# New Methods for Detecting and Modelling Heterogeneity in Survival Responses 

Olivier Bouaziz<br>joint work with Arthur Carcano, Vivien Goepp, Grégory Nuel<br>MAP5 (CNRS 8145), Université Paris Descartes, Sorbonne Paris Cité LPSM (CNRS 8001), UPMC, Sorbonne Universités.

Séminaire de statistique du LPSM
(1) Background in time to event analysis
(2) A change-point model for detecting heterogeneity in ordered survival responses
(3) Regularized hazard estimation for age-period-cohort analysis

## Outline

(1) Background in time to event analysis
(2) A change-point model for detecting heterogeneity in ordered survival responses
(3) Regularized hazard estimation for age-period-cohort analysis

## Background in time to event analysis

- We study a positive continuous time to event variable $T$.
- $T$ represents the time difference between event of interest and patient entry.

- Examples : time to relapse of Leukemia patients, time to onset of cancer, time to death ...


## Background in time to event analysis : right censoring



## The hazard rate

- Observations :

$$
\left\{\begin{array}{l}
T_{i}^{\text {obs }}=T_{i} \wedge C_{i} \\
\Delta_{i}=I\left(T_{i} \leq C_{i}\right)
\end{array}\right.
$$

- Independent censoring : $T \Perp C$
- A key relation :

$$
\begin{aligned}
\lambda(t) & :=\lim _{\Delta t \rightarrow 0} \frac{\mathbb{P}[t \leq T<t+\Delta t \mid T \geq t]}{\Delta t} \\
& =\lim _{\Delta t \rightarrow 0} \frac{\mathbb{P}\left[t \leq T^{\mathrm{obs}}<t+\Delta t, \Delta=1 \mid T^{\mathrm{obs}} \geq t\right]}{\Delta t}
\end{aligned}
$$

Many estimators (Nelson Aalen, Kaplan-Meier, ...) are based on this relation.

## Likelihood and the Cox model

- The likelihood of the observed data is equal to:

$$
\prod_{i=1}^{n} f\left(T_{i}^{\mathrm{obs}}\right)^{\Delta_{i}} S\left(T_{i}^{\mathrm{obs}}\right)^{1-\Delta_{i}}=\prod_{i=1}^{n} \lambda\left(T_{i}^{\mathrm{obs}}\right)^{\Delta_{i}} \exp \left(-\int_{0}^{T_{i}^{\mathrm{obs}}} \lambda(t) d t\right)
$$

where $f$ is the density of $T$ and $S(t)=\mathbb{P}[T>t]$.

- Regression modelling : let $\boldsymbol{X} \in \mathbb{R}^{d}$ be a covariate.

$$
\lambda\left(t \mid \boldsymbol{X}_{i}\right)=\lambda_{0}(t) \exp \left(\boldsymbol{X}_{i} \beta\right) \quad \text { (Cox Model) }
$$

For a binary covariate,

$$
\frac{\lambda\left(t \mid \boldsymbol{X}_{i}=1\right)}{\lambda\left(t \mid \boldsymbol{X}_{i}=0\right)}=\exp (\beta)
$$

## Outline

(1) Background in time to event analysis
(2) A change-point model for detecting heterogeneity in ordered survival responses
(3) Regularized hazard estimation for age-period-cohort analysis

## The Steno memorial hospital dataset

- Cohort dataset of 2709 Danish diabetic patients collected between 1933 and 1981 from Andersen et al., 1993.
- The variable of interest is the time from diabetes onset until death (in years).
- $74 \%$ of right censoring due to emigration or end of study (December, 31st 1984).
- Left truncation due to delayed entry into the study.
- Gender and calendar year of diabetes onset (range : 1933 - 1972) were also collected for each patient.
- Classical survival analysis except that we want to take into account a possible cohort effect due to the wide range of year of diabetes onset.


## Illustration of the cohort effect




## Illustration of the cohort effect

Heterogeneity in the survival time distribution according to year of diabetes onset!

Classical solutions are :

- Divide the dataset in arbitrary segments.
- Regression model (Cox for instance) adjusted with respect to year of diabetes onset.
- Age-period-cohort model.

We propose a different approach : deal with the cohort effect as an unsupervised clustering problem. We propose an iterative algorithm which :

- Automatically find the segments locations.
- Compute a posteriori probabilities of breakpoints.
- Estimate survival quantities in each segment.


## The model

- Suppose there are $K$ segments and let $R_{1}, \ldots, R_{n}$ be the segment indexes of each individual. For example, $n=10$ and $R_{1: 10}=1112222333$ means 2 breakpoints occur in positions 3 and 7 .
- The model is :

$$
\begin{aligned}
\lambda\left(t \mid \boldsymbol{X}_{i}, R_{i}=k\right) & =\lim _{\triangle t \rightarrow 0} \frac{\mathbb{P}\left(t \leq T_{i}<t+\Delta t \mid T_{i} \geq t, \boldsymbol{X}_{i}, R_{i}=k\right)}{\Delta t} \\
& =\lambda_{k}(t) \exp \left(\boldsymbol{X}_{i} \boldsymbol{\beta}_{k}\right)
\end{aligned}
$$

The goal is :

- Estimate the a posteriori probability of a breakpoint, $\mathbb{P}\left(R_{i}=k, R_{i+1}=k+1 \mid\right.$ data $)$.
- Estimate the $\lambda_{k} \mathrm{~s}$ and $\boldsymbol{\beta}_{k} \mathrm{~s}$.


## The EM algorithm

Introduce data $=\left(T_{1: n}^{\text {obs }}, \Delta_{1: n}, \boldsymbol{X}_{1: n}\right)$ and $\boldsymbol{\theta}=\left(\lambda_{1}, \ldots, \lambda_{K}, \boldsymbol{\beta}_{1}, \ldots, \boldsymbol{\beta}_{K}\right)$.

- (E-step) Compute :

$$
\begin{aligned}
Q\left(\boldsymbol{\theta} \mid \boldsymbol{\theta}_{\text {old }}\right) & =\int_{R_{1: n}} \mathbb{P}\left(R_{1: n} \mid \text { data } ; \boldsymbol{\theta}_{\text {old }}\right) \log \mathbb{P}\left(\text { data } \mid R_{1: n} ; \boldsymbol{\theta}\right) d R_{1: n} \\
& =\sum_{i=1}^{n} \sum_{k=1}^{K} \mathbb{P}\left(R_{i}=k \mid \text { data } ; \boldsymbol{\theta}_{\text {old }}\right) \log \mathbb{P}\left(\text { data }_{i} \mid R_{i}=k ; \boldsymbol{\theta}\right),
\end{aligned}
$$

where $\boldsymbol{\theta}_{\text {old }}$ represents the previous update of the parameter.

- (M-step) Maximize $Q\left(\boldsymbol{\theta} \mid \boldsymbol{\theta}_{\text {old }}\right)$ with respect to $\boldsymbol{\theta}$.


## Computation of the emission probability

- The contribution of the ith individual to the likelihood conditionally to its segment index is:

$$
\begin{aligned}
& \log \mathbb{P}\left(T_{i}^{\mathrm{obs}}, \Delta_{i}, \boldsymbol{X}_{i} \mid R_{i}=k ; \boldsymbol{\theta}\right) \\
& \quad=\Delta_{i}\left\{\log \left(\lambda_{k}\left(T_{i}^{\mathrm{obs}}\right)\right)+\boldsymbol{X}_{i} \boldsymbol{\beta}_{k}\right\}-\int_{0}^{T_{i}^{\mathrm{obs}}} \lambda_{k}(t) \exp \left(\boldsymbol{X}_{i} \boldsymbol{\beta}_{k}\right) d t
\end{aligned}
$$

- Take $\lambda_{k}$ as an Exponential, Weibull, Piecewise-Constant-Hazard or nonparametric baseline hazard.


## Computation of posterior segment distributions

- Let $\eta_{i}(k)=\mathbb{P}\left(R_{i}=k+1 \mid R_{i-1}=k\right)$ be a prior distribution (for instance uniform prior distribution). Under the constraint $R_{n}=K$, the model is a constrained Hidden Markov Model. We have :

$$
\mathbb{P}\left(R_{i}=k \mid \text { data } ; \boldsymbol{\theta}\right) \propto F_{i}(k ; \boldsymbol{\theta}) B_{i}(k ; \boldsymbol{\theta})
$$

where

- $F_{i}(k ; \boldsymbol{\theta})=\mathbb{P}\left(\right.$ data $\left._{1: i}, R_{i}=k ; \boldsymbol{\theta}\right)$ is the forward quantity.
- $B_{i}(k ; \boldsymbol{\theta})=\mathbb{P}\left(\operatorname{data}_{(i+1): n}, R_{n}=K \mid R_{i}=k ; \boldsymbol{\theta}\right)$ is the backward quantity.
- The posterior probability of a breakpoint occurring at position $i$ is :

$$
\begin{aligned}
& \mathbb{P}\left(R_{i}=k, R_{i+1}=k+1 \mid \text { data } ; \boldsymbol{\theta}\right) \\
& \propto F_{i}(k ; \boldsymbol{\theta}) \eta_{i+1}(k) e_{i+1}(k+1 ; \boldsymbol{\theta}) B_{i+1}(k+1 ; \boldsymbol{\theta})
\end{aligned}
$$

The Steno memorial hospital dataset (exp. baseline, one covariate : gender)

| No bp | One bp <br> 1948 | Two bp <br> 1948,62 | Three bp <br> $1946,57,62$ | Four bp <br> $1944,48,58,69$ |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $\hat{\lambda}_{1}$ | 0.012 | 0.022 | 0.023 | 0.023 | 0.024 |
| $\hat{\lambda}_{2}$ |  | 0.006 | 0.008 | 0.011 | 0.015 |
| $\hat{\lambda}_{3}$ |  |  | 0.003 | 0.006 | 0.009 |
| $\hat{\lambda}_{4}$ |  |  |  | 0.003 | 0.004 |
| $\hat{\lambda}_{5}$ |  |  |  |  | 0.001 |
| $e^{\hat{\beta}_{1}}$ | 1.32 | 1.29 | 1.29 | 1.29 | 1.25 |
| $e^{\hat{\beta}_{2}}$ |  | 1.61 | 1.60 | 1.41 | 1.43 |
| $e^{\hat{\beta}_{3}}$ |  |  | 1.44 | 1.80 | 1.50 |
| $e^{\hat{\beta}_{4}}$ |  |  |  | 1.46 | 1.66 |
| $e^{\hat{\beta}_{5}}$ |  |  |  |  | 0.90 |
| BIC | 7426.405 | 7214.413 | 7179.012 | 7187.442 | 7194.631 |

## Marginal distributions of the breakpoints






## Weighted Kaplan-Meier estimators






## Confidence intervals

A bootstrap procedure is implemented to obtain $95 \%$ confidence intervals. In the two breakpoints model (with covariate gender) :

- 1933-1947

$$
\hat{\lambda}=0.023[0.020 ; 0.027] \quad \exp (\hat{\beta})=1.29[1.06 ; 1.55]
$$

- 1948-1961

$$
\hat{\lambda}=0.008[0.007 ; 0.012] \quad \exp (\hat{\beta})=1.60[1.12 ; 2.09]
$$

- 1962 - 1972

$$
\hat{\lambda}=0.003[0.001 ; 0.005] \quad \exp (\hat{\beta})=1.44[0.90 ; 3.40]
$$

This procedure takes into account uncertainty about breakpoints location!

## Summary

- Breakpoint locations are detected with high probability.
- The BIC criterion is very performant to find the number of segments.
- Also in the null case of no breakpoints.
- Very accurate estimations on each segment.
- Bootstrap procedure allows to compute valid confidence intervals.
- Estimation performance is not very sensitive to the choice of baseline.
- Piecewise constant hazard gives a good compromise for accurate estimates and performant breakpoints detection.
- Ties can be handled through the prior distribution of breakpoints.

A change-point model for detecting heterogeneity in ordered survival responses. O. Bouaziz and G. Nuel. Statistical Methods in Medical Research (2017)

## Outline

## (1) Background in time to event analysis

(2) A change-point model for detecting heterogeneity in ordered survival responses
(3) Regularized hazard estimation for age-period-cohort analysis

## The Lexis diagram



## The Lexis diagram



Key relation: cohort+age=period

## The age-period-cohort approach

- Discretization of the hazard rate into $J \times K$ intervals :

$$
\lambda(\text { age }, \text { cohort })=\sum_{j=1}^{J} \sum_{k=1}^{K} \lambda_{j, k} l\left(c_{j-1} \leq \text { age }<c_{j}, d_{k-1} \leq \text { cohort }<d_{k}\right)
$$

- Decompose $\lambda_{j, k}$ through :
- $\alpha_{j}$ : the age effect
- $\beta_{k}$ : the cohort effect
- $\gamma_{j+k-1}$ : the period effect
- The classical approches try to estimate $\alpha_{j}, \beta_{k}\left(\right.$ and $\left.\gamma_{j+k-1}\right)$.


## Existing models

1. The AGE-COHORT model :

$$
\log \lambda_{j, k}=\mu+\alpha_{j}+\beta_{k} \quad\left(\text { with } \alpha_{1}=\beta_{1}=0\right)
$$

- $J+K-1$ parameters to estimate instead of $J \times K$.
- But no interactions are allowed!

2. The AGE-PERIOD-COHORT model :

$$
\log \lambda_{j, k}=\mu+\alpha_{j}+\beta_{k}+\gamma_{j+k-1}
$$

- Identifiability issues :
- Estimate second order differences.
- Add arbitrary constraints.
- Still no interactions allowed!


## Our approach : penalizing the maximum likelihood estimator

- $O_{j, k}$ : number of observed events in rectangle $(j, k)$
- $R_{j, k}$ : total time at risk in rectangle $(j, k)$

The log-likelihood is equal to :

$$
\ell_{n}(\boldsymbol{\lambda})=\sum_{j=1}^{J} \sum_{k=1}^{K}\left\{O_{j, k} \log \left(\lambda_{j, k}\right)-\lambda_{j, k} R_{j, k}\right\}
$$

The maximum likelihood estimator is :

$$
\lambda_{j, k}^{\mathrm{mle}}=\frac{O_{j, k}}{R_{j, k}}
$$

## Our approach : penalizing the maximum likelihood estimator

- $O_{j, k}$ : number of observed events in rectangle $(j, k)$
- $R_{j, k}$ : total time at risk in rectangle $(j, k)$

The log-likelihood is equal to :

$$
\ell_{n}(\boldsymbol{\lambda})=\sum_{j=1}^{J} \sum_{k=1}^{K}\left\{O_{j, k} \log \left(\lambda_{j, k}\right)-\lambda_{j, k} R_{j, k}\right\}
$$

The maximum likelihood estimator is :

$$
\lambda_{j, k}^{\mathrm{mle}}=\frac{O_{j, k}}{R_{j, k}}
$$

Overfitting issues : $J \times K$ parameters need to be estimated!

## Our approach : penalizing the maximum likelihood estimator

Set $\log \lambda_{j, k}=\eta_{j, k} \quad$ Estimation of $\boldsymbol{\eta}$ is achieved through penalized
log-likelihood :

$$
\ell_{n}^{\text {pen }}(\boldsymbol{\eta})=\underbrace{\ell_{n}(\boldsymbol{\eta})}_{\text {log-likelihood }}
$$

## Our approach : penalizing the maximum likelihood estimator

Set $\log \lambda_{j, k}=\eta_{j, k} \quad$ Estimation of $\boldsymbol{\eta}$ is achieved through penalized log-likelihood :
$\ell_{n}^{\text {pen }}(\boldsymbol{\eta})=\underbrace{\ell_{n}(\boldsymbol{\eta})}_{\text {log-likelihood }}-\underbrace{\frac{\operatorname{pen}}{2}\left\{\sum_{j, k} v_{j, k}\left(\eta_{j+1, k}-\eta_{j, k}\right)^{2}+w_{j, k}\left(\eta_{j, k+1}-\eta_{j, k}\right)^{2}\right\},}_{\text {regularization term }}$

- vand $\boldsymbol{w}$ represent weights
- pen is a penalty term


## Two types of regularization

1. $\mathrm{L}_{2}$ regularization (Ridge) with $\boldsymbol{v}=\boldsymbol{w}=\mathbf{1}$
2. $L_{0}$ regularization with the adaptive ridge procedure. Iterative updates of the weights :

$$
\left\{\begin{array}{l}
v_{j, k}=\left(\left(\eta_{j+1, k}-\eta_{j, k}\right)^{2}+\varepsilon^{2}\right)^{-1} \\
w_{j, k}=\left(\left(\eta_{j, k+1}-\eta_{j, k}\right)^{2}+\varepsilon^{2}\right)^{-1}
\end{array}\right.
$$

with $\varepsilon \ll 1$.
F. Frommlet and G. Nuel, An Adaptive Ridge Procedure for LO Regularization. PlosOne (2016).

## $\mathrm{L}_{0}$ norm approximation

When $\varepsilon \ll 1$ :

$$
v_{j, k}\left(\eta_{j+1, k}-\eta_{j, k}\right)^{2} \simeq\left\|\eta_{j+1, k}-\eta_{j, k}\right\|_{0}^{2}= \begin{cases}0 & \text { if } \eta_{j+1, k}=\eta_{j, k} \\ 1 & \text { if } \eta_{j+1, k} \neq \eta_{j, k}\end{cases}
$$



## The Adaptive Ridge procedure

procedure Adaptive-Ridge( $\boldsymbol{O}, \boldsymbol{R}$, pen)
$(\boldsymbol{\eta}, \boldsymbol{v}, \boldsymbol{w}) \leftarrow(\mathbf{0}, 1,1)$
while not converge do

$$
\begin{aligned}
& \boldsymbol{\eta}^{\text {new }} \leftarrow \operatorname{Newton-\operatorname {Raphson}}(\boldsymbol{O}, \boldsymbol{R}, \text { pen, } \boldsymbol{v}, \boldsymbol{w}) \\
& v_{j, k}^{\text {new }} \leftarrow\left(\left(\eta_{j+1, k}^{\text {new }}-\eta_{j, k}^{\text {new }}\right)^{2}+\varepsilon^{2}\right)^{-1} \\
& w_{j, k}^{\text {new }} \leftarrow\left(\left(\eta_{j, k}^{\text {new }}-\eta_{j, k-1}^{\text {new }}\right)^{2}+\varepsilon^{2}\right)^{-1} \\
& (\boldsymbol{\eta}, \boldsymbol{v}, \boldsymbol{w}) \leftarrow\left(\boldsymbol{\eta}^{\text {new }}, \boldsymbol{v}^{\text {new }}, \boldsymbol{w}^{\text {new }}\right)
\end{aligned}
$$

end while
end procedure

## The Adaptive Ridge procedure

procedure Adaptive-Ridge( $\boldsymbol{O}, \boldsymbol{R}$, pen)
$(\boldsymbol{\eta}, \boldsymbol{v}, \boldsymbol{w}) \leftarrow(\mathbf{0}, \mathbf{1}, \mathbf{1})$
while not converge do

$$
\begin{aligned}
& \boldsymbol{\eta}^{\text {new }} \leftarrow \operatorname{Newton-\operatorname {Raphson}}(\boldsymbol{O}, \boldsymbol{R}, \text { pen, } \boldsymbol{v}, \boldsymbol{w}) \\
& v_{j, k}^{\text {new }} \leftarrow\left(\left(\eta_{j+1, k}^{\text {new }}-\eta_{j, k}^{\text {new }}\right)^{2}+\varepsilon^{2}\right)^{-1} \\
& w_{j, k}^{\text {new }} \leftarrow\left(\left(\eta_{j, k}^{\text {new }}-\eta_{j, k-1}^{\text {new }}\right)^{2}+\varepsilon^{2}\right)^{-1} \\
& (\boldsymbol{\eta}, \boldsymbol{v}, \boldsymbol{w}) \leftarrow\left(\boldsymbol{\eta}^{\text {new }}, \boldsymbol{v}^{\text {new }}, \boldsymbol{w}^{\text {new }}\right)
\end{aligned}
$$

end while
Compute ( $\left.O^{\text {sel }}, R^{\text {sel }}\right)$ from ( $\left.\eta^{\text {new }}, \boldsymbol{v}^{\text {new }}, \boldsymbol{w}^{\text {new }}\right)$
$\exp \left(\boldsymbol{\eta}^{\text {mle }}\right) \leftarrow \boldsymbol{O}^{\text {sel }} / \boldsymbol{R}^{\text {sel }}$
return $\eta^{\text {mle }}$
end procedure

## Model selection using the Adaptive Ridge


(a) Representation of

$$
v_{j, k}\left(\eta_{j+1, k}-\eta_{j, k}\right)^{2}
$$

$$
\text { and } w_{j, k}\left(\eta_{j, k+1}-\eta_{j, k}\right)^{2}
$$


(b) Corresponding graph

(c) Segmentation through connected components

## Comparison of the two regularization methods

```
pen }->0\quad:\quad\widehat{\boldsymbol{\eta}}->\mp@subsup{\widehat{\boldsymbol{\eta}}}{}{\textrm{mle}
pen }->\infty\quad:\quad\widehat{\boldsymbol{\eta}}->\mathrm{ constant
```


$\mathrm{L}_{2}$ regularization

## Comparison of the two regularization methods

pen $\rightarrow 0 \quad: \quad \widehat{\boldsymbol{\eta}} \rightarrow \widehat{\boldsymbol{\eta}}^{\mathrm{mle}}$
pen $\rightarrow \infty \quad: \quad \widehat{\boldsymbol{\eta}} \rightarrow$ constant

$\mathrm{L}_{2}$ regularization

$\mathrm{L}_{0}$ regularization

## Model selection for the Adaptive Ridge estimator

Four different methods to perform model selection :

1. $\operatorname{BIC}(m)=-2 \ell_{n}\left(\widehat{\boldsymbol{\eta}}_{m}^{\mathrm{mle}}\right)+q_{m} \log n$
2. $\mathrm{EBIC}_{0}(m)=-2 \ell_{n}\left(\widehat{\boldsymbol{\eta}}_{m}^{\mathrm{mle}}\right)+q_{m} \log n+2 \log \binom{J K}{q_{m}}$
3. $\operatorname{AIC}(m)=-2 \ell_{n}\left(\widehat{\boldsymbol{\eta}}_{m}^{\mathrm{mle}}\right)+2 q_{m}$
4. K-fold Cross validation (CV),
with $q_{m}$ the dimension of the model.
(*) J. Chen and Z. Chen, Extended Bayesian information criteria for model selection with large model spaces, Biometrika, 2008.

## Simulated data

Two scenarios ( $n=4000,15 \%$ of censoring) :

- Piecewise constant hazard
- Smooth hazard.

Comparison of estimators :

- Age-Cohort model : $\log \lambda_{j, k}=\mu+\alpha_{j}+\beta_{k}$
- $\mathrm{L}_{2}$ regularization with CV criterion
- $\mathrm{L}_{0}$ regularization with $\mathrm{AIC}, \mathrm{BIC}, \mathrm{EBIC}_{0}$ and CV criterions.


## Simulations : piecewise constant hazard scenario



Truth


AGE-COHORT model

## Simulations : piecewise constant hazard scenario


$\mathrm{L}_{0}$ AIC

$\mathrm{L}_{0} \mathrm{EBIC}_{0}$

$\mathrm{L}_{0}$ BIC


## Simulations: smooth hazard



Truth


AGE-COHORT model


## Simulations: smooth hazard



## The SEER data

- Huge american registry dataset of breast cancer
- Primary, unilateral, malignant and invasive cancers
- 1.2 million of patients
- $60 \%$ of censoring
- The cancer diagnostics range from 1973 to 2014
- The variable of interest is the time from cancer diagnosis until death.
- https ://seer.cancer.gov


## Application of the two methods to the SEER data

- The breakpoint model chooses 2 breakpoints with the BIC criterion.
- Piecewise constant hazard with no covariates.




## Application of the two methods to the SEER data



Observed data

$\mathrm{L}_{2} \mathrm{CV}$

## Application of the two methods to the SEER data


$\mathrm{L}_{0} \mathrm{EBIC}_{0}$


## Perspectives

- For the breakpoint model :
- Generalization of the breakpoint model to a soft change of survival distribution between two dates.
- Development of statistical tests for no breakpoint versus at least one breakpoint.
- Extension of the method to a "multidimensional proximity space".
- For the age-period-cohort model :
- Penalization on second order differences.
- Inclusion of an interaction term in the age-cohort model :

$$
\log \lambda_{j, k}=\mu+\alpha_{j}+\beta_{k}+\delta_{j, k},
$$

with L 0 regularization on the $\delta_{j, k}$ 's.

## Bibliography

[1] Olivier Bouaziz and Grégory Nuel. A change-point model for detecting heterogeneity in ordered survival responses. Statistical methods in medical research, 2016.
[2] Bendix Carstensen. Age-period-cohort models for the lexis diagram. Statistics in medicine, 26(15) :3018-3045, 2007.
[3] Jiahua Chen and Zehua Chen. Extended bayesian information criteria for model selection with large model spaces. Biometrika, 95(3):759-771, 2008.
[4] Florian Frommlet and Grégory Nuel. An adaptive ridge procedure for IO regularization. PloS one, 11(2), 2016.
[5] The Minh Luong, Yves Rozenholc, and Grégory Nuel. Fast estimation of posterior probabilities in change-point analysis through a constrained hidden markov model. Computational Statistics and Data Analysis, 68 :129-140, 2013.

