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Mathematical framework

A gray level image is represented as a function

u : Ω→ R

where Ω denotes

Continuous framework: a bounded open set of R2.
Discrete framework: a rectangular subset of Z2.

In both cases, we will note u ∈ RΩ.
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Total variation (continuous framework)

We will focus on image restoration process involving the total
variation functional, which is defined by

∀u ∈W 1,1(Ω), TV(u) =

∫
Ω
‖∇u(x)‖2dx ,

or, more generally,

∀u ∈ BV(Ω), TV(u) = sup
φ∈C∞c (Ω;R2)
∀x∈Ω, ‖φ(x)‖2≤1

−
∫

Ω
u(x)divφ(x)dx ,

where BV(Ω) =
{

u ∈ L1
loc(Ω); TV(u) < +∞

}
.
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Total variation (discrete framework)

Let Ω = {0, . . . ,M − 1} × {0, . . . ,N − 1} denote a discrete
rectangular domain, and u ∈ RΩ a discrete image. We
generally adapt the continuous definition of TV(u) as follows,

TV(u) = ‖∇u‖1,2 :=
∑

(x ,y)∈Ω

‖∇u(x , y)‖2 ,

where ∇ denotes a finite difference operator.
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Optimization problem

We are interested in the computation of û ∈ E , a minimizer of a
given cost function J over a subset C ⊂ E (constraint set).
Such a problem is usually written

û ∈ argmin
u∈C

J(u)

J denotes a function from E to R := R ∪ {±∞},

E denotes (for shake of simplicity) a Hilbert space,

in general, C = {u ∈ E; g(u) ≤ 0 , h(u) = 0}
where g is called the inequality constraint,

and h is called the equality constraint.
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Differentiable and unconstrained framework

Theorem (first order necessary condition for optimality)

If û achieves a minimum of J over E, then ∇J(û) = 0.

This condition becomes sufficient when the cost function J is
convex.

Theorem (sufficient condition for the existence of a minimizer)

If J : E → R is a proprer, continuous and coercive function,
then the unconstrained problem admits at least one solution.

If moreover J is strictly convex, the problem admits exactly
one solution.
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Example of resolvant algorithm (C = E = Rn)

Algorithm (gradient descent)
1. Initialization:

Choose u0 ∈ Rn, α0 > 0 and ε > 0.
2. Iteration: k

compute ∇J(uk )
compute αk
uk+1 = uk − αk∇J(uk )

3. Example of stopping criterion:
if ‖J(uk+1)− J(uk )‖ < ε, STOP
otherwise, set k = k + 1 and go back to 2.

Remark: a first order Taylor expansion of J(uk + αk∇J(uk )) at
point uk helps to understand that J(uk+1) ≤ J(uk ) as soon as
αk is small enough.
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Differentiable and constrained framework

Theorems can be adapted (in the convex setting), leading
to the so-called Karush-Kuhn-Tucker conditions.
A numerical solution of the constrained problem can be
numerically computed using the projected gradient
algorithm, which simply consists in replacing

uk+1 = uk − αk∇J(uk )

by
uk+1 = Proj C (uk − αk∇J(uk ))

into the gradient descent algorithm.
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Legendre-Fenchel transform

Let E denote a finite dimensional Hilbert space, E? its dual
space, and 〈·, ·〉 the bilinear mapping over E? × E defined by

∀ϕ ∈ E?, ∀u ∈ E , 〈ϕ,u〉 = ϕ(u) .

Definition (affine continuous applications)
An affine continuous application is a funtion of the type

A : u 7→ 〈ϕ,u〉+ α

where ϕ ∈ E? is called the slope of A,
and α is a real number, called the constant term of A.
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Legendre-Fenchel transform

Q. At which condition(s) does the affine continuous application
A, with slope ϕ ∈ E? and constant term α ∈ R, lower bound J
everywhere on E?

∀u ∈ E , A(u) ≤ J(u)

⇔ ∀u ∈ E , 〈ϕ,u〉+ α ≤ J(u)

⇔ ∀u ∈ E , 〈ϕ,u〉 − J(u) ≤ −α
⇔ sup

u∈E
{ 〈ϕ,u〉 − J(u) } ≤ −α

⇔ J?(ϕ) ≤ −α
⇔ −J?(ϕ) ≥ α
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Legendre-Fenchel transform

Definition (Legendre-Fenchel transform)

Let J : E → R, the Legendre-Fenchel transform of J is the
application J? : E? → R defined by:

∀ϕ ∈ E?, J?(ϕ) = sup
u∈E
{ 〈ϕ,u〉 − J(u) }

Geometrical intuition:
−J?(ϕ) represents the largest constant term α that can
assume any affine continuous function with slope ϕ, to
remain under J everywhere on E .
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Transformée de Legendre-Fenchel

By definition of J?, we have

∀ϕ ∈ E?, J?(ϕ) = sup
u∈E
{ 〈ϕ,u〉 − J(u) } .

We remark that

J?(0E?) = − inf
u∈E

J(u)

we retrieve here a link between “null slope” and “infimum
of J”
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Subdifferentiability

Definition (exact applications)
Let u ∈ E, ϕ ∈ E?, then, the affine continuous application

A : v 7→ 〈ϕ, v − u〉 + J(u)

satisfies A(u) = J(u). We say that A is exact at u.

Definition (subdifferentiability & subgradient)

A J : E → R is said subdifferentiable at the point u ∈ E if it
admits at least one lower bounding affine continuous
function which is exact at u.

The slope ϕ of such an affine function is then called a
subgradient of J at the point u.
The set of all subgradients of J at u is noted ∂J(u).
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Subdifferentiability

Basic properties:

ϕ ∈ ∂J(u) ⇔ ∀v ∈ E , 〈ϕ, v − u〉 + J(u) ≤ J(v)

0 ∈ ∂J(û) ⇔ û ∈ argmin
u∈E

J(u)

Remark: transformation of a constrained problem into an
unconstrained problem

argmin
u∈C

J(u) = argmin
u∈E

J(u) + ıC (u)

where ıC (u) =

{
0 si u ∈ C

+∞ si u 6∈ C
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Properties & subdifferential calculus

Any convex and lower semi-continous (l.s.c.) function is
subdifferentiable over the interior of its domain.

If J is convex and differentiable at u, then
∂J(u) = {∇J(u)}.

∀u ∈ E , ∂(J1 + J2)(u) ⊃ ∂J1(u) + ∂J2(u) .

The converse inclusion is satisfied under some additional
(but weak) hypotheses on J1 and J2.

If J is convex, lower semi-continuous, then

ϕ ∈ ∂J(u) ⇔ u ∈ ∂J?(ϕ) .

If J is convex, and lower semi-continuous, then
J??(u) = J(u) .
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Legendre-Fenchel transform of the discrete TV

Theorem (Legendre-Fenchel transform of the discrete TV)

The Legendre-Fenchel transform of TV is the indicator function
of the convex set C = divB, where

B = {p ∈ RΩ × RΩ, ‖p‖∞,2 ≤ 1} ,

and ‖ · ‖∞,2 := p 7→ max(x ,y)∈Ω ‖p(x , y)‖2 is the dual norm of
the ‖ · ‖1,2 norm.

In other words:

TV?(ϕ) = ıC (ϕ) =

{
0 if ∃p ∈ B, ϕ = divp

+∞ otherwise.

Proof: this result is easy to prove using the convex analysis
tools presented before (see the proof in appendix).
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The ROF (Rudin, Osher, Fatemi) model

We are interested in the computation of

ûMAP = argmin
u∈RΩ

J(u) :=
1
2
‖u − u0‖22 + λTV(u) .

Thanks to the previous properties, we have

ûMAP = argmin
u∈RΩ

1
2
‖u − u0‖22 + λTV(u)

⇔ 0 ∈ ûMAP − u0 + λ∂TV(ûMAP)

⇔ ûMAP ∈ ∂TV?
(

u0 − ûMAP

λ

)
⇔ u0

λ
∈ u0 − ûMAP

λ
+

1
λ
∂TV?

(
u0 − ûMAP

λ

)
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The ROF (Rudin, Osher, Fatemi) model

Dual formulation of the ROF problem: Let ŵ = u0−ûMAP

λ , we
have

0 ∈ ŵ − u0/λ +
1
λ
∂TV?(ŵ) ,

Thus,

ŵ = argmin
w∈RΩ

1
2
‖w − u0/λ‖22 +

1
λ

TV?(w) .

Last, since TV?(w) = ıC (w), we have

ŵ = argmin
w∈C

‖w − u0/λ‖22 = Proj C (u0/λ) ,

an thus, ûmap = u0 − λProj C (u0/λ).
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Inverse problems (primal-dual approach)

A : RΩ → Rω, ûMAP = argmin
u∈RΩ

1
2
‖Au − u0‖2 + λTV(u) .

Primal-dual formulation: Let us use F ?? = F (valid as soon as
F is convex, and lower semi-continuous).

TV(u) = TV??(u) yields a dual formulation (also called
weak formulation) of the discrete TV,

TV(u) = max
p∈B

〈∇u,p〉 .

1
2‖Au − u0‖22 = f (Au) = f ??(Au) = max

q∈Rω
〈q,Au〉 − f ?(q) ,

and we can easily show that f ?(q) = 1
2‖q + u0‖22 −

1
2‖u0‖22 .
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Inverse problems (primal-dual approach)

By replacing these two terms into the initial problem, we get a
primal-dual reformulation:

ûMAP = argmin
u∈RΩ

max
p∈B
q∈Rω

〈(λ∇u,Au) , (p,q)〉 − 1
2
‖q + u0‖22

Such a problem can be handled using the Chambolle-Pock
algorithm (2011), which boils down to the numerical scheme

pn+1 = Proj B

(
pn + σλ∇un)

qn+1 =
(
qn + σ

(
Aun − u0

))
/(1 + σ)

un+1 = un + τλdivpn+1 − τA∗qn+1

un+1 = un+1 + θ
(
un+1 − un)

The convergence of the iterates (un,pn,qn) toward a solution of
the primal-dual problem is ensured for θ = 1 and τσ < |||K |||2,
noting K = u 7→ (λ∇u,Au).
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Conclusion

The tools presented here are based on very simple
notions.
They are useful to reformulate a (convex) problem into a
dual (or primal-dual) one, which can be sometimes much
more simple than the initial problem.
What is the good framework for using these tools?

The cost function must be convex and lower
semi-continuous (Γ space). When it is not the case, it may
be replaced by a convex approximation (Γ-regularization,
Moreau-Yoshida envelope, surrogate functions, etc.).

A dual reformulation often starts with the computation of the
Legendre-Fenchel transform of a part of the cost function
(which is particularly easy in the case of `p norms).

The dual variables are easy to manipulate when E is a
Hilbert space.
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Appendix (Computation of TV?)

Lemma (Legendre-Fenchel transform of a norm)

Let E denote a Hilbert space, endowed with a norm ‖ · ‖, and a
scalar product 〈·, ·〉. We have

∀v ∈ E , ‖v‖∗ = ıB∗(v) :=

{
0 if ‖v‖∗ ≤ 1

+∞ otherwise,

where ‖ · ‖∗ = v 7→ supu∈E , ‖u‖≤1〈v ,u〉 denotes the dual norm.

In other words, ‖ · ‖? is the indicator function of the closed unit
ball for the dual norm ‖ · ‖∗.

Proof. We have ı?B∗(u) = supv∈E , ‖v‖∗≤1〈v ,u〉 = ‖u‖∗∗ = ‖u‖,
for any u ∈ E . Thus, ‖ · ‖? = ı??B∗ = ıB∗ , since ıB∗ ∈ Γ(E).
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Appendix (Computation of TV?)

Lemma (dual norm of the ‖ · ‖1,2 norm)

The two norms ‖ · ‖1,2 and ‖ · ‖∞,2 over the Hilbert space
E := RΩ × RΩ are dual to each other.

Proof. Since E is reflexive, we just need to show that one norm
is the dual of the other. Let us show that ‖ · ‖1,2 is the dual norm
of ‖ · ‖∞,2. For any p ∈ E , we have

sup
q∈E , ‖q‖∞,2≤1

〈p,q〉E = sup
q∈E

∀x∈Ω, ‖q(x)‖2≤1

∑
x∈Ω〈p(x),q(x)〉R2

=
∑

x∈Ω sup
q(x)∈R2, ‖q(x)‖2≤1

〈p(x),q(x)〉R2

=
∑

x∈Ω ‖p(x)‖2
= ‖p‖1,2 .
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Appendix (Computation of TV?)

Theorem (Legendre-Fenchel transform of TV)

TV? = ıC , where C = divB and B = {p ∈ E , ‖p‖∞,2 ≤ 1}.

Proof.
Since the two norms ‖ · ‖1,2 and ‖ · ‖∞,2 are dual to each
other, we have ‖ · ‖?1,2 = ıB, and thus ‖ · ‖1,2 = ‖ · ‖??1,2 = ı?B.

Besides, for all u ∈ RΩ, we have

ı?C (u) = sup
v∈C
〈u, v〉 = sup

p∈B
〈u, divp〉 = sup

p∈B
〈∇u,p〉 = ı?B(∇u) .

Therefore, ı?C (u) = ı?B(∇u) = ‖∇u‖1,2 = TV(u), for any u.
Thus TV = ı?C , and finally TV? = ı??C = ıC .

30 / 30


	Introduction
	Convex optimization
	Generalities
	Differentiable framework
	Dual methods

	Application to image restoration
	Denoising (dual approach)
	Inverse problems (primal-dual approach)

	Conclusion

