeling the rate function

Process of interest : N∗(t), t ≥ 0.

Observations :
Xi (t) = (X 1

i (t), . . . ,X p
i (t))

Ti = Di ∧Ci

δi = 1Di≤Ci

Ni (t) = N∗i (t ∧Ti ), i ∈ {1, . . . ,n}

Constant model of the rate function

E
(
dN∗(t)|D ≥ t,X (t)

)
= 1D≥tρ0(t,X (t))dt.
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i (t), . . . ,X p
i (t))

Ti = Di ∧Ci

δi = 1Di≤Ci

Ni (t) = N∗i (t ∧Ti ), i ∈ {1, . . . ,n}

Event specific model of the rate function

E
(
dN∗(t)|D ≥ t,X (t),N∗(t−) = s−1

)
= 1D≥tρ0(t,X (t),s)dt.
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Multiplicative model for the rate function

Constant rate model (Cox)

E
(
dN∗(t)|D ≥ t,X (t)

)
= 1D≥tρ0(t,X (t))dt

where
ρ0(t,X (t)) = α0(t)exp(X (t)β0).

Event-specific rate model (PWP)

E
(
dN∗(t)|D ≥ t,X (t),N∗(t−) = s−1

)
= 1D≥tρ0(t,X (t),s)dt

where
ρ0(t,X (t),s) = α0(t,s)exp(X (t)β0(s)).
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Additive model for the rate function

Constant rate model (Aalen)

E
(
dN∗(t)|D ≥ t,X (t)

)
= 1D≥tρ0(t,X (t))dt

where
ρ0(t,X (t)) = α0(t) +X (t)β0.

Event-specific rate model

E
(
dN∗(t)|D ≥ t,X (t),N∗(t−) = s−1

)
= 1D≥tρ0(t,X (t),s)dt

where
ρ0(t,X (t),s) = α0(t,s) +X (t)β0(s).
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Estimation procedure

A key relation
Under some assumptions, we have :

E
(
dN(t)|T ≥ t,X (t),N(t−) = s−1

)
= E

(
dN∗(t)|D ≥ t,X (t),N∗(t−) = s−1

)
= 1D≥tρ0(t,X (t),s)dt.

Estimation of β0(s) is performed from observations
{Ni (t), i = 1 . . . ,n} in stratum s−1.
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Estimation criterion

Suppose that N(t)≤ B almost surely. In the event specific models,
we want to perform estimation of
β0 = (β 1

0 (1), . . . ,β 1
0 (B), . . . ,β p

0 (1), . . . ,β p
0 (B))>.

Definition of β̂ES

β̂ES = argmin
β∈RpB

Γn(β ),

where
Γn(β ) is a (partial) maximum likelihood estimator in the
multiplicative model.
Γn(β ) is a (partial) least squares estimator in the additive
model.
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Multiplicative model
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Overparametrization

n = 116 patients.
B = 5 maximum of tumour recurrences per patient.
p = 4 covariates.

√
n ' 10.77< p×B = 20.

The event specific model is overparametrized !
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Overparametrization

β0 = (β 1
0 (1), . . . ,β 1

0 (B), . . . ,β p
0 (1), . . . ,β p

0 (B)).

Event-specific estimator

β̂ES → β0, in probability
But fluctuates too much when n is small.

Constant estimator

β̂const 6→ β0 in probability
But is easier to interpret.

How to define an estimator that “fluctuates” less but is still
consistent ?
For each covariate X j , j = 1, . . . ,p, we want the total-variation
∑

B
s=2|β j(s)−β j(s−1)| to be “small”.
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Total variation penalization

A penalty is introduced to constrain β̂
j
ES to be piecewise constant.

Definition of β̂TV

β̂TV = argmin
β∈RpB

{
Γn(β ) +

λn

n

p

∑
j=1

B

∑
s=2
|β j(s)−β

j(s−1)|

}
.
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Total variation penalization

A penalty is introduced to constrain β̂
j
ES to be piecewise constant.

Definition of β̂TV

β̂TV = argmin
β∈RpB

Γn(β ) +
λn

n

p

∑
j=1

B

∑
s=2
|β j(s)−β

j(s−1)|︸ ︷︷ ︸
=∆β

j
TV (s)

 .

If λn = 0, β̂TV = β̂ES .
If λn/n = ∞, β̂TV = β̂Const .
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Link to the Lasso

D : block matrix of size (pB×pB)

D =


TB OB · · · OB
OB TB · · · OB
· · · · · · · · · · · ·
OB OB · · · TB

 with TB =


1 0 · · · 0
1 1 · · · 0
· · · · · · · · · · · ·
1 1 · · · 1


The minimization problems can then be rewritten as a Lasso
algorithm :

β̂TV = D γ̂TV with

γ̂TV = argmin
γ∈RpB

{
Γn(Dγ) +

λn

n

p

∑
j=1

B

∑
s=2
|γ j(s)|

}

where γ̂TV = (β̂ 1
TV (1),∆β̂ 1

TV (2), . . . ,∆β̂ 1
TV (B), . . . ,∆β̂

p
TV (B))>.
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Asymptotic results

Theorem
If λn/n→ 0 then

β̂TV →n→∞
β0 in probability.

If λn/
√

n→ λ0 ≥ 0 then β̂TV converges in law to a gaussian
process.
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Multiplicative model
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Additive model
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Simulation study

Simulations
B = 5
p = 4, X j ∼ Uniform, j = 1, . . . ,4.
n = 50(= 2.5pB) to n = 1000' (pB)2.3

β 1
0 = (0,0,b1,b1,0)

β 2
0 = (b2,b2,b2,b2,b2)

β 3
0 = (1,2,3,4,5).

β 4
0 = (0,0,0,0,0).

D,C ∼ Weibull.
15% to 30% of individuals experience the fifth recurrent event.
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Simulation study

Monte-Carlo experiment : M = 200 experiences.

MSE =
1
M

M

∑
m=1

‖β̂m−β0‖2

‖β0‖2
.

Detection of false positive and false negative :

FP(β̂m) = Card
(
j ∈ {1, . . . ,p} s.t. TV(β̂

j) 6= 0 and TV(β
j
0) = 0

)
and

FN(β̂m) = Card
(
j ∈ {1, . . . ,p} s.t. TV(β̂

j) = 0 and TV(β
j
0) 6= 0

)
.
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Simulation results in the multiplicative model

30% Unconstrained Constant TV two-step TV
n MSE FP FN MSE FP FN MSE FP FN MSE FP FN
50 0·100 2 0 0·412 0 2 0·054 1·44 0·03 0·044 0·82 0·02
100 0·030 2 0 0·415 0 2 0·025 1·54 0 0·019 0·76 0
500 0·006 2 0 0·413 0 2 0·008 1·76 0 0·006 0·30 0
1000 0·005 2 0 0·415 0 2 0·006 1·81 0 0·006 0·05 0

15% Unconstrained Constant TV two-step TV
n MSE FP FN MSE FP FN MSE FP FN MSE FP FN
50 NA NA NA 0·440 0 2 0·161 1·37 0·185 0·137 0·82 0·19
100 0·566 2 0 0·434 0 2 0·053 1·55 0·005 0·042 0·88 0
500 0·014 2 0 0·433 0 2 0·016 1·84 0 0·012 1·06 0
1000 0·009 2 0 0·433 0 2 0·011 1·89 0 0·010 0·68 0
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Simulation results in the additive model

30% Unconstrained Constant TV two-step TV
n MSE FP FN MSE FP FN MSE FP FN MSE FP FN
50 4·986 2 0 0·416 0 2 0·467 0·98 0·58 1·142 0·65 0·81
100 0·935 2 0 0·351 0 2 0·254 1·38 0·21 0·353 0·86 0·48
500 0·135 2 0 0·309 0 2 0·079 1·91 0·01 0·094 1·44 0·08
1000 0·071 2 0 0·299 0 2 0·049 1·98 0 0·05 1·64 0

15% Unconstrained Constant TV two-step TV
n MSE FP FN MSE FP FN MSE FP FN MSE FP FN
50 NA NA NA 0·505 0 2 0·781 0·95 0·81 2·368 0·86 0·97
100 4·114 2 0 0·393 0 2 0·707 1·450 0·27 0·84 1·11 0·52
500 0·339 2 0 0·330 0 2 0·154 1·975 0·01 0·19 1·67 0·06
1000 0·171 2 0 0·320 0 2 0·097 1·995 0 0·12 1·80 0·02

O. Bouaziz Event-specific rate models for recurrent events 17-04-13 20 / 21



Implementation

R-packages and functions :
constant and event-specific estimators calculated using the
coxph function (R package survival) and ahaz function (R
package ahaz).
penalized estimators calculated through the coxnet function
(R package glmnet) and ahazpen function (R package
ahaz).

Our programs :
http ://www.lsta.upmc.fr/guilloux.php ?main=publications

Thanks for your attention !
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