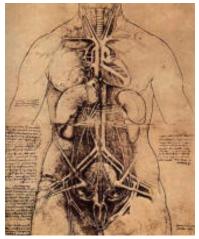
A short walk in human reproduction

N Mascie- Taylor ^{ab} & JC Thalabard ^{acd}


^aChurchill College, ^bDept Biological Anthropology, Cambridge Univ., ^cMAP5 UMR CNRS 8145, University Paris Descartes, SPC, ^dHôpital Cochin PR1, APHP

20/07/2014

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The Reproductive Function : a very special physiologic function

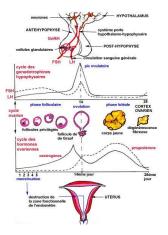
Leonardo da Vinci (1452- 1519) and the utero- mammary duct : when you see what you expect !

Reproduction and diseases

The Reproductive Function : a very special physiologic function

- not essential for the individual's survival...but essential for the group survival
- Changes in reproductive behavior concern societies and their evolution
 - The one- child policy and the gender selection
 - The delayed child bearing age in westernised countries and the demographic changes

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00


A "cultural weapon"

How to optimize mating both quantitatively and qualitatively?

- A very old question, which attracted many famous scientists from all fields
 - ► W Harvey 1651 : *Exercitationes de Generatione Animalium* edited by George Ent
 - ► GLL Buffon 1749 : Histoire naturelle. Life tables (Le Bras, 2000)
 - G Mendel (1822- 1884)
- The Reproductive Function and mathematical modeling
 - Usually driven by agricultural issues for improving efficiency (cultures, herding)
 - The sex ratio issue and the arguments between J Arbuthnot, Bernoulli DeMoivre
 - Callipedia, Orthopedia, Eugenism...
 - The study of complex psychological traits, intelligence (IQ)
 - The problem of the extinction of the family names and the 19th century context : the Galton- Watson process

The Reproductive Function : a quick reminder (XY excluded !)

- The fallacy of menstrual bleeding
- The hidden endocrine system
- A complex system regulated by both internal and external stimuli
 - A subtle dynamic interplay between 3 entities
 - Each one has its own timescale and tempo
- Two important landmarks : menarche and menopause
- A dynamical system with reversible and irreversible states

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The neuro- endocrine control of the pituitary- gonadal axis

- G Harris and the beginning of neuroendocrinology (Kreier and Swaab, 2010) : the retino- ejaculatory reflex in ducks
- Multiple signals, both endogenous and exogenous, mostly inhibitory
 - Light/ Stressors/ Olfactory stimuli
 - Steroid sexual hormones, both endogenous and exogenous (contraception, *endocrine disruptors* -cf. Obseff)
 - Insulin, Leptin in relation to nutritional and metabolic stimuli
 - Immune System (IL) and infectious/ chronic diseases
 - Breastfeeding R Short and the WHO study(P Howie et al), cf Bangladesh tea plantation study NMT & LR, (LeStrat and Thalabard, 2001)

Example 1 : The Obseff study. Context and aims

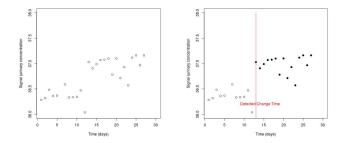
- Context and aims
 - Participants : A Bohet, J Bouyer, B Ducot, N Keiding, <u>L Rosetta</u>, R Slama (PI), JCT
 - ► Current issue : is there a decline in fertility in Europe in relation to environment ? ⇒ Obseff main objective : assessing the actual fertility and its trend in relation to environment in French couples from the general population wishing to conceive (Slama et al., 2012)
- Ancillary study : what is the female ovulatory status in those couples ?
 - Its evidence usually based in clinical practice on a set of complementary tools
 - Menstrual Diary, Body Temperature Chart, Follicular US Monitoring
 - $\blacktriangleright~\pm$ Repeated Collections of either Blood or Salivary or Urinary Individual Samples
 - QS1 : Is urinary repeated collection an acceptable tool in Field Studies ?
 - ► QS2 : Can we reduce the urinary frequency collection without compromising ovulation assessment?

Example 1 : The Obseff study : a complex survey

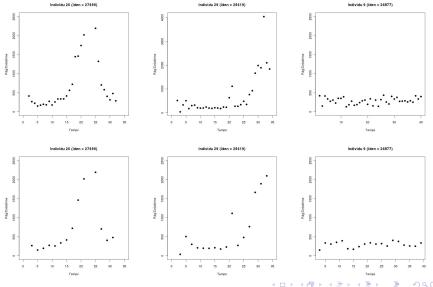
- 64,805 homes contacted by random digit dialling
- \blacktriangleright 15,811 women identified 18-44 yrs \propto eligibility questionnaire
- 997 with regular intercourse, without any contraception, no delivery within previous 6 mo
 - ▶ 685 accepted hormonal assessment \rightarrow 250 complied with protocol including ethical agreement + booklet filled in
 - 41 only filled in the booklet
 - 209 accepted urinary sampling. Among them, 49 women randomly sampled for every day sampling, whereas 160 collected every other day.

▶ 15 pregnancies reported

Example 1 : The Obseff study. Urinary collection and E1G/ PdG determinations


- Urine collection
 - Set of calibrated filter papers for a full menstrual cycle
 - Self- collection every- or every other- day
 - ► Each measure = 3 pH strips × 4 squares (1 square ≃ 5 µ l)
 - Strips exposed to 1st urine flow after wake up, dried at room θ, stored into a plastic bag.
 - All plastic bags for a cycle sent by regular mail to central lab
- Urinary assay
 - Assay in duplicate PdG, EiG, Creat
 - \blacktriangleright Procedure \propto WHO procedure using WHO reagents

(日) (四) (日) (日) (日)


Example 1 : the Obseff study : Ovulation detection

 The mathematical problem relates to the detection of a signal change in a time series

- ► The distinction on- line ≠ off- line detection but a situation of sparse series
- Several methods reported (Santoro et al., 2003, Thalabard et al., 2011)
- Validation : 3 independent experts analysed blindly 96 anonymous profiles in random order (2 × 48)

Example 1 : Obseff study. Some PdG Profiles

 $\exists \rightarrow$

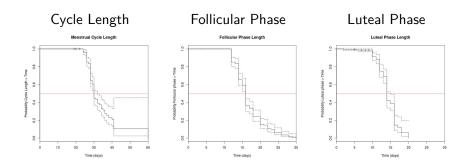
Example 1 : Obseff study. Did the experts agree?

Ovulation Discordances

Frequency	Exp 1 vs 2	Exp 1 vs 3	Exp 2 vs 3
1	2	1	1
2	3	1	2

Day of Ovulation

Frequency	ICC	95%	∕₀CI	Mean 2-2 CC	Robinson	Finn
1/1	0.90	0.84	0.95	0.91	0.94	0.95
2/1	0.94	0.89	0.96	0.91	0.93	0.95
2/2	0.84	0.76	0.90	0.86	0.90	0.96


▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Example 1 : Obseff study. How the automatic detectors agreed with the experts?

Frequency	Method	Se	Sp	True Ovulating	Non Ovulating
1	Brown	1.00	0.50	44	4
1	Kassam	0.93	0.75	44	4
1	Waller1	0.93	0.75	44	4
1	Black95	1.00	0.25	44	4
1	Black99	1.00	0.00	44	4
1	NLR	1.00	0.25	44	4
1	MBP	1.00	0.25	44	4
1	PWR	1.00	0.25	44	4
1	Cusum	1.00	0.25	44	4
1	Ewma	0.84	0.75	44	4
2	Brown	0.93	0.6	43	5
2	Kassam	1.00	0.8	43	5
2	Waller1	0.98	0.8	43	5
2	Black95	0.98	0.4	43	5
2	Black99	0.98	0.4	43	5
2	NLR	1.00	0.2	43	5
2	MBP	1.00	0.4	43	5
2	PWR	1.00	0.2	43	5
2	Cusum	1.00	0.4	43	5
2	Ewma	0.35	0.8	43	5

Example 1 : Obseff study. Cycle characteristics in couples from the general population

The Kaplan Meier representation for rightcensored data

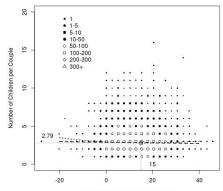
Discussion and conclusions

- Urinary self collection appears feasible
 - In field situation the choice of urine collection on pH strips appears well adapted & well accepted
 - Few missing points as soon as the woman accepts starting
 - No need of storage in the fridge = well accepted by family !
 - The whole set not cumbersone, sent by post to the lab, reliable, not costly
 - Enzyme immuno assay not expensive and friendly for the environment

Main Results

- 3 experts gave consistant results with no doubtful situations
- The simple creat- corrected PdG threshold Kassam's one gave the "best" results
- Use of every other day versus every day collection : the range of variation remained small and acceptable for off line detection in population study

Example 2 : Is mating for height associated with fertility? current work with Monika Krzyzanowska and NMT

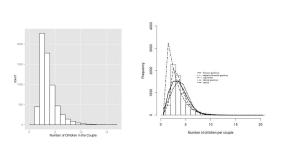

- How to select his or her partner remains a burning issue !
 - From the oracle's advice and regional recipes to the current illusion of scientifically mastering an event, which is indeed largely influenced by the socio- economic context, the cultural environment and chance.

- What has really changed? (Allen, 1997)
- QS : are basic biometric parameters still important for fertility ?

Example 2 : Revisiting an old question. An intriguing graph

The UK National Child Development Study (NCDS) data set

- Children born March, 3rd-9th 1958. Regular
 FU : 1965, 1969, 1991, 2000, 2004, 2008, 2013.
- 1974 FU : 6535 index children, with information on age, weight and height, education and social class in both parents.



Height Difference: Father-Mother (cm)

▲□▶ ▲□▶ ▲ □▶ ▲ □ ▶ ▲ □ ● ● ● ●

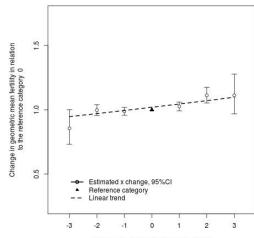
Example 2 : The choice of the regression model

- Here, Y, the number of children is integer- valued ⇒ a counting process
- In addition, only couples with at least one child are recorded : Y is

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

left- truncated

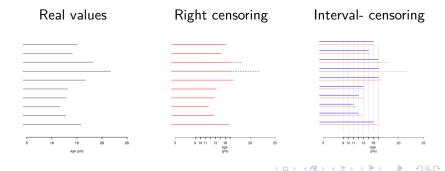

- Linear regression analysis tries to explain a dependent variable Y with a set of independent regressors X₁, X₂ as parcimonious as possible
- Potential regressors are either continuous like height, weight or categorical with a natural order like education- or social- scores or without like regions
- The culturally- linked regressor variables are expected to be somehow highly correlated : "qui se ressemble s'assemble !"

Example 2 : adjusting on covariates

Covariate		Estimate	p-value
Region	Scotland (Reference)	1.66	1.73e-11
Δ	North	-0.06	8.34e-02
	Yorks+Humber	-0.12	1.17e-03
	East Midlands	-0.08	3.36e-02
	East Anglia+South East	-0.13	5.12e-07
	South West	<mark>-</mark> 0.06	7.02e-02
	West Midlands	<mark>-</mark> 0.08	7.27e-03
	North West	-0.03	3.47e-01
	Wales	-0.05	1.740e-01
Age	mean	0.02	3.03e-57
	difference	-0.00	1.35e-01
Social class	mean	0.14	2.31e-29
	difference	0.02	3.48e-04
Education	mean	0.04	4.64e-04
	difference	0.01	2.77e-01
Height	mean	-0.01	1.48e-11
	difference	0.001	1.76e-01

The height difference is no more significant, but the social difference seems important ▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Example 2 : the unexpected effect of the difference in social class


Social class difference (husband - wife)

▲□▶ ▲圖▶ ▲園▶ ▲園▶ 三国 - 釣A@

Example 3 : Determinants of age at menarche in UK

current work with Monika Krzyzanowska and NMT

- Age at menarche is an important natural event in a woman's life occuring on a continuous age time- scale
- But its precise value can be altered by right censoring, recall bias and rounding bias leading to interval censored data
- \Rightarrow A very frequent situations in clinical and field studies

Example 3 : Determinants of age at menarche in UK

- Classical tool for right censored survival data : Cox semiparametrice proportional hazard regression model
 - Continuous time scale, few, if any, tied values
 - Asymptotic results now connected to the counting process theory
- Alternative models
 - ▶ Parametric models, Accelerated Failure Time (AFT) model
 - Poisson regression for counting data
- Direct interval censored survival data analysis
 - Peto (1973) pointed out the issue precisely in relation to menarche data !
 - Recent algorithmic developments are now accessible (Gomez et al., 2009)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example 3 : Some very cautious preliminary results

Origin	Variable		Estimate	p-value
Daughter	Weight (kg) at 7 yrs		0.067	0.0e + 00
	Height (cm) at 7 yrs		0.03	0.0e + 00
	Breast Fed	1/2/3		NS
Mother	Age at menarche		-0.15	0.0e + 00
	Educ cat	2/3/4		NS
	Smoking during Pregnancy	Yes		NS
Father	Educ. cat	2/3/4		NS
	Mobility 58-65 7	0/1		NS
	Financial Diff.	Yes	0.20	2.8e – 35
Family	Social cat	1/2/3/		NS
	Birth order	2	-0.04	1.6e - 01
		3	-0.09	3.0e - 04
	Number of Children		-0.08	2.0e - 67
Environment	Crowding	1 - 1.5	-0.1288	6.1e - 06
	-	1.5 - 2	-0.2324	2.7e – 07
		2+	-0.2843	3.1e - 04
	Bedroom share	2	-0.092	1.3e - 04
		3	-0.23	2.0e - 09
	Amenities at 7			NS
	Tenure at 7	2	-0.10	1.1e - 05
		3	0.03	5.0e - 01
		4	0.121	6.1e - 02
	Free School Meals	Yes	0.29	1.2e - 76
	Accommodation	1/2/3		NS
Region	North		-0.051	3.1e - 01
0	Yorks.Humber		0.048	3.6e – 01
	East.Midlands		0.02	7.0e - 01
	East.Anglia.SouthWest		0.18	2.1e - 11
	SouthWest		0.11	5.9e - 02
	West.Midlands		0.17	4.3e - 04
	NorthWest		0.01	8.3e – 01
	Wales		0.22	4.1e - 04

Sac

≣⇒

Politics, environment and reproduction : a short story before conclusion...

(日)

э

Do you recognize this plant?

Politics, environment and reproduction : an unverified short story...

- Heracleum Sphondylyum : (common) hogweed/ berce (commune)/ Bearfoot...
- Old popular knowledge about its side effects but also its health benefits

▶ Very abundant in Scotland, where the natality is high... ⇒ Queen Victoria is reported to have mandated her chemists to design one of the first herbicide against hogweed ?

 \Rightarrow Of course, correlation is not causation, but it frequently drives our decisions... and, if the story is correct, it visibly failed here !

Some concluding remarks

This 6- month overseas fellowship at Churchill was a unique opportunity

- to find more time to work on continuously postponed scientific tasks
- to enjoy the Churchill College life and the Cambridge fantastic environment
- to meet extraordinary people from so different fields in such a rather short period, something we are not very successful at SPC !
- to discover unexpected topics of interest !
- to foster scientific collaborations and envisage joint meetings (MD/ PhD program)
- to enjoy teaching practical use of R- based biostatistics for field studies to a very diversified audience

I sincerely thank all the people both at the French Embassy, at Churchill and at Nick's lab who made this stay possible and so enjoyable !

References I

- G. E. Allen. The social and economic origins of genetic determinism : a case history of the american eugenics movement, 1900-1940 and its lessons for today. *Genetica*, 99 :77–88, 1997.
- G. Gomez, M. L. Calle, R. Oller, and K. Langohr. Tutorial on methods for interval-censored data and their implementation in r. *Statistical Modelling*, 9 :259–297, 2009.
- F. Kreier and D. F. Swaab. Chapter 23 : history of neuroendocrinology "the spring of primitive existence". *Handb Clin Neurol*, 95 :335–360, 2010.
- H. Le Bras. *Naissance de la mortalité. L'origine politique de la statistique et de la démographie.* Seuil/ Gallimard, 2000.
- Y. LeStrat and J. Thalabard. Analysis of postpartum lactational amenorrhoea in relation to breast-feeding : some methodological and practical aspects. J Biosoc Sci, 33(4) :529–549, Oct 2001.

References II

- R. J. Peto. Experimental survival curves for interval-censored data. Journal of the Royal Statistical Society, Series C, 22 :86–91, 1973.
- N. Santoro, S. L. Crawford, J. E. Allsworth, E. B. Gold, G. A. Greendale, S. Korenman, B. L. Lasley, D. McConnell,
 P. McGaffigan, R. Midgely, M. Schocken, M. Sowers, and
 G. Weiss. Assessing menstrual cycles with urinary hormone assays. *Am J Physiol Endocrinol Metab*, 284 :E521–E530, 2003.
- R. Slama, O. Hansen, B. Ducot, A. Bohet, D. Sorensen, E. M. Giogis Allemand, L, L. Rosetta, J. Thalabard, and N. Keiding. Estimation of the frequency of involuntary infertility on a nation-wide basis. *Hum Reprod*, 27 :1489–1498, 2012.
- J. Thalabard, L. Joubin, L. Rosetta, and C. Mascie-Taylor. Analysing the characteristics of the menstrual cycle in field situations in humans : some methodological aspects. Cambridge University Press, 2011.