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Introduction

Mathematical framework

A gray level image is represented as a function
u:Q—-~R

where Q denotes

@ Continuous framework: a bounded open set of R2.
o Discrete framework: a rectangular subset of Z2.

In both cases, we will note u € R.



Introduction

Total variation (continuous framework)

We will focus on image restoration process involving the total
variation functional, which is defined by

Vue W(@), TV()= [ [Tu(x)leax.
Q
or, more generally,

VueBV(Q), TV(u)=  sup  — / u(xX)dive(x)dx
¢€%C°°(Q;R2) Q
vxeQ, a0 o<t
where BV(Q) = {u € L} ,(Q); TV(u) < +o0}.

loc



Introduction

Total variation (discrete framework)

LetQ={0,...., M—1} x{0,...,N— 1} denote a discrete
rectangular domain, and u € R% a discrete image. We
generally adapt the continuous definition of TV (u) as follows,

V() =|Vulliz:== > [IVux,y)l2,
(x,y)eQ

where V denotes a finite difference operator.
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Convex optimization
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Optimization problem

We are interested in the computation of U € E, a minimizer of a
given cost function J over a subset ¥ C E (constraint set).
Such a problem is usually written

U € argmin J(u)
ues
@ J denotes a function from Eto R := RU {£o0},
@ E denotes (for shake of simplicity) a Hilbert space,
@ ingeneral, ¥ ={ueE; g(u) <0, h(u) =0}

e where g is called the inequality constraint,
e and his called the equality constraint.



Convex optimization
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Differentiable and unconstrained framework

Theorem (first order necessary condition for optimality)

If u achieves a minimum of J over E, then VJ(u) = 0.

This condition becomes sufficient when the cost function J is
convex.

Theorem (sufficient condition for the existence of a minimizer)

IfJ : E — R is a proprer, continuous and coercive function,
then the unconstrained problem admits at least one solution.

If moreover J is strictly convex, the problem admits exactly
one solution.



Convex optimization
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Example of resolvant algorithm (¢ = E = R")

Algorithm (gradient descent)

1. Initialization:
@ Choose ug € R", ag > 0 ande > 0.
2. lteration: k
e compute VJ(uy)
e compute ak
@ Ukiq1 = Uk —OékVJ(Uk)
3. Example of stopping criterion:
o if||J(uky1) — J(uk)|| < e, STOP
e otherwise, set k = k + 1 and go back to 2.

Remark: a first order Taylor expansion of J(ux + axVJ(uk)) at
point u, helps to understand that J(uk1) < J(uk) as soon as
ak is small enough.
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Convex optimization
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Differentiable and constrained framework

@ Theorems can be adapted (in the convex setting), leading
to the so-called Karush-Kuhn-Tucker conditions.

@ A numerical solution of the constrained problem can be
numerically computed using the projected gradient
algorithm, which simply consists in replacing

U1 = Uk — VI (Ug)

by
Uk41 = Proj¢ (ux — axVJ(u))

into the gradient descent algorithm.
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Convex optimization
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Legendre-Fenchel transform

Let E denote a finite dimensional Hilbert space, E* its dual
space, and (-, -) the bilinear mapping over E* x E defined by

Vo€ E*, YueE, (p,u)=¢pU).

Definition (affine continuous applications)

An affine continuous application is a funtion of the type

A:uw— (pu)+a

@ where ¢ € E* is called the slope of A,
@ and « is a real number, called the constant term of A.
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Convex optimization
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Legendre-Fenchel transform

Q. At which condition(s) does the affine continuous application
A, with slope ¢ € E* and constant term « € R, lower bound J
everywhere on E?

Vue E, A(u) < J(u)

& YueE, (pu)y+a < JU)

& YueE, (pu)—Jdu) < —a
N igg{«o,w - J)} < o

& J(p) £ —a

& —J(p) =2
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Convex optimization
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Legendre-Fenchel transform

Definition (Legendre-Fenchel transform)

Let J : E — R, the Legendre-Fenchel transform of J is the
application J* : E* — R defined by:

Vo € B, JY(¢)= 522 {{p,u) = J(u) }

Geometrical intuition:

—J*(p) represents the largest constant term « that can
assume any affine continuous function with slope ¢, to
remain under J everywhere on E.

14/30



Convex optimization
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Transformée de Legendre-Fenchel

By definition of J*, we have

Vo e B Jie) =sup {{pu) — J(U) )

ue

We remark that

@ J(0g) =— JngJ(u)

@ we retrieve here a link between “null slope” and “infimum
of J’

15/30



Convex optimization
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Subdifferentiability

Definition (exact applications)
Letu € E, ¢ € E*, then, the affine continuous application

A:vi (o, v—u) + JU)

satisfies A(u) = J(u). We say that A is exact at u.

N

Definition (subdifferentiability & subgradient)

A J : E — R is said subdifferentiable at the pointu < E if it
admits at least one lower bounding affine continuous
function which is exact at u.

@ The slope ¢ of such an affine function is then called a
subgradient of J at the point u.

@ The set of all subgradients of J at u is noted 0J(u).
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Convex optimization
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Subdifferentiability

Basic properties:

@ pecddlu) & VveE, (p,v—u) + Ju) < J(v)

@ 0cdJ(U) <& Ueargmind(u)
ueE

Remark: transformation of a constrained problem into an
unconstrained problem

argminJ(u) = argminJ(u) + 1z (u)
uee ueE
where 1,(u) = 0 siue¥?
T 4o siug @
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Convex optimization
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Properties & subdifferential calculus

@ Any convex and lower semi-continous (l.s.c.) function is
subdifferentiable over the interior of its domain.

o If J is convex and differentiable at u, then
od(u) = {VJ(u)}.

@ Yue E, 9(Jy + J2)(u) D adi(u) + dd(u).

@ The converse inclusion is satisfied under some additional
(but weak) hypotheses on J; and J».

@ If J is convex, lower semi-continuous, then

peddlu) & uedd(y).

@ If J is convex, and lower semi-continuous, then
J*(u) = J(u).
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e Application to image restoration
@ Denoising (dual approach)
@ Inverse problems (primal-dual approach)
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Application to image restoration

Legendre-Fenchel transform of the discrete TV

Theorem (Legendre-Fenchel transform of the discrete TV)

The Legendre-Fenchel transform of TV is the indicator function
of the convex set ¢ = div#, where

B ={peR* xR?, |plloo2 <1},

and || - |loo,2 := P = MaXxx,yyeq lP(X, y)|l2 is the dual norm of
the || - ||12 norm.

In other words:

* 0 ifdpePB, o=di
TV (W):Z%(SO):{ " op P = anvp

+oo otherwise.

Proof: this result is easy to prove using the convex analysis

tools presented before (see the proof in appendix).
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Application to image restoration
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The ROF (Rudin, Osher, Fatemi) model

We are interested in the computation of
~ . 1
Uwap = argmin J(u) := =||u — tpl|5 + ATV(u) .
UER? 2
Thanks to the previous properties, we have

—~ 1
Uyap = argmin é
ueRr®

< 0e aMAp — Ug + )\OTV(/UMAP)

N Uy — U
& T € OTVF (°>

lu— ol + ATV (u)

A

Up _ Uy — Uuap 1 Up — Unap
—c ——— 4+ O0TV* | ————
S 5 € 3 + )\8 ( 3 )
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Application to image restoration
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The ROF (Rudin, Osher, Fatemi) model

Dual formulation of the ROF problem: Let w = "O%EMAP we

have ’
0 € w—up/\ + XaTV*(vAv),

Thus,

w = argmin 1HW — Up/ |3 + 1TV*(W) :
weR? 2 A

Last, since TV*(w) = 1»(w), we have

W = argmin |w — uo/A|3 = Proj(uo/A) .
wee€

an thus, Umap = Uo — A Proj¢(uo/A).

22/30



Application to image restoration
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Inverse problems (primal-dual approach)

1

SllAU = wol® + ATV(u).

A:R? 5 RY, Uyap = argmin
ueR®

Primal-dual formulation: Let us use F** = F (valid as soon as
F is convex, and lower semi-continuous).

@ TV(u) = TV**(u) yields a dual formulation (also called
weak formulation) of the discrete TV,

TV(u) = max (Vu,p) .
pEA

® 3llAu— wll5 = f(Au) = f**(Au) = max(q, Au) — *(q),
q w

and we can easily show that *(q) = 1|/q + uo||3 — 3| uol[3-
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Application to image restoration
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Inverse problems (primal-dual approach)

By replacing these two terms into the initial problem, we get a
primal-dual reformulation:

N . 1
Guse = argminmax (\Vu. Au). (p.q)) — 19+ tol3
ueR® 55{5,

Such a problem can be handled using the Chambolle-Pock
algorithm (2011), which boils down to the numerical scheme
P! = Proj g (p"+oAVT")
g = (q"+ 0o (AT" - w)) /(1 +0)
U™t = u" 4+ radivp™t! — rA*g"H!
Un+1 — gyt +0 (un+1 _ Un)
The convergence of the iterates (u”, p”, ") toward a solution of

the primal-dual problem is ensured for § = 1 and 7o < |||K]|||?,
noting K = u+— (AVu, Au).
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e Conclusion
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Conclusion

Conclusion

@ The tools presented here are based on very simple
notions.

@ They are useful to reformulate a (convex) problem into a
dual (or primal-dual) one, which can be sometimes much
more simple than the initial problem.

@ What is the good framework for using these tools?

e The cost function must be convex and lower
semi-continuous (I space). When it is not the case, it may
be replaced by a convex approximation (I'-regularization,
Moreau-Yoshida envelope, surrogate functions, etc.).

e A dual reformulation often starts with the computation of the
Legendre-Fenchel transform of a part of the cost function
(which is particularly easy in the case of /° norms).

e The dual variables are easy to manipulate when E is a
Hilbert space.
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Appendix (Computation of TV*)

Lemma (Legendre-Fenchel transform of a norm)

Let E denote a Hilbert space, endowed with a norm || - ||, and a
scalar product (-, -). We have

0 if|v]. <1

Ve E, |v["=1g.(v) = { +oo otherwise

where || - ||« = v = SUP,cg |y <1(V, U) denotes the dual norm.

In other words, || - ||* is the indicator function of the closed unit
ball for the dual norm || - ||..

Proof. We have 1%, (u) =sup,cg, |v.<1(V: U) = [[ull = U],
forany u € E. Thus, || - [|[* = 2%} = 14,, since 1, € [(E).
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Appendix (Computation of TV*)

Lemma (dual norm of the || - ||1.2 norm)

The two norms || - ||12 and || - |2 over the Hilbert space
E :=R? x R? are dual to each other.

Proof. Since E is reflexive, we just need to show that one norm
is the dual of the other. Let us show that || - ||1 2 is the dual norm
of || - [|s,2. Forany p € E, we have

sup (P, Q) = sup Y oxea(P(Xx), q(x))ge
g€k, |19llos,2<1 qeE
VXeQ, [1g(x)|2<1

= xen sup (P(x), g(x))ge
g(x)€R2, [g(x)[2<1

=2 xea lP(X)2
= [pll1,2-
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Appendix (Computation of TV*)

Theorem (Legendre-Fenchel transform of TV)
TV =1y, where ¢ =divB and B ={p c E, ||p|loz < 1}.

Proof.
@ Since the two norms || - ||1 2 and || - ||o2 are dual to each
other, we have || - [|5, =1z, and thus | - |12 = || - [|7% = ©5-

@ Besides, for all u € R, we have

1 (u) = sup(u, v) = sup(u,divp) = sup(Vu,p) = 15 (Vu).
VEY peR peA

@ Therefore, 13, (u) = v3,(Vu) = ||Vul|1 2 = TV(u), for any u.
@ Thus TV =+, and finally TV* = % = 1.
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