

Regression modeling of interval censored data with a cure fraction

Olivier Bouaziz (1) and Grégory Nuel (2)

(1) MAP5, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
 (2) LPSM, CNRS 7599, UPMC, Sorbonne Université, Paris, France

Interval-censored data with a cure fraction

- \blacktriangleright *T* is the time to event of interest.
- ▶ We observe a random interval [L, R] where $\mathbb{P}(T \in [L, R]) = 1$.
- Mixed case interval censored observations (with $\delta \in \{0, 1\}$):
 - ▷ Left censoring if $0 = L < R < \infty$ ($\delta = 1$)
 - ▷ Interval censoring if $0 < L < R < \infty$ $(\delta = 1)$
 - \triangleright Exact observation if L = R = T ($\delta = 1$)
 - ▷ Right censoring if $0 < L < R = \infty$ ($\delta = 0$).
- > Y is a latent variable: Y = 1 for susceptibles, Y = 0 for non-susceptibles.

Modeling the hazard rate

Data example 1: HIV infection in Danish homosexual men

- 297 people were followed up at six different dates: December 1981, April 1982, February 1983, September 1984, April 1987 and May 1989.
- ► *T* is time to HIV infection in calendar days.

Observations in percentage

e	exact	left-censored	interval-censored	right-censored
(0.00	08.75	13.13	78.12

Results from standard Cox model (6 fixed cuts for the baseline, no cure)

Covariates	Hazard ratio $(e^{\hat{\beta}})$	p-value
Nb. of partner/year	1.01	0.0498
Contact with USA	1 66	0 0207

► The hazard model is:

 $\lambda(t|Y_i = 1, Z_i) = \lambda_0(t) \exp(\beta_0 Z_i),$ with $\lambda_0(t) = \sum_{\ell=1}^L \mathbbm{1}_{c_{\ell-1} < t \le c_\ell} \exp(a_\ell)$ and $c_0 = 0 < c_1 < \cdots < c_L = \infty.$

The model for susceptibility is:

$$p_i = \mathbb{P}[Y_i = 1|X_i] = \frac{\exp(\gamma_0 X_i)}{1 + \exp(\gamma_0 X_i)}$$

- ► The observations are data= $(L_i, R_i, \delta_i, Z_i, X_i)_{i=1,...,n}$.
- ► The unobserved data are $(T_i, Y_i)_{i=1,...,n}$.
- The goal is to estimate $\theta = (a_1, \ldots, a_L, \beta, \gamma)$.

The EM algorithm

E-step: The complete likelihood is

$$L(\theta) = \prod_{i=1}^{n} p_i^{Y_i} (1-p_i)^{1-Y_i} \prod_{i=1}^{n} \{f(T_i | Y_i = 1, Z_i; \theta)\}^{Y_i}.$$

Let $\pi_i^{\text{old}} = \mathbb{E}[Y_i | \text{data}, \theta_{\text{old}}]$. We have:

$$\pi_i^{\text{old}} = \delta_i + rac{(1-\delta_i)p_i^{ ext{old}}S(L_i|Y_i=1,Z_i,oldsymbol{ heta}_{ ext{old}})}{1-p_i^{ ext{old}}+p_i^{ ext{old}}S(L_i|Y_i=1,Z_i,oldsymbol{ heta}_{ ext{old}})},$$

- \triangleright Non-parametric survival probability in 1990 is estimated to: 71%.
- See B. Carstensen. Regression models for interval censored survival data: application to HIV infection in Danish homosexual men. Statistics in Medicine, 15:2177-2189, 1996.

Results from the adaptive ridge Cox model with cure fraction

Covariates	Hazard ratio $(e^{\hat{eta}})$	p-value	Odd ratio $(e^{\hat{\gamma}})$	p-value
Nb. of partner/year	1.00	0.5658	1.02	0.0096
Contact with USA	1.62	0.2296	1.57	0.2310

- ▷ The adaptive ridge selects the exponential baseline (no cuts)!
- Nb. of partner/year is highly significant for the probability to be susceptible!
- No significant effect on nb. of partner/year and visiting the USA on the hazard risk of HIV for the susceptibles!
- ▷ Non-parametric probability of being susceptible: $\hat{p} = 0.29$.

Data example 2: replantation of 400 avulsed permanent teeth

- \blacktriangleright T is time from replantation to ankylosis.
- The goal is to study the effect on T of
 stage of root formation

$$egin{aligned} \mathcal{Q}(oldsymbol{ heta}|oldsymbol{ heta}_{ ext{old}}) &= \mathbb{E}_{\mathcal{T}_{1:n}, Y_{1:n}| ext{data}, heta_{ ext{old}}}[ext{log}(\mathcal{L}(oldsymbol{ heta}))] \ &= \sum_{i=1}^n ig\{\pi_i^{ ext{old}} \log(p_i) + (1-\pi_i^{ ext{old}}) \log(1-p_i)ig\} \ &+ \sum_{i ext{ not exact}} \pi_i^{ ext{old}} \sum_{\ell=1}^L igg\{ig(a_{i,\ell} - \sum_{j=1}^{\ell-1} (c_j - c_{j-1}) e^{a_{i,j}}ig) \mathcal{A}_{\ell,i}^{ ext{old}} - e^{a_{i,\ell}} \mathcal{B}_{\ell,i}^{ ext{old}} \ &+ \sum_{i ext{ exact}} \sum_{\ell=1}^L igg\{O_{i,l}a_{i,\ell} - \exp(a_{i,\ell}) \mathcal{R}_{i,\ell}igg\}. \end{aligned}$$

 $O_{i,\ell}$ is number of observed events and $R_{i,\ell}$ is total time at risk in cut $(c_{\ell-1}, c_{\ell}]$ for individual *i*. $A_{\ell,i}^{old}, B_{\ell,i}^{old} = 0$ if $[L_i, R_i] \cap (c_{\ell-1}, c_{\ell}] = \emptyset$.

▶ M-step: Newton-Raphson algorithm. The block Hessian for λ_0 is diagonal.

The adaptive ridge procedure

Penalized log-likelihood:

$$I(\boldsymbol{ heta}|\boldsymbol{ heta}_{\mathsf{old}}) = Q(\boldsymbol{ heta}|\boldsymbol{ heta}_{\mathsf{old}}) - rac{\mathrm{pen}}{2} \sum_{\ell=1}^{L-1} w_{\ell}(a_{\ell+1} - a_{\ell})^2,$$

where (w_1, \ldots, w_{L-1}) are non-negative weights, pen is a tuning parameter. \triangleright pen = 0 corresponds to unpenalized log-likelihood. 72.5% mature teeth, 27.5% immature teeth

- Iength of extra-alveolar storage Mean time: 30.86 seconds
- type of storage media
 - 85.25% physiologic storage, 14.75% non-physiologic storage
- age of the patient (in interaction with mature teeth only) Mean age for mature teeth: 16.81.

Observations in percentage

exact	left-censored	interval-censored	right-censored
0.00	28.00	35.75	36.25

Results from the Cox model

Covariates	Hazard ratio	p-value
Mature	2.00	1.89×10^{-5}
Storage time (in min)	1.23	0.0017
Physiologic	0.93	0.6980
Age>20 (for mature teeth)	1.27	0.1272

- ▶ $\hat{p} = 1$: all patients are susceptible to ankylosis!
- ► The cuts found from the adaptive ridge method are: 100, 500, 800, 900.

Survival estimate of time to ankylosis for mature and immature teeth

- ▷ pen = ∞ corresponds to exponential baseline (no cuts).
- Update of weights (*m*th step):

$$w_\ell^{(m)} = \left((\hat{a}_{\ell+1}^{(m)} - \hat{a}_\ell^{(m)})^2 + arepsilon^2
ight)^{-1},$$

- for $\ell = 1, ..., L 1$ with $\varepsilon = 10^{-5}$. $\hat{a}_{\ell}^{(m)}$ is the estimate of a_{ℓ} obtained from the Newton-Raphson algorithm.
- $\begin{aligned} & |\hat{a}_{\ell+1}^{(m)} \hat{a}_{\ell}^{(m)}| < \varepsilon \implies w_{\ell}^{(m)} (\hat{a}_{\ell+1}^{(m)} \hat{a}_{\ell}^{(m)})^2 \approx 0. \\ & |\hat{a}_{\ell+1}^{(m)} \hat{a}_{\ell}^{(m)}| > \varepsilon \implies w_{\ell}^{(m)} (\hat{a}_{\ell+1}^{(m)} \hat{a}_{\ell}^{(m)})^2 \approx 1. \end{aligned}$ Approximation of the L0 norm!
- The block Hessian for λ₀ is tri-diagonal. Using the R bandsolve package, the total complexity for the inversion of the Hessian matrix is O(L).
- pen is chosen from the Bayesian Information Criteria.
 For the adaptive ridge, see: F. Frommlet and G. Nuel. An adaptive ridge
- procedure for L0 regularization. PLoS ONE, 11(2):1-23, 2016.

Contact: olivier.bouaziz@parisdescartes.fr