# A penalized algorithm for event-specific rate models for recurrent events

Olivier Bouaziz<sup>1</sup> and Agathe Guilloux<sup>2</sup>

<sup>1</sup>University Paris 5, MAP5 <sup>2</sup>University Paris 6, LSTA

Dynstoch workshop

Data-set of Byar (1980) on bladder tumour recurrences :

- n = 116 patients.
- N<sup>\*</sup><sub>i</sub>(t) : number of tumour recurrences experienced by patient i before time t, where i ∈ {1,...,n}, t ≥ 0 (maximum=5).
- X<sub>i</sub>(t) : four dimensional covariates process. Number of initial tumours, size of the largest tumour, two treatment variables.
- Goal : estimation of the probability of having a tumour recurrence at any time *t*.

Some patients died from the bladder disease or were censored : further recurrence times are not observed.

# Modeling the rate function

- Process of interest :  $N^*(t)$ ,  $t \ge 0$ .
- Observations :

$$\begin{cases} X_i(t) = (X_i^1(t), \dots, X_i^p(t)) \\ T_i = D_i \wedge C_i \\ \delta_i = \mathbb{1}_{D_i \leq C_i} \\ N_i(t) = N_i^*(t \wedge T_i), i \in \{1, \dots, n\} \end{cases}$$

### Constant model of the rate function

$$\mathbb{E}\Big(dN^*(t)|D\geq t,X(t)\Big)=\mathbb{1}_{D\geq t}
ho_0(t,X(t))dt.$$

# Modeling the rate function

- Process of interest :  $N^*(t)$ ,  $t \ge 0$ .
- Observations :

$$\begin{cases} X_{i}(t) = (X_{i}^{1}(t), \dots, X_{i}^{p}(t)) \\ T_{i} = D_{i} \wedge C_{i} \\ \delta_{i} = \mathbb{1}_{D_{i} \leq C_{i}} \\ N_{i}(t) = N_{i}^{*}(t \wedge T_{i}), i \in \{1, \dots, n\} \end{cases}$$

### Event specific model of the rate function

$$\mathbb{E}\Big(dN^*(t)|D\geq t, X(t), N^*(t-)=s-1\Big)=\mathbb{1}_{D\geq t}\rho_0(t, X(t), s)dt.$$

# Multiplicative model for the rate function

Constant rate model (Cox)

$$\mathbb{E}\Big(d\mathsf{N}^*(t)|D\geq t,X(t)\Big)=\mathbb{1}_{D\geq t}
ho_0(t,X(t))dt$$

#### where

$$\rho_0(t,X(t)) = \alpha_0(t) \exp(X(t)\beta_0).$$

Event-specific rate model (PWP)

$$\mathbb{E}\Big(dN^*(t)|D \ge t, X(t), N^*(t-) = s-1\Big) = \mathbb{1}_{D \ge t}\rho_0(t, X(t), s)dt$$

where

 $\rho_0(t, X(t), s) = \alpha_0(t, s) \exp(X(t)\beta_0(s)).$ 

O. Bouaziz

Event-specific rate models for recurrent events

# Multiplicative model for the rate function

Constant rate model (Cox)

$$\mathbb{E}\Big(d\mathsf{N}^*(t)|D\geq t,X(t)\Big)=\mathbb{1}_{D\geq t}
ho_0(t,X(t))dt$$

where

$$\rho_0(t,X(t)) = \alpha_0(t) \exp(X(t)\beta_0).$$

Event-specific rate model (PWP)

$$\mathbb{E}\Big(dN^*(t)|D \ge t, X(t), N^*(t-) = s-1\Big) = \mathbb{1}_{D \ge t}\rho_0(t, X(t), s)dt$$

where

$$\rho_0(t,X(t),s) = \alpha_0(t,s)\exp(X(t)\beta_0(s)).$$

O. Bouaziz

# Additive model for the rate function

Constant rate model (Aalen)

$$\mathbb{E}\Big(dN^*(t)|D\geq t,X(t)\Big)=\mathbb{1}_{D\geq t}\rho_0(t,X(t))dt$$

### where

$$\rho_0(t,X(t)) = \alpha_0(t) + X(t)\beta_0.$$

#### Event-specific rate model

$$\mathbb{E}\Big(dN^*(t)|D \ge t, X(t), N^*(t-) = s-1\Big) = \mathbb{1}_{D \ge t}\rho_0(t, X(t), s)dt$$

where

$$\rho_0(t,X(t),s) = \alpha_0(t,s) + X(t)\beta_0(s).$$

O. Bouaziz

Event-specific rate models for recurrent events

# Additive model for the rate function

Constant rate model (Aalen)

$$\mathbb{E}\Big(dN^*(t)|D\geq t,X(t)\Big)=\mathbb{1}_{D\geq t}\rho_0(t,X(t))dt$$

where

$$\rho_0(t,X(t)) = \alpha_0(t) + X(t)\beta_0.$$

### Event-specific rate model

$$\mathbb{E}\Big(dN^*(t)|D\geq t, X(t), N^*(t-)=s-1\Big)=\mathbb{1}_{D\geq t}\rho_0(t, X(t), s)dt$$

where

$$\rho_0(t,X(t),s) = \alpha_0(t,s) + X(t)\beta_0(s).$$

O. Bouaziz

### Estimation procedure

### A key relation

Under some assumptions, we have :

$$egin{aligned} \mathbb{E}\Big(d\mathsf{N}(t)|\, & \mathcal{T} \geq t, X(t), \mathsf{N}(t-) = s-1 \Big) \ &= \mathbb{E}\Big(d\mathsf{N}^*(t)|\, & \mathcal{D} \geq t, X(t), \mathsf{N}^*(t-) = s-1 \Big) \ &= \mathbbm{1}_{D\geq t}
ho_0(t, X(t), s) dt. \end{aligned}$$

Estimation of  $\beta_0(s)$  is performed from observations  $\{N_i(t), i = 1..., n\}$  in stratum s - 1.

Suppose that  $N(t) \leq B$  almost surely. In the event specific models, we want to perform estimation of  $\beta_0 = (\beta_0^1(1), \dots, \beta_0^1(B), \dots, \beta_0^p(1), \dots, \beta_0^p(B))^\top$ .

### Definition of $\hat{\beta}_{ES}$

$$\hat{\beta}_{ES} = \arg\min_{\beta \in \mathbb{R}^{pB}} \Gamma_n(\beta),$$

where

- Γ<sub>n</sub>(β) is a (partial) maximum likelihood estimator in the multiplicative model.
- Γ<sub>n</sub>(β) is a (partial) least squares estimator in the additive model.

# Multiplicative model



O. Bouaziz

Event-specific rate models for recurrent events

17-04-13 8 / 21

# Multiplicative model



O. Bouaziz

Event-specific rate models for recurrent events

17-04-13 9 / 21

- n = 116 patients.
- B = 5 maximum of tumour recurrences per patient.
- p = 4 covariates.

$$\sqrt{n} \simeq 10.77$$

The event specific model is overparametrized !

### Overparametrization

$$\beta_0 = (\beta_0^1(1), \dots, \beta_0^1(B), \dots, \beta_0^p(1), \dots, \beta_0^p(B)).$$

### **Event-specific estimator**

- $\hat{eta}_{ES} o eta_0$ , in probability
- But fluctuates too much when *n* is small.

#### Constant estimator

- $\hat{eta}_{const} 
  earrow eta_0$  in probability
- But is easier to interpret.

How to define an estimator that "fluctuates" less but is still consistent? For each covariate  $X^j$ , j = 1, ..., p, we want the total-variation  $\sum_{s=2}^{B} |\beta^j(s) - \beta^j(s-1)|$  to be "small".

### Overparametrization

$$\beta_0 = (\beta_0^1(1), \dots, \beta_0^1(B), \dots, \beta_0^p(1), \dots, \beta_0^p(B)).$$

### **Event-specific estimator**

- $\hat{eta}_{ES} o eta_0$ , in probability
- But fluctuates too much when n is small.

### **Constant estimator**

- $\hat{eta}_{const} 
  earrow eta_0$  in probability
- But is easier to interpret.

How to define an estimator that "fluctuates" less but is still consistent ?

For each covariate  $X^j$ , j = 1, ..., p, we want the total-variation  $\sum_{s=2}^{B} |\beta^j(s) - \beta^j(s-1)|$  to be "small".

# Overparametrization

$$\beta_0 = (\beta_0^1(1), \dots, \beta_0^1(B), \dots, \beta_0^p(1), \dots, \beta_0^p(B)).$$

### **Event-specific estimator**

- $\hat{eta}_{ES} o eta_0$ , in probability
- But fluctuates too much when *n* is small.

### **Constant estimator**

- $\hat{eta}_{const} 
  earrow eta_0$  in probability
- But is easier to interpret.

How to define an estimator that "fluctuates" less but is still consistent ?

For each covariate  $X^j, j = 1, ..., p$ , we want the total-variation  $\sum_{s=2}^{B} |\beta^j(s) - \beta^j(s-1)|$  to be "small".

A penalty is introduced to constrain  $\hat{\beta}_{ES}^{j}$  to be piecewise constant.

Definition of 
$$\hat{\beta}_{TV}$$
  
$$\hat{\beta}_{TV} = \underset{\beta \in \mathbb{R}^{pB}}{\operatorname{arg\,min}} \left\{ \Gamma_n(\beta) + \frac{\lambda_n}{n} \sum_{j=1}^p \sum_{s=2}^B |\beta^j(s) - \beta^j(s-1)| \right\}.$$

A penalty is introduced to constrain  $\hat{\beta}_{ES}^{j}$  to be piecewise constant.

Definition of 
$$\hat{\beta}_{TV}$$
  
$$\hat{\beta}_{TV} = \underset{\beta \in \mathbb{R}^{pB}}{\operatorname{argmin}} \left\{ \Gamma_n(\beta) + \frac{\lambda_n}{n} \sum_{j=1}^p \sum_{s=2}^B \underbrace{|\beta^j(s) - \beta^j(s-1)|}_{=\Delta \beta^j_{TV}(s)} \right\}.$$

• If 
$$\lambda_n = 0$$
,  $\hat{\beta}_{TV} = \hat{\beta}_{ES}$ .  
• If  $\lambda_n/n = \infty$ ,  $\hat{\beta}_{TV} = \hat{\beta}_{Const}$ .

### Link to the Lasso

D: block matrix of size ( $pB \times pB$ )

$$D = \begin{pmatrix} T_B & O_B & \cdots & O_B \\ O_B & T_B & \cdots & O_B \\ \cdots & \cdots & \cdots & \cdots \\ O_B & O_B & \cdots & T_B \end{pmatrix} \text{ with } T_B = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 1 & 1 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 1 & 1 & \cdots & 1 \end{pmatrix}$$

The minimization problems can then be rewritten as a Lasso algorithm :

$$\begin{split} \hat{\beta}_{TV} &= D\hat{\gamma}_{TV} \text{ with} \\ \hat{\gamma}_{TV} &= \operatorname*{arg\,min}_{\gamma \in \mathbb{R}^{pB}} \left\{ \Gamma_n(D\gamma) + \frac{\lambda_n}{n} \sum_{j=1}^p \sum_{s=2}^B |\gamma^j(s)| \right\} \\ \text{where } \hat{\gamma}_{TV} &= (\hat{\beta}_{TV}^1(1), \Delta \hat{\beta}_{TV}^1(2), \dots, \Delta \hat{\beta}_{TV}^1(B), \dots, \Delta \hat{\beta}_{TV}^p(B))^\top. \end{split}$$

### Asymptotic results

### Theorem

• If  $\lambda_n/n \rightarrow 0$  then

$$\hat{eta}_{\mathcal{T}\mathcal{V}} \stackrel{
ightarrow}{ op}{}_{n 
ightarrow \infty} eta_0$$
 in probability.

• If  $\lambda_n/\sqrt{n} \to \lambda_0 \ge 0$  then  $\hat{\beta}_{TV}$  converges in law to a gaussian process.

# Multiplicative model



O. Bouaziz

Event-specific rate models for recurrent events

17-04-13 15 / 21

# Additive model



O. Bouaziz

Event-specific rate models for recurrent events

17-04-13 16 / 21

# Simulation study

### Simulations

- *B* = 5
- p = 4,  $X^{j} \sim$  Uniform, j = 1, ..., 4.
- n = 50 (= 2.5 pB) to  $n = 1000 \simeq (pB)^{2.3}$
- $\beta_0^1 = (0, 0, b_1, b_1, 0)$
- $\beta_0^2 = (b_2, b_2, b_2, b_2, b_2)$
- $\beta_0^3 = (1, 2, 3, 4, 5).$
- $\beta_0^4 = (0, 0, 0, 0, 0).$
- D, C ~ Weibull.
   15% to 30% of individuals experience the fifth recurrent event.

# Simulation study

Monte-Carlo experiment : M = 200 experiences.

MSE = 
$$\frac{1}{M} \sum_{m=1}^{M} \frac{\|\hat{\beta}_m - \beta_0\|^2}{\|\beta_0\|^2}.$$

Detection of false positive and false negative :

$$\mathsf{FP}(\hat{\beta}_m) = \operatorname{Card}\left(j \in \{1, \dots, p\} \text{ s.t. } \mathsf{TV}(\hat{\beta}^j) \neq 0 \text{ and } \mathsf{TV}(\beta_0^j) = 0\right)$$

and

$$\mathsf{FN}(\hat{\beta}_m) = \operatorname{Card}\left(j \in \{1, \dots, p\} \text{ s.t. } \mathsf{TV}(\hat{\beta}^j) = 0 \text{ and } \mathsf{TV}(\beta_0^j) \neq 0\right).$$

# Simulation results in the multiplicative model

| 30%  | Uncor | istra | ined | Constant |    |    |       | ΤV   |      | two-step TV |      |      |
|------|-------|-------|------|----------|----|----|-------|------|------|-------------|------|------|
| n    | MSE   | FP    | FN   | MSE      | FP | FN | MSE   | FP   | FN   | MSE         | FP   | FN   |
| 50   | 0.100 | 2     | 0    | 0.412    | 0  | 2  | 0.054 | 1.44 | 0.03 | 0.044       | 0.82 | 0.02 |
| 100  | 0.030 | 2     | 0    | 0.415    | 0  | 2  | 0.025 | 1.54 | 0    | 0.019       | 0.76 | 0    |
| 500  | 0.006 | 2     | 0    | 0.413    | 0  | 2  | 0.008 | 1.76 | 0    | 0.006       | 0.30 | 0    |
| 1000 | 0.005 | 2     | 0    | 0.415    | 0  | 2  | 0.006 | 1.81 | 0    | 0.006       | 0.05 | 0    |

| 15%  | Unconstrained |    |    | Cor   | nstar | nt |       | ΤV   |       | two-step TV |      |      |
|------|---------------|----|----|-------|-------|----|-------|------|-------|-------------|------|------|
| n    | MSE           | FP | FN | MSE   | FP    | FN | MSE   | FP   | FN    | MSE         | FP   | FN   |
| 50   | NA            | NA | NA | 0.440 | 0     | 2  | 0.161 | 1.37 | 0.185 | 0.137       | 0.82 | 0.19 |
| 100  | 0.566         | 2  | 0  | 0.434 | 0     | 2  | 0.053 | 1.55 | 0.005 | 0.042       | 0.88 | 0    |
| 500  | 0.014         | 2  | 0  | 0.433 | 0     | 2  | 0.016 | 1.84 | 0     | 0.012       | 1.06 | 0    |
| 1000 | 0.009         | 2  | 0  | 0.433 | 0     | 2  | 0.011 | 1.89 | 0     | 0.010       | 0.68 | 0    |

### Simulation results in the additive model

| 30%  | Uncor | istra | ined | Constant |    |    |       | ΤV   |      | two-step TV |      |      |
|------|-------|-------|------|----------|----|----|-------|------|------|-------------|------|------|
| n    | MSE   | FΡ    | FN   | MSE      | FP | FN | MSE   | FP   | FN   | MSE         | FP   | FN   |
| 50   | 4.986 | 2     | 0    | 0.416    | 0  | 2  | 0.467 | 0.98 | 0.58 | 1.142       | 0.65 | 0.81 |
| 100  | 0.935 | 2     | 0    | 0.351    | 0  | 2  | 0.254 | 1.38 | 0.21 | 0.353       | 0.86 | 0.48 |
| 500  | 0.135 | 2     | 0    | 0.309    | 0  | 2  | 0.079 | 1.91 | 0.01 | 0.094       | 1.44 | 0.08 |
| 1000 | 0.071 | 2     | 0    | 0.299    | 0  | 2  | 0.049 | 1.98 | 0    | 0.05        | 1.64 | 0    |

| 15%  | Unconstrained |    |    | Cor   | nstan | t  |       | ΤV    |      | two-step TV |      |      |
|------|---------------|----|----|-------|-------|----|-------|-------|------|-------------|------|------|
| n    | MSE           | FP | FN | MSE   | FP    | FN | MSE   | FP    | FN   | MSE         | FP   | FN   |
| 50   | NA            | NA | NA | 0.505 | 0     | 2  | 0.781 | 0.95  | 0.81 | 2.368       | 0.86 | 0.97 |
| 100  | 4.114         | 2  | 0  | 0.393 | 0     | 2  | 0.707 | 1.450 | 0.27 | 0.84        | 1.11 | 0.52 |
| 500  | 0.339         | 2  | 0  | 0.330 | 0     | 2  | 0.154 | 1.975 | 0.01 | 0.19        | 1.67 | 0.06 |
| 1000 | 0.171         | 2  | 0  | 0.320 | 0     | 2  | 0.097 | 1.995 | 0    | 0.12        | 1.80 | 0.02 |

R-packages and functions :

- constant and event-specific estimators calculated using the coxph function (R package survival) and ahaz function (R package ahaz).
- penalized estimators calculated through the **coxnet** function (R package **glmnet**) and **ahazpen** function (R package **ahaz**).

Our programs : http ://www.lsta.upmc.fr/guilloux.php?main=publications

### Thanks for your attention !

R-packages and functions :

- constant and event-specific estimators calculated using the coxph function (R package survival) and ahaz function (R package ahaz).
- penalized estimators calculated through the **coxnet** function (R package **glmnet**) and **ahazpen** function (R package **ahaz**).

Our programs :

http://www.lsta.upmc.fr/guilloux.php?main=publications

```
Thanks for your attention !
```