Convex optimization

Application to image restoration

Conclusion

Bibliography

Dual methods for the minimization of the total variation

Rémy Abergel supervisor Lionel Moisan

MAP5 - CNRS UMR 8145

- Different Learning Seminar, LTCI -Thursday 21st April 2016

Introduction	Convex optimization	Application to image restoration	Conclusion	Bibliography
Plan				

- 2 Convex optimization
 - Generalities
 - Differentiable framework
 - Dual methods
- Application to image restoration
 - Denoising (dual approach)
 - Inverse problems (primal-dual approach)

Conclusion

Introduction	Convex optimization	Application to image restoration	Conclusion	Bibliography
Plan				

- Convex optimization
 - Generalities
 - Differentiable framework
 - Dual methods
- 3 Application to image restoration
 - Denoising (dual approach)
 - Inverse problems (primal-dual approach)

4) Conclusion

Introduction	Convex optimization	Application to image restoration	Conclusion	Bibliography
Mathema	atical framew	ork		

A gray level image is represented as a function

$$u:\Omega \to \mathbb{R}$$

where Ω denotes

• Continuous framework: a bounded open set of \mathbb{R}^2 .

• **Discrete framework**: a rectangular subset of \mathbb{Z}^2 .

In both cases, we will note $u \in \mathbb{R}^{\Omega}$.

Total variation (continuous framework)

We will focus on image restoration process involving the total variation functional, which is defined by

$$\forall u \in W^{1,1}(\Omega), \quad \mathsf{TV}(u) = \int_{\Omega} \|\nabla u(x)\|_2 dx,$$

or, more generally,

$$\forall u \in \mathsf{BV}(\Omega), \quad \mathsf{TV}(u) = \sup_{\substack{\phi \in \mathscr{C}^{\infty}_{c}(\Omega; \mathbb{R}^{2}) \\ \forall x \in \Omega, \|\phi(x)\|_{2} \leq 1}} - \int_{\Omega} u(x) \mathrm{div}\phi(x) dx \,,$$

where $\mathsf{BV}(\Omega) = \left\{ u \in L^1_{\mathsf{loc}}(\Omega); \mathsf{TV}(u) < +\infty \right\}.$

Application to image restoration

Conclusion

Bibliography

Total variation (discrete framework)

Let $\Omega = \{0, ..., M - 1\} \times \{0, ..., N - 1\}$ denote a discrete rectangular domain, and $u \in \mathbb{R}^{\Omega}$ a discrete image. We generally adapt the continuous definition of TV(u) as follows,

$$\mathsf{TV}(u) = \|\nabla u\|_{1,2} := \sum_{(x,y)\in\Omega} \|\nabla u(x,y)\|_2,$$

where ∇ denotes a finite difference operator.

In	h pr	~	2		~	~	5
	UI.	υ	u	u	U	υ	П

Plan

Introduction

- 2 Convex optimization
 - Generalities
 - Differentiable framework
 - Dual methods
- 3 Application to image restoration
 - Denoising (dual approach)
 - Inverse problems (primal-dual approach)

4 Conclusion

We are interested in the computation of $\hat{u} \in E$, a minimizer of a given cost function *J* over a subset $\mathscr{C} \subset E$ (constraint set). Such a problem is usually written

 $\widehat{u} \in \operatorname*{argmin}_{u \in \mathscr{C}} J(u)$

- *J* denotes a function from *E* to $\overline{\mathbb{R}} := \mathbb{R} \cup \{\pm \infty\}$,
- E denotes (for shake of simplicity) a Hilbert space,
- in general, $\mathscr{C} = \{ u \in \mathbb{E}; g(u) \leq 0, h(u) = 0 \}$
 - where g is called the inequality constraint,
 - and h is called the equality constraint.

Differentiable and unconstrained framework

Theorem (first order necessary condition for optimality)

If \hat{u} achieves a minimum of J over E, then $\nabla J(\hat{u}) = 0$.

This condition becomes **sufficient** when the cost function J is **convex**.

Theorem (sufficient condition for the existence of a minimizer)

If $J : E \to \mathbb{R}$ is a **proprer**, **continuous** and **coercive** function, then the **unconstrained** problem admits at least one solution.

If moreover *J* is **strictly convex**, the problem admits **exactly** one solution.

Example of resolvant algorithm ($\mathscr{C} = E = \mathbb{R}^n$)

Algorithm (gradient descent)

- 1. Initialization:
 - Choose $u_0 \in \mathbb{R}^n$, $\alpha_0 > 0$ and $\varepsilon > 0$.
- 2. Iteration: k
 - compute $\nabla J(u_k)$
 - compute α_k
 - $u_{k+1} = u_k \alpha_k \nabla J(u_k)$

3. Example of stopping criterion:

- *if* $||J(u_{k+1}) J(u_k)|| < \varepsilon$, *STOP*
- otherwise, set k = k + 1 and go back to 2.

Remark: a first order Taylor expansion of $J(u_k + \alpha_k \nabla J(u_k))$ at point u_k helps to understand that $J(u_{k+1}) \leq J(u_k)$ as soon as α_k is small enough.

Differentiable and constrained framework

- Theorems can be adapted (in the convex setting), leading to the so-called Karush-Kuhn-Tucker conditions.
- A numerical solution of the constrained problem can be numerically computed using the **projected gradient** algorithm, which simply consists in replacing

$$u_{k+1} = u_k - \alpha_k \nabla J(u_k)$$

by

$$u_{k+1} = \operatorname{Proj}_{\mathscr{C}} \left(u_k - \alpha_k \nabla J(u_k) \right)$$

into the gradient descent algorithm.

Application to image restoration

Conclusion

Bibliography

Legendre-Fenchel transform

Let *E* denote a finite dimensional Hilbert space, E^* its dual space, and $\langle \cdot, \cdot \rangle$ the bilinear mapping over $E^* \times E$ defined by

$$\forall \varphi \in E^{\star}, \quad \forall u \in E, \quad \langle \varphi, u \rangle = \varphi(u).$$

Definition (affine continuous applications)

An affine continuous application is a funtion of the type

 $\mathcal{A}: \mathbf{U} \; \mapsto \; \langle \varphi, \mathbf{U} \rangle + \alpha$

- where $\varphi \in E^*$ is called **the slope** of \mathcal{A} ,
- and α is a real number, called the constant term of A.

Application to image restoration

Conclusion

Bibliography

Legendre-Fenchel transform

Q. At which condition(s) does the affine continuous application \mathcal{A} , with slope $\varphi \in E^*$ and constant term $\alpha \in \mathbb{R}$, lower bound J everywhere on E?

$$\begin{aligned} \forall u \in E, \quad \mathcal{A}(u) &\leq J(u) \\ \Leftrightarrow \quad \forall u \in E, \quad \langle \varphi, u \rangle + \alpha \leq J(u) \\ \Leftrightarrow \quad \forall u \in E, \quad \langle \varphi, u \rangle - J(u) \leq -\alpha \\ \Leftrightarrow \quad \sup_{u \in E} \{ \langle \varphi, u \rangle - J(u) \} \leq -\alpha \\ \Leftrightarrow \quad J^{\star}(\varphi) \leq -\alpha \\ \Leftrightarrow \quad -J^{\star}(\varphi) \geq \alpha \end{aligned}$$

Application to image restoration

Conclusion

Bibliography

Legendre-Fenchel transform

Definition (Legendre-Fenchel transform)

Let $J : E \to \overline{\mathbb{R}}$, the Legendre-Fenchel transform of J is the application $J^* : E^* \to \overline{\mathbb{R}}$ defined by:

$$\forall \varphi \in E^{\star}, \quad J^{\star}(\varphi) = \sup_{u \in E} \{ \langle \varphi, u \rangle - J(u) \}$$

Geometrical intuition:

 $-J^{\star}(\varphi)$ represents the largest constant term α that can assume any affine continuous function with slope φ , to remain under *J* everywhere on *E*.

Application to image restoration

Conclusion

Bibliography

Transformée de Legendre-Fenchel

By definition of J^* , we have

$$\forall \varphi \in E^{\star}, \quad J^{\star}(\varphi) = \sup_{u \in E} \left\{ \langle \varphi, u \rangle - J(u) \right\}.$$

We remark that

•
$$J^{\star}(0_{E^{\star}}) = -\inf_{u \in E} J(u)$$

 we retrieve here a link between "null slope" and "infimum of J"

Introduction	Convex optimization	Application to image restoration	Conclusion	Bibliograpl	

Subdifferentiability

Definition (exact applications)

Let $u \in E$, $\varphi \in E^*$, then, the affine continuous application

$$\mathcal{A}: \mathbf{v} \mapsto \langle \varphi, \mathbf{v} - \mathbf{u} \rangle + \mathbf{J}(\mathbf{u})$$

satisfies A(u) = J(u). We say that A is **exact** at u.

Definition (subdifferentiability & subgradient)

A J : $E \to \mathbb{R}$ is said subdifferentiable at the point $u \in E$ if it admits at least one lower bounding affine continuous function which is exact at u.

- The slope φ of such an affine function is then called a subgradient of J at the point u.
- The set of all subgradients of J at u is noted $\partial J(u)$.

Basic properties:

• $\varphi \in \partial J(u) \quad \Leftrightarrow \quad \forall v \in E, \ \langle \varphi, v - u \rangle + J(u) \leq J(v)$ • $0 \in \partial J(\widehat{u}) \quad \Leftrightarrow \quad \widehat{u} \in \underset{u \in E}{\operatorname{argmin}} J(u)$

Remark: transformation of a constrained problem into an unconstrained problem

 $rgmin_{u\in\mathscr{C}} J(u) = rgmin_{u\in E} J(u) + \imath_{\mathscr{C}}(u)$ where $\imath_{\mathscr{C}}(u) = \left\{ egin{array}{c} 0 & ext{si} \ u\in\mathscr{C} \\ +\infty & ext{si} \ u
otin \mathscr{C} \end{array}
ight.$

In	٢n	\sim	n 11		n1	n	n
		יט		u	0	0	

Properties & subdifferential calculus

- Any convex and lower semi-continous (l.s.c.) function is subdifferentiable over the interior of its domain.
- If J is convex and differentiable at u, then $\partial J(u) = \{\nabla J(u)\}.$
- $\forall u \in E, \ \partial (J_1 + J_2)(u) \supset \partial J_1(u) + \partial J_2(u).$
- The converse inclusion is satisfied under some additional (but weak) hypotheses on *J*₁ and *J*₂.
- If J is convex, lower semi-continuous, then

$$\varphi \in \partial J(u) \quad \Leftrightarrow \quad u \in \partial J^{\star}(\varphi).$$

• If J is convex, and lower semi-continuous, then $J^{\star\star}(u) = J(u)$.

Introduction	Convex optimization	Application to image restoration	Conclusion	Bibliography
Dlan				

- 2 Convex optimization
 - Generalities
 - Differentiable framework
 - Dual methods
- Application to image restoration
 - Denoising (dual approach)
 - Inverse problems (primal-dual approach)

4 Conclusion

Legendre-Fenchel transform of the discrete TV

Theorem (Legendre-Fenchel transform of the discrete TV)

The Legendre-Fenchel transform of TV is the indicator function of the convex set $\mathscr{C} = \operatorname{div} \mathscr{B}$, where

$$\mathscr{B} = \left\{ \pmb{\rho} \in \mathbb{R}^\Omega imes \mathbb{R}^\Omega, \; \| \pmb{\rho} \|_{\infty, 2} \leq 1
ight\},$$

and $\|\cdot\|_{\infty,2} := p \mapsto \max_{(x,y)\in\Omega} \|p(x,y)\|_2$ is the dual norm of the $\|\cdot\|_{1,2}$ norm.

In other words:

$$\mathsf{TV}^{\star}(\varphi) = \imath_{\mathscr{C}}(\varphi) = \begin{cases} 0 & \text{if } \exists p \in \mathscr{B}, \ \varphi = \operatorname{div} p \\ +\infty & \text{otherwise.} \end{cases}$$

Proof: this result is easy to prove using the convex analysis tools presented before (see the proof in appendix).

Convex optimization

Application to image restoration

Conclusion

Bibliography

The ROF (Rudin, Osher, Fatemi) model

We are interested in the computation of

$$\widehat{u}_{\mathsf{MAP}} = \operatorname*{argmin}_{u \in \mathbb{R}^\Omega} J(u) := rac{1}{2} \|u - u_0\|_2^2 + \lambda \mathsf{TV}(u) \,.$$

Thanks to the previous properties, we have

$$\begin{split} \widehat{u}_{\text{MAP}} &= \underset{u \in \mathbb{R}^{\Omega}}{\operatorname{argmin}} \frac{1}{2} \| u - u_0 \|_2^2 + \lambda \mathsf{TV}(u) \\ \Leftrightarrow & 0 \in \widehat{u}_{\text{MAP}} - u_0 + \lambda \partial \mathsf{TV}(\widehat{u}_{\text{MAP}}) \\ \Leftrightarrow & \widehat{u}_{\text{MAP}} \in \partial \mathsf{TV}^{\star} \left(\frac{u_0 - \widehat{u}_{\text{MAP}}}{\lambda} \right) \\ \Leftrightarrow & \frac{u_0}{\lambda} \in \frac{u_0 - \widehat{u}_{\text{MAP}}}{\lambda} + \frac{1}{\lambda} \partial \mathsf{TV}^{\star} \left(\frac{u_0 - \widehat{u}_{\text{MAP}}}{\lambda} \right) \end{split}$$

Convex optimization

Application to image restoration $\circ \bullet \circ \circ$

Conclusion

Bibliography

The ROF (Rudin, Osher, Fatemi) model

Dual formulation of the ROF problem: Let $\hat{w} = \frac{u_0 - \hat{u}_{MAP}}{\lambda}$, we have

$$0 \in \widehat{w} - u_0/\lambda + \frac{1}{\lambda} \partial \mathsf{TV}^{\star}(\widehat{w}),$$

Thus,

$$\widehat{w} = \operatorname*{argmin}_{w \in \mathbb{R}^{\Omega}} \frac{1}{2} \|w - u_0 / \lambda\|_2^2 + \frac{1}{\lambda} \mathsf{TV}^{\star}(w) \,.$$

Last, since $\mathsf{TV}^{\star}(w) = \iota_{\mathscr{C}}(w)$, we have

$$\widehat{\boldsymbol{w}} = \operatorname*{argmin}_{\boldsymbol{w} \in \mathscr{C}} \|\boldsymbol{w} - \boldsymbol{u}_0 / \lambda\|_2^2 = \operatorname{Proj}_{\mathscr{C}} (\boldsymbol{u}_0 / \lambda),$$

an thus, $\hat{u}_{map} = u_0 - \lambda \operatorname{Proj}_{\mathscr{C}}(u_0/\lambda)$.

Inverse problems (primal-dual approach)

$$A: \mathbb{R}^{\Omega} \to \mathbb{R}^{\omega}, \qquad \widehat{u}_{\mathsf{MAP}} = \operatorname*{argmin}_{u \in \mathbb{R}^{\Omega}} \frac{1}{2} \|Au - u_0\|^2 + \lambda \mathsf{TV}(u).$$

Primal-dual formulation: Let us use $F^{\star\star} = F$ (valid as soon as *F* is convex, and lower semi-continuous).

 TV(u) = TV^{**}(u) yields a dual formulation (also called weak formulation) of the discrete TV,

$$\mathsf{TV}(u) = \max_{p \in \mathscr{B}} \langle \nabla u, p \rangle.$$

• $\frac{1}{2} \|Au - u_0\|_2^2 = f(Au) = f^{\star\star}(Au) = \max_{q \in \mathbb{R}^\omega} \langle q, Au \rangle - f^{\star}(q)$, and we can easily show that $f^{\star}(q) = \frac{1}{2} \|q + u_0\|_2^2 - \frac{1}{2} \|u_0\|_2^2$. Introduction Convex optimization Application to image restoration Conclusion Bibliography

Inverse problems (primal-dual approach)

By replacing these two terms into the initial problem, we get a **primal-dual reformulation**:

$$\widehat{u}_{ ext{MAP}} = rgmin_{u \in \mathbb{R}^\Omega} \max_{\substack{p \in \mathscr{B} \ q \in \mathbb{R}^\omega}} \left\langle \left(\lambda
abla u, Au
ight), (p,q)
ight
angle \ - \ rac{1}{2} \|q + u_0\|_2^2$$

Such a problem can be handled using the Chambolle-Pock algorithm (2011), which boils down to the numerical scheme

$$\begin{cases} p^{n+1} = \operatorname{Proj}_{\mathscr{B}} \left(p^n + \sigma \lambda \nabla \overline{u}^n \right) \\ q^{n+1} = \left(q^n + \sigma \left(A \overline{u}^n - u_0 \right) \right) / (1 + \sigma) \\ u^{n+1} = u^n + \tau \lambda \operatorname{div} p^{n+1} - \tau A^* q^{n+1} \\ \overline{u}^{n+1} = u^{n+1} + \theta \left(u^{n+1} - u^n \right) \end{cases}$$

The convergence of the iterates (u^n, p^n, q^n) toward a solution of the primal-dual problem is ensured for $\theta = 1$ and $\tau \sigma < |||K|||^2$, noting $K = u \mapsto (\lambda \nabla u, Au)$.

Introduction	Convex optimization	Application to image restoration	Conclusion	Bibliography
Plan				

- 2 Convex optimization
 - Generalities
 - Differentiable framework
 - Dual methods
- 3 Application to image restoration
 - Denoising (dual approach)
 - Inverse problems (primal-dual approach)

4 Conclusion

Introduction	Convex optimization	Application to image restoration	Conclusion	Bibliography
Conclus	ion			

- The tools presented here are based on very **simple notions**.
- They are useful to reformulate a (convex) problem into a dual (or primal-dual) one, which can be sometimes much more simple than the initial problem.
- What is the good framework for using these tools?
 - The cost function must be convex and lower semi-continuous (Γ space). When it is not the case, it may be replaced by a convex approximation (Γ-regularization, Moreau-Yoshida envelope, surrogate functions, etc.).
 - A dual reformulation often starts with the computation of the Legendre-Fenchel transform of a part of the cost function (which is particularly easy in the case of l^p norms).
 - The dual variables are easy to manipulate when *E* is a **Hilbert space**.

Introduction	Convex optimization	Application to image restoration	Conclusion	Bibliography
Bibliogra	aphy			

- I. Ekeland, and R. Témam: "Convex analysis and variational problems", 1999.
- A. Chambolle, and T. Pock: "A first-order primal-dual algorithm for convex problems with applications to imaging", 2011.
- A. Chambolle, V. Caselles, D. Cremers, M. Novaga, and T. Pock: "An introduction to total variation for image analysis", 2010.
- R. T. Rockafellar: "Convex analysis", 1997.
- S. Boyd, and L. Vandenberghe: "Convex optimization", 2009.
- L. I. Rudin, S. Osher, and E. Fatemi: "Nonlinear total variation based noise removal algorithms", 1992.

Appendix (Computation of TV^*)

Lemma (Legendre-Fenchel transform of a norm)

Let E denote a Hilbert space, endowed with a norm $\|\cdot\|$, and a scalar product $\langle \cdot, \cdot \rangle$. We have

$$orall v \in E, \quad \|v\|^* = \imath_{\mathscr{B}_*}(v) := \left\{ egin{array}{cc} 0 & \textit{if} \, \|v\|_* \leq 1 \ +\infty & \textit{otherwise,} \end{array}
ight.$$

where $\|\cdot\|_* = v \mapsto \sup_{u \in E, \|u\| \le 1} \langle v, u \rangle$ denotes the dual norm.

In other words, $\|\cdot\|^*$ is the indicator function of the closed unit ball for the dual norm $\|\cdot\|_*.$

Proof. We have $\imath_{\mathscr{B}_*}^{\star}(u) = \sup_{v \in E, \|v\|_* \leq 1} \langle v, u \rangle = \|u\|_{**} = \|u\|$, for any $u \in E$. Thus, $\|\cdot\|^{\star} = \imath_{\mathscr{B}_*}^{\star\star} = \imath_{\mathscr{B}_*}$, since $\imath_{\mathscr{B}_*} \in \Gamma(E)$.

Appendix (Computation of TV^*)

Lemma (dual norm of the $\|\cdot\|_{1,2}$ norm)

The two norms $\|\cdot\|_{1,2}$ and $\|\cdot\|_{\infty,2}$ over the Hilbert space $E := \mathbb{R}^{\Omega} \times \mathbb{R}^{\Omega}$ are dual to each other.

Proof. Since *E* is reflexive, we just need to show that one norm is the dual of the other. Let us show that $\|\cdot\|_{1,2}$ is the dual norm of $\|\cdot\|_{\infty,2}$. For any $p \in E$, we have

$$\sup_{q \in E, \|q\|_{\infty,2} \leq 1} \langle p, q \rangle_E = \sup_{\substack{q \in E \\ \forall x \in \Omega, \|q(x)\|_2 \leq 1}} \sum_{\substack{x \in \Omega}} \langle p(x), q(x) \rangle_{\mathbb{R}^2}$$
$$= \sum_{x \in \Omega} \sup_{q(x) \in \mathbb{R}^2, \|q(x)\|_2 \leq 1} \langle p(x), q(x) \rangle_{\mathbb{R}^2}$$
$$= \sum_{x \in \Omega} \|p(x)\|_2$$
$$= \|p\|_{1,2}.$$

Appendix (Computation of TV^*)

Theorem (Legendre-Fenchel transform of TV)

 $\mathsf{TV}^{\star} = \imath_{\mathscr{C}} \text{, where } \mathscr{C} = \operatorname{div} \mathscr{B} \text{ and } \mathscr{B} = \{ p \in E, \ \|p\|_{\infty, 2} \leq 1 \}.$

Proof.

- Since the two norms || · ||_{1,2} and || · ||_{∞,2} are dual to each other, we have || · ||^{*}_{1,2} = i_𝔅, and thus || · ||_{1,2} = || · ||^{**}_{1,2} = i^{*}_𝔅.
- Besides, for all $u \in \mathbb{R}^{\Omega}$, we have

$$i_{\mathscr{C}}^{\star}(u) = \sup_{v \in \mathscr{C}} \langle u, v \rangle = \sup_{p \in \mathscr{B}} \langle u, \operatorname{div} p \rangle = \sup_{p \in \mathscr{B}} \langle \nabla u, p \rangle = i_{\mathscr{B}}^{\star}(\nabla u).$$

- Therefore, $i_{\mathscr{C}}^{\star}(u) = i_{\mathscr{B}}^{\star}(\nabla u) = \|\nabla u\|_{1,2} = \mathsf{TV}(u)$, for any u.
- Thus $\mathsf{TV} = \imath_{\mathscr{C}}^{\star}$, and finally $\mathsf{TV}^{\star} = \imath_{\mathscr{C}}^{\star\star} = \imath_{\mathscr{C}}$.